Rapid In-Field Detection of Airborne Pathogens Using Loop-Mediated Isothermal Amplification (LAMP)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Experiment 1: Evaluation of Suitability of LAMP for Detection of Pathogens in Air Samples
3.2. Experiment 2: Validation of Recovery of Pathogens from an Air Sample
3.3. Experiment 3: Validation of Colorimetric LAMP in Polluted Air Sample Matrix
3.4. Potential for Detection of Airborne Viruses
3.5. Potential Limitations of the Method in an Operational Setting
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, K.H.; Kabir, E.; Jahan, S.A. Airborne bioaerosols and their impact on human health. J. Environ. Sci. 2018, 67, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [PubMed]
- Douglas, P.; Robertson, S.; Gay, R.; Hansell, A.L.; Gant, T.W. A systematic review of the public health risks of bioaerosols from intensive farming. Int. J. Hyg. Environ. Health 2018, 221, 134–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Prather, K.A.; Sznitman, J.; Jimenez, J.L.; Lakdawala, S.S.; Tufekci, Z.; Marr, L.C. Airborne transmission of respiratory viruses. Science 2021, 373, eabd9149. [Google Scholar] [CrossRef]
- Tellier, R.; Li, Y.; Cowling, B.J.; Tang, J.W. Recognition of aerosol transmission of infectious agents: A commentary. BMC Infect. Dis. 2019, 19, 101. [Google Scholar] [CrossRef]
- Blatny, J.M. Biological Threats. In CBRNE: Challenges in the 21st Century; Springer International Publishing: Cham, Switzerland, 2022; pp. 47–78. [Google Scholar]
- Whitby, C.; Ferguson, R.M.W.; Colbeck, I.; Dumbrell, A.J.; Nasir, Z.A.; Marczylo, E.; Kinnersley, R.; Douglas, P.; Drew, G.; Bhui, K.; et al. Compendium of analytical methods for sampling, characterization and quantification of bioaerosols. In Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 2022; Volume 67, pp. 101–229. [Google Scholar]
- Environment Agency. M9: Environmental Monitoring of Bioaerosols at Regulated Facilities; Environment Agency: Bristol, UK, 2018.
- CEN/TS 16115-1:2011; Ambient Air Quality—Measurement of Bioaerosols—Part 1: Determination of Moulds Using Filter Sampling Systems and Culture-Based Analyses. Comite Europeen de Normalisation: Brussels, Belgium, 2011.
- CEN/TS 16115-2:2016; Ambient Air—Measurement of Bioaerosols—Part 2: Planning and Evaluation of Plant-Related Plume Measurements. Comite Europeen de Normalisation: Brussels, Belgium, 2016.
- Staley, J.T.; Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 1985, 39, 321–346. [Google Scholar] [CrossRef]
- Ferguson, R.M.; Neath, C.E.; Nasir, Z.A.; Garcia-Alcega, S.; Tyrrel, S.; Coulon, F.; Dumbrell, A.J.; Colbeck, I.; Whitby, C. Size fractionation of bioaerosol emissions from green-waste composting. Environ. Int. 2021, 147, 106327. [Google Scholar] [CrossRef]
- Mbareche, H.; Veillette, M.; Dion-Dupont, V.; Lavoie, J.; Duchaine, C. Microbial composition of bioaerosols in indoor wastewater treatment plants. Aerobiologia 2022, 38, 35–50. [Google Scholar] [CrossRef]
- Ryon, K.A.; Tierney, B.T.; Frolova, A.; Kahles, A.; Desnues, C.; Ouzounis, C.; Gibas, C.; Bezdan, D.; Deng, Y.; He, D.; et al. A history of the MetaSUB consortium: Tracking urban microbes around the globe. iScience 2022, 25, 104993. [Google Scholar] [CrossRef]
- Abrego, N.; Furneaux, B.; Hardwick, B.; Somervuo, P.; Palorinne, I.; Aguilar-Trigueros, C.A.; Andrew, N.R.; Babiy, U.V.; Bao, T.; Bazzano, G.; et al. Airborne DNA reveals predictable spatial and seasonal dynamics of fungi. Nature 2024, 631, 835–842. [Google Scholar] [CrossRef]
- Li, Y.; Fan, P.; Zhou, S.; Zhang, L. Loop-mediated isothermal amplification (LAMP): A novel rapid detection platform for pathogens. Microb. Pathog. 2017, 107, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Lin, C.W.; Chuang, H.S. LAMP-based point-of-care biosensors for rapid pathogen detection. Biosensors 2022, 12, 1068. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Ahmad, F.J.; Kar, S. Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. Curr. Res. Microb. Sci. 2022, 3, 100120. [Google Scholar] [CrossRef] [PubMed]
- Silva Zatti, M.; Domingos Arantes, T.; Cordeiro Theodoro, R. Isothermal nucleic acid amplification techniques for detection and identification of pathogenic fungi: A review. Mycoses 2020, 63, 1006–1020. [Google Scholar] [CrossRef] [PubMed]
- Vergara, A.; Boutal, H.; Ceccato, A.; López, M.; Cruells, A.; Bueno-Freire, L.; Moreno-Morales, J.; de la Bellacasa, J.P.; Castro, P.; Torres, A.; et al. Assessment of a loop-mediated isothermal amplification (LAMP) assay for the rapid detection of pathogenic bacteria from respiratory samples in patients with hospital-acquired pneumonia. Microorganisms 2020, 8, 103. [Google Scholar] [CrossRef]
- Huang, W.E.; Lim, B.; Hsu, C.C.; Xiong, D.; Wu, W.; Yu, Y.; Jia, H.; Wang, Y.; Zeng, Y.; Ji, M.; et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb. Biotechnol. 2020, 13, 950–961. [Google Scholar] [CrossRef]
- Mbareche, H.; Veillette, M.; Teertstra, W.; Kegel, W.; Bilodeau, G.J.; Wösten, H.A.; Duchaine, C. Recovery of fungal cells from air samples: A tale of loss and gain. Appl. Environ. Microbiol. 2019, 85, e02941-18. [Google Scholar] [CrossRef]
- Mbareche, H.; Veillette, M.; Bilodeau, G.J.; Duchaine, C. Bioaerosol sampler choice should consider efficiency and ability of samplers to cover microbial diversity. Appl. Environ. Microbiol. 2018, 84, e01589-18. [Google Scholar] [CrossRef]
- Hill, J.; Beriwal, S.; Chandra, I.; Paul, V.K.; Kapil, A.; Singh, T.; Wadowsky, R.M.; Singh, V.; Goyal, A.; Jahnukainen, T.; et al. Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli. J. Clin. Microbiol. 2008, 46, 2800–2804. [Google Scholar] [CrossRef]
- Kaewphinit, T.; Arunrut, N.; Kiatpathomchai, W.; Santiwatanakul, S.; Jaratsing, P.; Chansiri, K. Detection of Mycobacterium tuberculosis by using loop-mediated isothermal amplification combined with a lateral flow dipstick in clinical samples. BioMed Res. Int. 2013, 2013, 926230. [Google Scholar] [CrossRef]
- Lu, X.; Mo, Z.Y.; Zhao, H.B.; Yan, H.; Shi, L. LAMP-based method for a rapid identification of Legionella spp. and Legionella pneumophila. Appl. Microbiol. Biotechnol. 2011, 92, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Tian, S.; Yu, N.; Zhang, X.; Jia, X.; Zhai, H.; Sun, Q.; Han, L. Development and evaluation of a loop-mediated isothermal amplification method for rapid detection of Aspergillus fumigatus. J. Clin. Microbiol. 2016, 54, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Meagher, R.J.; Priye, A.; Light, Y.K.; Huang, C.; Wang, E. Impact of primer dimers and self-amplifying hairpins on reverse transcription loop-mediated isothermal amplification detection of viral RNA. Analyst 2018, 143, 1924–1933. [Google Scholar] [CrossRef] [PubMed]
- Danilevich, V.N.; Kozlov, S.A.; Sorokin, V.V.; Mulyukin, A.L. Highly purified DNA-containing cell envelopes from fungi for direct use in PCR. Anal. Chim. Acta 2023, 1273, 341528. [Google Scholar] [CrossRef]
- Alhamid, G.; Tombuloglu, H.; Al-Suhaimi, E. Development of loop-mediated isothermal amplification (LAMP) assays using five primers reduces the false-positive rate in COVID-19 diagnosis. Sci. Rep. 2023, 13, 5066. [Google Scholar] [CrossRef]
- Yoda, T.; Suzuki, Y.; Yamazaki, K.; Sakon, N.; Kanki, M.; Kase, T.; Takahashi, K.; Inoue, K. Application of a modified loop-mediated isothermal amplification kit for detecting Norovirus genogroups I and II. J. Med. Virol. 2009, 81, 2072–2078. [Google Scholar] [CrossRef]
- Nagamine, K.; Hase, T.; Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 2002, 16, 223–229. [Google Scholar] [CrossRef]
- Ocenar, J.; Arizala, D.; Boluk, G.; Dhakal, U.; Gunarathne, S.; Paudel, S.; Dobhal, S.; Arif, M. Development of a robust, field-deployable loop-mediated isothermal amplification (LAMP) assay for specific detection of potato pathogen Dickeya dianthicola targeting a unique genomic region. PLoS ONE 2019, 14, e0218868. [Google Scholar] [CrossRef]
- Kim, H.R.; Suh, S.M.; Kang, H.B.; Shin, S.W.; Kim, H.Y. Duplex loop-mediated isothermal amplification assay for peanut (Arachis hypogaea) and almond (Prunus dulcis) detection of allergen coding genes. Food Control 2022, 138, 109003. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Y.; Wu, Y.; Xia, X.; Liao, Y.; Li, Q. Fluorescent probe-based lateral flow assay for multiplex nucleic acid detection. Anal. Chem. 2014, 86, 5611–5614. [Google Scholar] [CrossRef]
- Peto, L.; Rodger, G.; Carter, D.P.; Osman, K.L.; Yavuz, M.; Johnson, K.; Raza, M.; Parker, M.D.; Wyles, M.D.; Andersson, M.; et al. Diagnosis of SARS-CoV-2 infection with LamPORE, a high-throughput platform combining loop-mediated isothermal amplification and nanopore sequencing. J. Clin. Microbiol. 2021, 59, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Ptasinska, A.; Whalley, C.; Bosworth, A.; Poxon, C.; Bryer, C.; Machin, N.; Grippon, S.; Wise, E.L.; Armson, B.; Howson, E.L.; et al. Diagnostic accuracy of loop-mediated isothermal amplification coupled to nanopore sequencing (LamPORE) for the detection of SARS-CoV-2 infection at scale in symptomatic and asymptomatic populations. Clin. Microbiol. Infect. 2021, 27, 1348-e1. [Google Scholar] [CrossRef] [PubMed]
- Wessely, Z.M. Allergenic Fungi in Viennas Air. Bachelor’s Thesis, University of Vienna, Vienna, Austria, 2020. [Google Scholar]
- Peccia, J.; Hernandez, M. Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: A review. Atmos. Environ. 2006, 40, 3941–3961. [Google Scholar] [CrossRef] [PubMed]
- Nwe, M.K.; Jangpromma, N.; Taemaitree, L. Evaluation of molecular inhibitors of loop-mediated isothermal amplification (LAMP). Sci. Rep. 2024, 14, 5916. [Google Scholar] [CrossRef]
- Dias, M.; Gomes, B.; Pena, P.; Cervantes, R.; Beswick, A.; Duchaine, C.; Kolk, A.; Madsen, A.M.; Oppliger, A.; Pogner, C.; et al. Filling the knowledge gap: Scoping review regarding sampling methods, assays, and further requirements to assess airborne viruses. Sci. Total Environ. 2024, 946, 174016. [Google Scholar] [CrossRef]
- de Crane D’Heysselaer, S.; Parisi, G.; Lisson, M.; Bruyère, O.; Donneau, A.F.; Fontaine, S.; Gillet, L.; Bureau, F.; Darcis, G.; Thiry, E.; et al. Systematic review of the key factors influencing the indoor airborne spread of SARS-CoV-2. Pathogens 2023, 12, 382. [Google Scholar] [CrossRef]
- Paralovo, S.L.; Vanden Driessche, K.; Cartuyvels, R.; Lazarov, B.; Vlieghe, E.; Vanstraelen, L.; Smets, R.; Spruyt, M.; Kreps, S.; Hufkens, N.; et al. Development of a Bioaerosol Sampling Method for Airborne Pathogen Detection with Focus on SARS-CoV-2. Indoor Air 2024, 2024, 6638511. [Google Scholar] [CrossRef]
- Piglmann, L.; Gorfer, M.; Stagl, V.; Pogner, C.E. Suitability of Different Bioaerosol Samplers for the Collection and Detection of Rna and DNA Viruses. 2024. Available online: https://dx.doi.org/10.2139/ssrn.4981782 (accessed on 1 November 2024).
- World Health Organization. Legionellosis—Fact Sheet. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/legionellosis (accessed on 1 November 2024).
- Jiang, X.; Liu, Y.; Liu, Q.; Jing, W.; Qin, K.; Sui, G. Rapid capture and analysis of airborne Staphylococcus aureus in the hospital using a microfluidic chip. Micromachines 2016, 7, 169. [Google Scholar] [CrossRef]
- Pyankov, O.V.; Agranovski, I.E.; Pyankova, O.; Mokhonova, E.; Mokhonov, V.; Safatov, A.S.; Khromykh, A.A. Using a bioaerosol personal sampler in combination with real-time PCR analysis for rapid detection of airborne viruses. Environ. Microbiol. 2007, 9, 992–1000. [Google Scholar] [CrossRef]
Cells Reaction−1 | Time to Detection Based on Color Change (mins) | Time to Detection (mins) SYBR |
---|---|---|
4 × 104 | 30 | 21 |
4 × 103 | 30 | 24 |
4 × 102 | 30 | 28 |
40 | 40 | 46 |
4 | 90 | 0 |
0 | NA * | NA* |
Negative control † | NA * | NA* |
NTC | Some change at 90 | NA* |
Pathogen | Mean Time for Color Change (mins) | Effective LOD | Melt T (°C) | ||
---|---|---|---|---|---|
Lowest Concentration | Highest Concentration | Time (mins) | Copies Reaction−1 | ||
M. tuberculosis | 50 ± 8.16 | 40 ± 0 | 50 | 101 | 90.66 ± 0.83 |
L. pneumophila | 63.3 ± 12.47 | 43.33 ± 4.71 | 55 | 101 | 87.23 ± 0.43 |
A. fumigatus | 73 ± 9.43 | 50 ± 0 | 73 | 101 | 90.61 ± 0.48 |
Detection Rate (%) | |||
---|---|---|---|
Number of Cells in Sample | 103 Cells | 102 Cells | 101 Cells |
Control † | 100% | 100% | 95 ± 10% |
Centrifugation | 100% | 100% | 30 ± 12% |
Filtration and elution | 100% | 100% | 85 ± 12% |
Direct from filter paper | 45 ± 25% | 5 ± 10% | 0% |
Target | Theoretical Cells in Reaction 5 µL | Real Cells in Reaction 5 µL | Time to Detection (mins) | Recovery Rate (%) |
---|---|---|---|---|
M. tuberculosis | 1 | 0.82 ± 0.37 | 43.33 ± 7.45 | 70.33 ± 17.34 |
M. tuberculosis | 5 | 4.71 ± 1.58 | 38.33 ± 3.72 | 89.68 ± 12.15 |
L. pneumophila | 1 | 0.79 ± 0.33 | 45.5 ± 5 | 61.33 ± 21.64 |
L. pneumophila | 5 | 22.35 ± 5 | 47.78 ± 9.16 | 77 ± 24.12 |
Mean Time for Color Change (mins) | ||||
---|---|---|---|---|
Pathogen | Phosphate-Buffered Saline (PBS) | Water | ||
Lowest concentration † | Highest concentration | Lowest concentration | Highest concentration | |
M. tuberculosis | 48.33 ± 2.36 | 43.33 ± 4.71 | 36.6 ± 4.71 | 33.33 ± 4.71 |
L. pneumophila | 60 ± 0 | 50 ± 21.60 | 46.67 ± 9.43 | 40 ± 0 |
A. fumigatus | 50 ± 0 | 53.33 ± 4.71 | 56.67 ± 17 | 40 ± 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bani, A.; Whitby, C.; Colbeck, I.; Dumbrell, A.J.; Ferguson, R.M.W. Rapid In-Field Detection of Airborne Pathogens Using Loop-Mediated Isothermal Amplification (LAMP). Microorganisms 2024, 12, 2578. https://doi.org/10.3390/microorganisms12122578
Bani A, Whitby C, Colbeck I, Dumbrell AJ, Ferguson RMW. Rapid In-Field Detection of Airborne Pathogens Using Loop-Mediated Isothermal Amplification (LAMP). Microorganisms. 2024; 12(12):2578. https://doi.org/10.3390/microorganisms12122578
Chicago/Turabian StyleBani, Alessia, Corinne Whitby, Ian Colbeck, Alex J. Dumbrell, and Robert M. W. Ferguson. 2024. "Rapid In-Field Detection of Airborne Pathogens Using Loop-Mediated Isothermal Amplification (LAMP)" Microorganisms 12, no. 12: 2578. https://doi.org/10.3390/microorganisms12122578
APA StyleBani, A., Whitby, C., Colbeck, I., Dumbrell, A. J., & Ferguson, R. M. W. (2024). Rapid In-Field Detection of Airborne Pathogens Using Loop-Mediated Isothermal Amplification (LAMP). Microorganisms, 12(12), 2578. https://doi.org/10.3390/microorganisms12122578