Complete Genome Sequence of a Novel Azospirillum Strain TA Isolated from Western Siberia Chernevaya Taiga Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Source
2.2. Isolation Procedure
2.3. DNA Extraction and Sequencing
2.4. Genome Assembly, Annotation, and Analysis
2.5. Phylogenomic Analysis
3. Results
3.1. Organism Taxonomy Characteristics
3.2. Assembly Description and Genome Architecture
3.3. Phylogenomic Analysis
3.4. Functional Annotation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cassán, F.; Diaz-Zorita, M. Azospirillum sp. in Current Agriculture: From the Laboratory to the Field. Soil Biol. Biochem. 2016, 103, 117–130. [Google Scholar] [CrossRef]
- Okon, Y. Azospirillum as a Potential Inoculant for Agriculture. Trends Biotechnol. 1985, 3, 223–228. [Google Scholar] [CrossRef]
- Boddey, R.M.; Baldani, V.L.D.; Baldani, J.I.; Döbereiner, J. Effect of Inoculation of Azospirillum spp. on Nitrogen Accumulation by Field-Grown Wheat. Plant Soil 1986, 95, 109–121. [Google Scholar] [CrossRef]
- Isolation, Identification and Biochemical Characterization of Azospirillum spp. and Other Nitrogen-Fixing Bacteria|SpringerLink. Available online: https://link.springer.com/chapter/10.1007/978-3-319-06542-7_1 (accessed on 24 September 2024).
- Rodriguez, H.; Gonzalez, T.; Goire, I.; Bashan, Y. Gluconic Acid Production and Phosphate Solubilization by the Plant Growth-Promoting Bacterium Azospirillum spp. Naturwissenschaften 2004, 91, 552–555. [Google Scholar] [CrossRef]
- García, J.E.; Maroniche, G.; Creus, C.; Suárez-Rodríguez, R.; Ramirez-Trujillo, J.A.; Groppa, M.D. In Vitro PGPR Properties and Osmotic Tolerance of Different Azospirillum Native Strains and Their Effects on Growth of Maize Under Drought Stress. Microbiol. Res. 2017, 202, 21–29. [Google Scholar] [CrossRef]
- D’Angioli, A.M.; Viani, R.A.G.; Lambers, H.; Sawaya, A.C.H.F.; Oliveira, R.S. Inoculation with Azospirillum brasilense (Ab-V4, Ab-V5) Increases Zea Mays Root Carboxylate-Exudation Rates, Dependent on Soil Phosphorus Supply. Plant Soil 2017, 410, 499–507. [Google Scholar] [CrossRef]
- Hungria, M.; Ribeiro, R.A.; Nogueira, M.A. Draft Genome Sequences of Azospirillum brasilense Strains Ab-V5 and Ab-V6, Commercially Used in Inoculants for Grasses and Legumes in Brazil. Genome Announc. 2018, 6, e00393-18. [Google Scholar] [CrossRef]
- Blaha, D.; Prigent-Combaret, C.; Mirza, M.S.; Moënne-Loccoz, Y. Phylogeny of the 1-Aminocyclopropane-1-Carboxylic Acid Deaminase-Encoding Gene acdS in Phytobeneficial and Pathogenic Proteobacteria and Relation with Strain Biogeography. FEMS Microbiol. Ecol. 2006, 56, 455–470. [Google Scholar] [CrossRef]
- Vikram, A.; Alagawadi, A.R.; Krishnaraj, P.U.; Mahesh Kumar, K.S. Transconjugation Studies in Azospirillum sp. Negative to Mineral Phosphate Solubilization. World J. Microbiol. Biotechnol. 2007, 23, 1333–1337. [Google Scholar] [CrossRef]
- Malhotra, M.; Srivastava, S. An ipdC Gene Knock-out of Azospirillum Brasilense Strain SM and Its Implications on Indole-3-Acetic Acid Biosynthesis and Plant Growth Promotion. Antonie Van Leeuwenhoek 2008, 93, 425–433. [Google Scholar] [CrossRef]
- Genus: Azospirillum. Available online: https://lpsn.dsmz.de/genus/azospirillum (accessed on 25 September 2024).
- Maroniche, G.A.; García, J.E.; Salcedo, F.; Creus, C.M. Molecular Identification of Azospirillum spp.: Limitations of 16S rRNA and Qualities of rpoD as Genetic Markers. Microbiol. Res. 2017, 195, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Martin-Didonet, C.C.G.; Chubatsu, L.S.; Souza, E.M.; Kleina, M.; Rego, F.G.M.; Rigo, L.U.; Yates, M.G.; Pedrosa, F.O. Genome Structure of the Genus Azospirillum. J. Bacteriol. 2000, 182, 4113–4116. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.W.; Lower, R.P.J.; Kim, N.K.D.; Young, J.P.W. Introducing the Bacterial “Chromid”: Not a Chromosome, Not a Plasmid. Trends Microbiol. 2010, 18, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Abakumov, E.; Loiko, S.; Lashchinsky, N.; Istigechev, G.; Kulemzina, A.; Smirnov, A.; Rayko, M.; Lapidus, A. Highly Productive Boreal Ecosystem Chernevaya Taiga-Unique Rainforest in Siberia. Preprints 2020, 2020090340. [Google Scholar] [CrossRef]
- Kravchenko, I.; Rayko, M.; Tikhonova, E.; Konopkin, A.; Abakumov, E.; Lapidus, A. Agricultural Crops Grown in Laboratory Conditions on Chernevaya Taiga Soil Demonstrate Unique Composition of the Rhizosphere Microbiota. Microorganisms 2022, 10, 2171. [Google Scholar] [CrossRef]
- Cáceres, E.A.R. Improved Medium for Isolation of Azospirillum spp. Appl. Environ. Microbiol. 1982, 44, 990–991. [Google Scholar] [CrossRef]
- Assembly of Long, Error-Prone Reads Using Repeat Graphs|Nature Biotechnology. Available online: https://www.nature.com/articles/s41587-019-0072-8 (accessed on 28 October 2024).
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- Prokka: Rapid Prokaryotic Genome Annotation|Bioinformatics|Oxford Academic. Available online: https://academic.oup.com/bioinformatics/article/30/14/2068/2390517 (accessed on 28 October 2024).
- BUSCO Update: Novel and Streamlined Workflows Along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes|Molecular Biology and Evolution|Oxford Academic. Available online: https://academic.oup.com/mbe/article/38/10/4647/6329644 (accessed on 28 October 2024).
- MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability|Molecular Biology and Evolution|Oxford Academic. Available online: https://academic.oup.com/mbe/article/30/4/772/1073398 (accessed on 28 October 2024).
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Bashan, Y.; de-Bashan, L.E. How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2010; Volume 108, pp. 77–136. [Google Scholar]
- Bashan, Y.; Holguin, G.; de-Bashan, L.E. Azospirillum-Plant Relationships: Physiological, Molecular, Agricultural, and Environmental Advances (1997–2003). Can. J. Microbiol. 2004, 50, 521–577. [Google Scholar] [CrossRef]
- Condori, T.; Alarcón, S.; Huasasquiche, L.; García-Blásquez, C.; Padilla-Castro, C.; Velásquez, J.; Solórzano, R. Inoculation with Azospirillum brasilense as a Strategy to Reduce Nitrogen Fertilization in Cultivating Purple Maize (Zea mays L.) in the Inter-Andean Valleys of Peru. Microorganisms 2024, 12, 2107. [Google Scholar] [CrossRef]
- Dixon, R.; Kahn, D. Genetic Regulation of Biological Nitrogen Fixation. Nat. Rev. Microbiol. 2004, 2, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Sakai, Y.; Senoo, K.; Ishii, S. Potentially Mobile Denitrification Genes Identified in Azospirillum sp. Strain TSH58. Appl. Environ. Microbiol. 2019, 85, e02474. [Google Scholar] [CrossRef] [PubMed]
- Ramos, F.; Blanco, G.; Gutiérrez, J.C.; Luque, F.; Tortolero, M. Identification of an Operon Involved in the Assimilatory Nitrate-Reducing System of Azotobacter Vinelandii. Mol. Microbiol. 1993, 8, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.E.; Bulseco, A.N.; Ackerman, R.; Vineis, J.H.; Bowen, J.L. Sulphide Addition Favours Respiratory Ammonification (DNRA) over Complete Denitrification and Alters the Active Microbial Community in Salt Marsh Sediments. Environ. Microbiol. 2020, 22, 2124–2139. [Google Scholar] [CrossRef]
- Grassroots Ecology: Plant–Microbe–Soil Interactions as Drivers of Plant Community Structure and Dynamics-Reynolds-2003-Ecology-Wiley Online Library. Available online: https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/02-0298 (accessed on 15 November 2024).
- Friedl, J.; De Rosa, D.; Rowlings, D.W.; Grace, P.R.; Müller, C.; Scheer, C. Dissimilatory Nitrate Reduction to Ammonium (DNRA), Not Denitrification Dominates Nitrate Reduction in Subtropical Pasture Soils upon Rewetting. Soil Biol. Biochem. 2018, 125, 340–349. [Google Scholar] [CrossRef]
Replicon | 1 | 2 | 3 | 4 | 5 | 6 | 7 | All |
---|---|---|---|---|---|---|---|---|
Size, bp | 2,835,377 | 1,157,394 | 1,143,355 | 891,684 | 656,579 | 200,787 | 52,165 | 6,937,341 |
GC content | 68.83 | 68.89 | 69.40 | 68.80 | 68.84 | 66.91 | 68.93 | 68.66 |
Coverage | 68 | 64 | 63 | 64 | 63 | 103 | 52 | - |
Mult. | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 |
16S rRNA | 3 | 3 | 1 | 1 | 0 | 0 | 0 | 8 |
5S rRNA | 3 | 3 | 1 | 1 | 0 | 0 | 0 | 8 |
23S rRNA | 3 | 3 | 1 | 1 | 0 | 0 | 0 | 8 |
tRNA | 55 | 14 | 5 | 8 | 2 | 1 | 0 | 85 |
All CDs | 2690 | 998 | 1022 | 758 | 563 | 161 | 56 | 6248 |
CDs with predicted function | 1388 | 527 | 545 | 372 | 267 | 70 | 4 | 3173 |
Mobilome | 16 | 7 | 7 | 29 | 6 | 4 | 0 | 69 |
CRISPR | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 3 |
Genome | ANIb [%] 1 | ANIm [%] 2 | Z-Score | Size (bp) | GC% |
---|---|---|---|---|---|
Azopirillum TA | 100 | 100 | 1 | 6,916,495 | 68.8 |
Azospirillum doebereinerae BF-21-2S | 99.61 | 99.70 | 6,880,504 | 68.9 | |
Azospirillum doebereinerae GSF71 T | 98.68 | 98.95 | 0.99636 | 7,000,062 | 68.88 |
Azospirillum thiophilum DSM 21654 | 81.48 | 86.59 | 0.9644 | 7,637,524 | 68.15 |
Azospirillum palustre B2 | 81.37 | 86.49 | 0.95698 | 7,997,491 | 67.80 |
Azospirillum melinis TMCY0552 | 81.23 | 86.41 | 0.95589 | 7,970,174 | 67.70 |
Azospirillum oryzae COC8 | 80.73 | 86.35 | 0.95548 | 6,755,201 | 67.36 |
Azospirillum lipoferum 59b | 80.71 | 86.24 | 0.94835 | 7,987,183 | 67.26 |
Azospirillum sp. B510 | 80.65 | 86.44 | 0.9539 | 7,599,738 | 67.61 |
Azospirillum griseum L-25-5 w-1 | 79.62 | 85.94 | 0.89421 | 5,951,384 | 66.57 |
Azospirillum argentinense Az39 | 78.64 | 85.60 | 0.97928 | 7,391,279 | 68.56 |
Azospirillum rugosum IMMIB AFH-6 | 78.56 | 85.46 | 0.96455 | 7,798,764 | 68.86 |
Azospirillum baldaniorum Sp245 | 78.53 | 85.60 | 0.97853 | 7,530,241 | 68.44 |
Azospirillum formosense CC-NFb-7 | 78.22 | 85.54 | 0.97697 | 6,161,078 | 68.63 |
Azospirillum tabaci W712 | 78.21 | 85.51 | 0.97492 | 6,322,916 | 68.66 |
Azospirillum brasilense Sp 7 | 78.18 | 85.50 | 0.97781 | 6,587,527 | 68.33 |
Azospirillum halopraeferens DSM 3675 | 75.10 | 84.08 | 0.94308 | 6,508,482 | 70.71 |
Genes | EC Number | Product |
---|---|---|
nifH | 1.18.6.1 | Structural gene dinitrogenase reductase (Fe protein) |
nifD_1, nifD_2 | 1.18.6.1 | Structural gene dinitrogenase (MoFe protein, α-subunit) |
nifK_1, nifK_2 | 1.18.6.1 | Structural gene dinitrogenase (MoFe protein, β-subunit) |
nifA | - | Transcriptional activator of the nitrogen fixation (nif) genes |
nifW | - | Nitrogenase-stabilizing/protective protein |
amtB_1, amtB_2 | - | Structural gene ammonium transporter |
glnB | - | N-signal transmitter protein |
ntrB | - | Sensor protein of two-component regulatory system, involved in general nitrogen control |
ntrC | - | Sensor protein of two-component regulatory system, involved in general nitrogen control |
draT | 2.4.2.37 | Dinitrogenase reductase ADP ribosyl-transferase |
draG | 3.2.2.24 | Dinitrogenase reductase activating glucohydrolase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rayko, M.; Kravchenko, I.; Lapidus, A. Complete Genome Sequence of a Novel Azospirillum Strain TA Isolated from Western Siberia Chernevaya Taiga Soil. Microorganisms 2024, 12, 2599. https://doi.org/10.3390/microorganisms12122599
Rayko M, Kravchenko I, Lapidus A. Complete Genome Sequence of a Novel Azospirillum Strain TA Isolated from Western Siberia Chernevaya Taiga Soil. Microorganisms. 2024; 12(12):2599. https://doi.org/10.3390/microorganisms12122599
Chicago/Turabian StyleRayko, Mikhail, Irina Kravchenko, and Alla Lapidus. 2024. "Complete Genome Sequence of a Novel Azospirillum Strain TA Isolated from Western Siberia Chernevaya Taiga Soil" Microorganisms 12, no. 12: 2599. https://doi.org/10.3390/microorganisms12122599
APA StyleRayko, M., Kravchenko, I., & Lapidus, A. (2024). Complete Genome Sequence of a Novel Azospirillum Strain TA Isolated from Western Siberia Chernevaya Taiga Soil. Microorganisms, 12(12), 2599. https://doi.org/10.3390/microorganisms12122599