Discordant β-Lactam Susceptibility in Clinical Staphylococcus aureus Isolates: A Molecular and Phenotypical Exploration to Detect the BORSA/MODSA Isolates in Bogotá, Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolates Collection
2.2. Bacterial Typing
2.3. Antibiotic Susceptibility Testing
2.4. Validation of Discordant Susceptibility Isolates
2.4.1. Cefazolin Inoculum Effect (CzIE) Testing
2.4.2. Rapid Colorimetric Test to CzIE
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pourmand, M.R.; Hassanzadeh, S.; Mashhadi, R.; Askari, E. Comparison of four diagnostic methods for detection of methicillin resistant Staphylococcus aureus. Iran. J. Microbiol. 2014, 6, 341. [Google Scholar]
- Pournajaf, A.; Ardebili, A.; Goudarzi, L.; Khodabandeh, M.; Narimani, T.; Abbaszadeh, H. PCR-based identification of methicillin–resistant Staphylococcus aureus strains and their antibiotic resistance profiles. Asian Pac. J. Trop. Biomed. 2014, 4, S293–S297. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Ito, T.; Tsubakishita, S.; Sasaki, T.; Takeuchi, F.; Morimoto, Y.; Katayama, Y.; Matsuo, M.; Kuwahara-Arai, K.; Hishinuma, T.; et al. Genomic basis for methicillin resistance in Staphylococcus aureus. Infect. Chemother. 2013, 45, 117–136. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Chu, M.; Tao, L.; Li, J.; Li, X.; Huang, H.; Qu, K.; Wang, H.; Li, L.; Du, T. First report of oxacillin susceptible mecA-positive Staphylococcus aureus in a Children’s hospital in kunming, China. Infect. Drug Resist. 2021, 14, 2597–2606. [Google Scholar] [CrossRef] [PubMed]
- Scudiero, O.; Brancaccio, M.; Mennitti, C.; Laneri, S.; Lombardo, B.; De Biasi, M.G.; De Gregorio, E.; Pagliuca, C.; Colicchio, R.; Salvatore, P.; et al. Human defensins: A novel approach in the fight against skin colonizing Staphylococcus aureus. Antibiotics 2020, 9, 198. [Google Scholar] [CrossRef]
- Saeed, K.; Marsh, P.; Ahmad, N. Cryptic resistance in Staphylococcus aureus: A risk for the treatment of skin infection? Curr. Opin. Infect. Dis. 2014, 27, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Hryniewicz, M.M.; Garbacz, K. Borderline oxacillin-resistant Staphylococcus aureus (BORSA)–a more common problem than expected? J. Med. Microbiol. 2017, 66, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Rincon, S.; Carvajal, L.P.; Gomez-Villegas, S.I.; Echeverri, A.M.; Rios, R.; Dinh, A.; Pedroza, C.; Ordoñez, K.M.; Nannini, E.; Sun, Z.; et al. A Test for the Rapid Detection of the Cefazolin Inoculum Effect in Methicillin-Susceptible Staphylococcus aureus. J. Clin. Microbiol. 2021, 59. [Google Scholar] [CrossRef]
- Miller, W.R.; Seas, C.; Carvajal, L.P.; Diaz, L.; Echeverri, A.M.; Ferro, C.; Rios, R.; Porras, P.; Luna, C.; Gotuzzo, E.; et al. The cefazolin inoculum effect is associated with increased mortality in methicillin-susceptible Staphylococcus aureus bacteremia. Open Forum Infect. Dis. 2018, 5, ofy123. [Google Scholar] [CrossRef]
- Carvajal, L.P.; Rincon, S.; Echeverri, A.M.; Porras, J.; Rios, R.; Ordoñez, K.M.; Seas, C.; Gomez-Villegas, S.I.; Diaz, L.; Arias, C.A.; et al. Novel Insights into the Classification of Staphylococcal-Lactamases in Relation to the Cefazolin Inoculum Effect. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Reyes, J.; Rincón, S.; Díaz, L.; Panesso, D.; Contreras, G.A.; Zurita, J.; Carrillo, C.; Rizzi, A.; Guzmán, M.; Adachi, J.; et al. Dissemination of methicillin-resistant Staphylococcus aureus USA300 sequence type 8 lineage in Latin America. Clin. Infect. Dis. 2009, 49, 1861–1877. [Google Scholar] [CrossRef] [PubMed]
- Lina, G.; Piémont, Y.; Godail-Gamot, F.; Bes, M.; Peter, M.-O.; Gauduchon, V.; Vandenesch, F.; Etienne, J. Involvement of Panton-Valentine Leukocidin—Producing Staphylococcus aureus in Primary Skin Infections and Pneumonia. Clin. Infect. Dis. 1999, 29, 1128–1132. [Google Scholar] [CrossRef]
- Löffler, B.; Hussain, M.; Grundmeier, M.; Brück, M.; Holzinger, D.; Varga, G.; Roth, J.; Kahl, B.C.; Proctor, R.A.; Peters, G. Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog. 2010, 6, e1000715. [Google Scholar] [CrossRef]
- Hu, Q.; Cheng, H.; Yuan, W.; Zeng, F.; Shang, W.; Tang, D.; Xue, W.; Fu, J.; Zhou, R.; Zhu, J.; et al. Panton-Valentine leukocidin (PVL)-positive health care-associated methicillin-resistant Staphylococcus aureus isolates are associated with skin and soft tissue infections and colonized mainly by infective PVL-encoding bacteriophages. J. Clin. Microbiol. 2015, 53, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Cuny, C.; Wieler, L.H.; Witte, W. Livestock-Associated MRSA: The impact on humans. Antibiotics 2015, 4, 521–543. [Google Scholar] [CrossRef]
- Eguizábal, P.; López-Calleja, A.I.; Arias, A.; Antoñanzas-Torres, I.; Campaña-Burguet, A.; González-Azcona, C.; Martínez, A.; Vicente, C.M.-D.; Herrero, I.; Rezusta, A.; et al. Livestock associated Staphylococcus aureus in cystic fibrosis patients in Spain: Detection of MRSA and MSSA CC398. Microb. Pathog. 2024, 197, 107016. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, F. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) colonisation and infection among livestock workers and veterinarians: A systematic review and meta-analysis. Occup. Environ. Med. 2021, 78, 465–471. [Google Scholar] [CrossRef]
- Mama, O.M.; Aspiroz, C.; Ruiz-Ripa, L.; Ceballos, S.; Iñiguez-Barrio, M.; Cercenado, E.; Azcona, J.M.; López-Cerero, L.; Seral, C.; López-Calleja, A.I.; et al. Prevalence and genetic characteristics of Staphylococcus aureus CC398 isolates from invasive infections in Spanish hospitals, focusing on the livestock-independent CC398-MSSA clade. Front. Microbiol. 2021, 12, 623108. [Google Scholar] [CrossRef] [PubMed]
- Koreen, L.; Ramaswamy, S.V.; Graviss, E.A.; Naidich, S.; Musser, J.M.; Kreiswirth, B.N. spa typing method for discriminating among Staphylococcus aureus isolates: Implications for use of a single marker to detect genetic micro-and microvariation. J. Clin. Microbiol. 2004, 42, 792–799. [Google Scholar] [CrossRef]
- Narukawa, M.; Yasuoka, A.; Note, R.; Funada, H. Sequence-based spa typing as a rapid screening method for the areal and nosocomial outbreaks of MRSA. Tohoku J. Exp. Med. 2009, 218, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Salipante, S.J.; SenGupta, D.J.; Cummings, L.A.; Land, T.A.; Hoogestraat, D.R.; Cookson, B.T. Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. J. Clin. Microbiol. 2015, 53, 1072–1079. [Google Scholar] [CrossRef]
- Ali, A.O. Detection of mecA, mecC and femB genes by multiplex polymerase chain reaction. J. Vet. Adv. 2016, 6, 1199–1205. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.C.; Tomasz, A.; de Lencastre, H. The evolution of pandemic clones of methicillin-resistant Staphylococcus aureus: Identification of two ancestral genetic backgrounds and the associated mec elements. Microb. Drug Resist. 2001, 7, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Wayne, P.A. Clinical and Laboratory Standards Institute: Performance Standards for Antimicrobial Susceptibility Testing: Informational Supplement, M100; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2024. [Google Scholar]
- Rincón, S.; Reyes, J.; Carvajal, L.P.; Rojas, N.; Cortés, F.; Panesso, D.; Guzmán, M.; Zurita, J.; Adachi, J.A.; Murray, B.E.; et al. Cefazolin high-inoculum effect in methicillin-susceptible Staphylococcus aureus from south american hospitals. J. Antimicrob. Chemother. 2013, 68, 2773–2778. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G., Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Escobar-Pérez, J.A.; Castro, B.E.; Márquez-Ortiz, R.A.; Gaines, S.; Chavarro, B.; Moreno, J.; Leal, A.L.; Vanegas, N. Methicillin-sensitive Staphylococcus aureus isolates related to USA300 clone: Origin of community-genotype MRSA in Colombia? Biomedica 2014, 34, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Abente, S.; Carpinelli, L.; Guillén, R.; Rodríguez, F.; Fariña, N.; Laspina, F.; López, Y. Frecuencia de Staphylococcus aureus meticilino resistente y del factor de virulencia PVL en pacientes ambulatorios con infección de piel y partes blandas de Asunción, Paraguay. Mem. Inst. Investig. Cienc. Salud 2016, 14, 8–16. [Google Scholar] [CrossRef]
- Asadollahi, P.; Farahani, N.N.; Mirzaii, M.; Khoramrooz, S.S.; van Belkum, A.; Asadollahi, K.; Dadashi, M.; Darban-Sarokhalil, D. Distribution of the most prevalent spa types among clinical isolates of methicillin-resistant and -susceptible Staphylococcus aureus around the world: A review. Front. Microbiol. 2018, 9, 163. [Google Scholar] [CrossRef] [PubMed]
- Enright, M.C.; Robinson, D.A.; Randle, G.; Feil, E.J.; Grundmann, H.; Spratt, B.G. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. USA 2002, 99, 7687–7692. [Google Scholar] [CrossRef]
- Thampi, D.K.; Mundangalam, N.; Pulikottil, S.K.; Jacob, N. Comparison of Phenotypic MRSA Detection Methods with mecA gene PCR in a Tertiary Care Centre in India. J. Evol. Med. Dent. Sci. 2019, 8, 2813–2818. [Google Scholar] [CrossRef]
- Sasaki, H.; Ishikawa, H.; Itoh, T.; Arano, M.; Hirata, K.; Ueshiba, H. Penicillin-Binding Proteins and Associated Protein Mutations Confer Oxacillin/Cefoxitin Tolerance in Borderline Oxacillin-Resistant Staphylococcus aureus. Microb. Drug Resist. 2021, 27, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Sommer, A.; Fuchs, S.; Layer, F.; Schaudinn, C.; Weber, R.E.; Richard, H.; Erdmann, M.B.; Laue, M.; Schuster, C.F.; Werner, G.; et al. Mutations in the gdpp gene are a clinically relevant mechanism for β-lactam resistance in meticillin-resistant Staphylococcus aureus lacking mec determinants. Microb. Genom. 2021, 7. [Google Scholar] [CrossRef] [PubMed]
- Konstantinovski, M.M.; Veldkamp, K.E.; Lavrijsen, A.P.M.; Bosch, T.; Kraakman, M.E.M.; Nooij, S.; Claas, E.C.J.; Gooskens, J. Hospital transmission of borderline oxacillin-resistant Staphylococcus aureus evaluated by whole-genome sequencing. J. Med. Microbiol. 2021, 70, 001384. [Google Scholar] [CrossRef] [PubMed]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Harmsen, D.; Claus, H.; Witte, W.; Rothgänger, J.; Claus, H.; Turnwald, D.; Vogel, U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J. Clin. Microbiol. 2003, 41, 5442–5448. [Google Scholar] [CrossRef] [PubMed]
Isolates | OXA MIC (μg/mL) | Spa-Type | mecA | blaZ | Chromogenic Rapid Test (BlaZ, CzIE) | CZ MIC (µg/mL) | CZ HI MIC (µg/mL) | Classification |
---|---|---|---|---|---|---|---|---|
7 | 2 | t037 | + | + | Not done | Not done | Not done | MRSA |
28 | 1 | Unknown | − | + | Positive | 1 | 64 | MSSA (CzIE+) |
34 | 0.5 | t743 | − | − | Positive | 0.5 | ≥64 | MSSA (CzIE+) |
37 | 16 | t122 | − | + | Positive | 8 | ≥64 | BORSA/MODSA |
38 | 16 | t9987 | − | − | Negative | 8 | 16 | BORSA/MODSA (CzIE+) |
44 | 0.5 | Unknown | − | + | Negative | 0.5 | ≥64 | MSSA (CzIE+) |
1634 | 32 | t002 | + | + | Positive | 16 | Not done | MRSA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca-Fernández, A.L.; Mancera-García, M.A.; Leal-Castro, A.L.; Leidy, C.; Rincón, S.; Carvajal, L.P.; Reyes, J.; Ramírez, A.M.C. Discordant β-Lactam Susceptibility in Clinical Staphylococcus aureus Isolates: A Molecular and Phenotypical Exploration to Detect the BORSA/MODSA Isolates in Bogotá, Colombia. Microorganisms 2024, 12, 2598. https://doi.org/10.3390/microorganisms12122598
Fonseca-Fernández AL, Mancera-García MA, Leal-Castro AL, Leidy C, Rincón S, Carvajal LP, Reyes J, Ramírez AMC. Discordant β-Lactam Susceptibility in Clinical Staphylococcus aureus Isolates: A Molecular and Phenotypical Exploration to Detect the BORSA/MODSA Isolates in Bogotá, Colombia. Microorganisms. 2024; 12(12):2598. https://doi.org/10.3390/microorganisms12122598
Chicago/Turabian StyleFonseca-Fernández, Angie Lorena, María Alejandra Mancera-García, Aura Lucia Leal-Castro, Chad Leidy, Sandra Rincón, Lina P. Carvajal, Jinnethe Reyes, and Adriana Marcela Celis Ramírez. 2024. "Discordant β-Lactam Susceptibility in Clinical Staphylococcus aureus Isolates: A Molecular and Phenotypical Exploration to Detect the BORSA/MODSA Isolates in Bogotá, Colombia" Microorganisms 12, no. 12: 2598. https://doi.org/10.3390/microorganisms12122598
APA StyleFonseca-Fernández, A. L., Mancera-García, M. A., Leal-Castro, A. L., Leidy, C., Rincón, S., Carvajal, L. P., Reyes, J., & Ramírez, A. M. C. (2024). Discordant β-Lactam Susceptibility in Clinical Staphylococcus aureus Isolates: A Molecular and Phenotypical Exploration to Detect the BORSA/MODSA Isolates in Bogotá, Colombia. Microorganisms, 12(12), 2598. https://doi.org/10.3390/microorganisms12122598