Association of Single-Nucleotide Variants in ACE2 with the Persistence of Positive qPCR Test for SARS-CoV-2 in Healthcare Professionals During the First Wave of the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Genetic Variant Analysis
2.3. DNA Sequencing
2.4. Bioinformatic Analysis
2.5. Molecular Modeling
2.6. Statistical Analysis
3. Results
3.1. Population Sample Characteristics
3.2. Genetic Variant Detection
3.3. Molecular Modeling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Word Health Organization Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/ (accessed on 23 November 2024).
- Das, P.; Choudhuri, T. Decoding the global outbreak of COVID-19: The nature is behind the scene. Virus Dis. 2020, 31, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Alifano, M.; Alifano, P.; Forgez, P.; Iannelli, A. Renin-angiotensin system at the heart of COVID-19 pandemic. Biochimie 2020, 174, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Serfozo, P.; Wysocki, J.; Gulua, G.; Schulze, A.; Ye, M.; Liu, P.; Jin, J.; Bader, M.; Myöhänen, T.; García-Horsman, J.A.; et al. Ang II (Angiotensin II) Conversion to Angiotensin-(1-7) in the Circulation Is POP (Prolyloligopeptidase)-Dependent and ACE2 (An-giotensin-Converting Enzyme 2)-Independent. Hypertension 2020, 75, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Dong, X.; Liu, G.H.; Gao, Y.D. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin. Rev. Allergy Immunol. 2023, 64, 90–107. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.B.; Mori, J.; McLean, B.A.; Basu, R.; Das, S.K.; Ramprasath, T.; Parajuli, N.; Penninger, J.M.; Grant, M.B.; Lopaschuk, G.D.; et al. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity. Diabetes 2016, 65, 85–95. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y.; Li, X.; Li, W.; Liu, X.; Xue, X. The Impact of ACE2 Polymorphisms on COVID-19 Disease: Susceptibility, Severity, and Therapy. Front. Cell Infect. Microbiol. 2021, 11, 753721. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suryamohan, K.; Diwanji, D.; Stawiski, E.W.; Gupta, R.; Miersch, S.; Liu, J.; Chen, C.; Jiang, Y.P.; Fellouse, F.A.; Sathirapongsasuti, J.F.; et al. Human ACE2 Receptor Polymorphisms and Altered Susceptibility to SARS-CoV-2. Commun. Biol. 2021, 4, 475. [Google Scholar] [CrossRef]
- Ortiz-Fernández, L.; Sawalha, A.H. Genetic variability in the expression of the SARS-CoV-2 host cell entry factors across popu-lations. Genes Immun. 2020, 21, 269–272. [Google Scholar] [CrossRef]
- Cao, Y.; Li, L.; Feng, Z.; Wan, S.; Huang, P.; Sun, X.; Wen, F.; Huang, X.; Ning, G.; Wang, W. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020, 6, 11. [Google Scholar] [CrossRef]
- Hu, Z.; Song, C.; Xu, C.; Jin, G.; Chen, Y.; Xu, X.; Ma, H.; Chen, W.; Lin, Y.; Zheng, Y.; et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci. China Life Sci. 2020, 63, 706–711. [Google Scholar] [CrossRef]
- Arons, M.M.; Hatfield, K.M.; Reddy, S.C.; Kimball, A.; James, A.; Jacobs, J.R.; Taylor, J.; Spicer, K.; Bardossy, A.C.; Oakley, L.P.; et al. Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility. N. Engl. J. Med. 2020, 382, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef] [PubMed]
- La Scola, B.; Le Bideau, M.; Andreani, J.; Hoang, V.T.; Grimaldier, C.; Colson, P.; Gautret, P.; Raoult, D. Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1059–1061. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Fang, M.; Chen, Q.; He, B. SARS, MERS and COVID-19 among healthcare workers: A narrative review. J. Infect. Public Health 2020, 13, 843–848. [Google Scholar] [CrossRef]
- Gómez-Ochoa, S.A.; Franco, O.H.; Rojas, L.Z.; Raguindin, P.F.; Roa-Díaz, Z.M.; Wyssmann, B.M.; Guevara, S.L.R.; Echeverría, L.E.; Glisic, M.; Muka, T. COVID-19 in Health-Care Workers: A Living Systematic Review and Meta-Analysis of Prevalence, Risk Factors, Clinical Characteristics, and Outcomes. Am. J. Epidemiol. 2021, 190, 161–175. [Google Scholar] [CrossRef]
- Mattiuzzi, C.; Lippi, G. Which lessons shall we learn from the 2019 novel coronavirus outbreak? Ann. Transl. Med. 2020, 8, 48. [Google Scholar] [CrossRef]
- World Health Organization COVID-19 Epidemiological Update—6 November 2024. Available online: https://www.who.int/publications/m/item/covid-19-epidemiological-update-edition-173 (accessed on 23 November 2024).
- Rogel-Ayala, D.G.; Muñoz-Medina, J.E.; Vicente-Juárez, V.D.; Grether-González, P.; Morales-Barquet, D.A.; Martínez-García, A.J.; Echaniz-Aviles, M.O.L.; Sevilla-Montoya, R.; Martínez-Juárez, A.; Artega-Vázquez, J.; et al. Association of the EPAS1 rs7557402 Polymorphism with Hemodynamically Significant Patent Ductus Arteriosus Closure Failure in Premature Newborns under Pharmacological Treatment with Ibuprofen. Diagnostics 2023, 13, 2558. [Google Scholar] [CrossRef]
- Parra-Bracamonte, G.M.; Lopez-Villalobos, N.; Parra-Bracamonte, F.E. Clinical characteristics and risk factors for mortality of patients with COVID-19 in a large data set from Mexico. Ann. Epidemiol. 2020, 52, 93–98.e2. [Google Scholar] [CrossRef]
- Coronavirus COVID19 Weekly Technical Reports 2023. Available online: https://www.gob.mx/salud/documentos/coronavirus-covid19-informe-tecnico-semanal (accessed on 23 November 2024).
- Bai, F.; Tomasoni, D.; Falcinella, C.; Barbanotti, D.; Castoldi, R.; Mulè, G.; Augello, M.; Mondatore, D.; Allegrini, M.; Cona, A.; et al. Female gender is associated with long COVID syndrome: A prospective cohort study. Clin. Microbiol. Infect. 2022, 28, 611.e9–611.e16. [Google Scholar] [CrossRef]
- Català, M.; Mercadé-Besora, N.; Kolde, R.; Trinh, N.T.H.; Roel, E.; Burn, E.; Rathod-Mistry, T.; Kostka, K.; Man, W.Y.; Delmestri, A.; et al. The effectiveness of COVID-19 vaccines to prevent long COVID symptoms: Staggered cohort study of data from the UK, Spain, and Estonia. Lancet Respir. Med. 2024, 12, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Thaweethai, T.; Jolley, S.E.; Karlson, E.W.; Levitan, E.B.; Levy, B.; McComsey, G.A.; McCorkell, L.; Nadkarni, G.N.; Parthasarathy, S.; Singh, U.; et al. Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection. JAMA 2023, 329, 1934–1946. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hernández-Aceituno, A.; García-Hernández, A.; Larumbe-Zabala, E. COVID-19 long-term sequelae: Omicron versus Alpha and Delta variants. Infect. Dis. Now 2023, 53, 104688. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fu, Y.; Li, Y.; Guo, E.; He, L.; Liu, J.; Yang, B.; Li, F.; Wang, Z.; Li, Y.; Xiao, R.; et al. Dynamics and Correlation Among Viral Positivity, Seroconversion, and Disease Severity in COVID-19: A Retrospective Study. Ann. Intern. Med. 2021, 174, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Hunt, R.C.; Simhadri, V.L.; Iandoli, M.; Sauna, Z.E.; Kimchi-Sarfaty, C. Exposing synonymous mutations. Trends Genet. 2014, 30, 308–321. [Google Scholar] [CrossRef]
- Sauna, Z.; Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 2011, 12, 683–691. [Google Scholar] [CrossRef]
- Lewandowska, M.A. The missing puzzle piece: Splicing mutations. Int. J. Clin. Exp. Pathol. 2013, 6, 2675–2682. [Google Scholar]
- Martínez-Montiel, N.; Rosas-Murrieta, N.; Martínez-Contreras, R. Alternative splicing regulation: Implications in cancer diagnosis and treatment. Med. Clin. 2015, 144, 317–323. [Google Scholar] [CrossRef]
- Ensembl. ACE2. Available online: http://www.ensembl.org/index.html (accessed on 23 November 2024).
- Yang, Q.; Zhao, J.; Zhang, W.; Chen, D.; Wang, Y. Aberrant alternative splicing in breast cancer. J. Mol. Cell Biol. 2019, 11, 920–929. [Google Scholar] [CrossRef]
- Bralle, D.; Baralle, M. Splicing in action: Assessing disease causing sequence changes. J. Med. Genet. 2005, 42, 737–748. [Google Scholar] [CrossRef]
- Hug, N.; Longman, D.; Cáceres, J.F. Mechanism and regulation of the nonsense mediated decay pathway. Investig. Ácidos Nucleicos 2016, 44, 1483–1495. [Google Scholar] [CrossRef]
- rs2285666 (SNP)—Citations—Homo_Sapiens—Ensembl Genome Browser. Available online: https://www.ensembl.org/Homo_sapiens/Variation/Citations?db=core;r=X:15591725-15592725;v=rs2285666;vdb=variation;vf=1109761140 (accessed on 23 November 2024).
- Al-Mudhafar, M.A.; Nima Mezher, M.; Noaman, I.M. The Association of Angiotensin-Converting Enzyme 2 Polymorphism and SARS-CoV-2 Infection in the Iraqi Population. Arch. Razi Inst. 2023, 78, 9–14. [Google Scholar] [PubMed]
- Alimoradi, N.; Sharqi, M.; Firouzabadi, D.; Sadeghi, M.M.; Moezzi, M.I.; Firouzabadi, N. SNPs of ACE1 (rs4343) and ACE2 (rs2285666) genes are linked to SARS-CoV-2 infection but not with the severity of disease. Virol. J. 2022, 19, 48. [Google Scholar] [CrossRef] [PubMed]
- Angulo-Aguado, M.; Corredor-Orlandelli, D.; Carrillo-Martínez, J.C.; Gonzalez-Cornejo, M.; Pineda-Mateus, E.; Rojas, C.; Tria-na-Fonseca, P.; Contreras Bravo, N.C.; Morel, A.; Parra Abaunza, K.; et al. Association Between the LZTFL1 rs11385942 Polymorphism and COVID-19 Severity in Colombian Population. Front. Med. 2022, 9, 910098. [Google Scholar] [CrossRef] [PubMed]
- Phylodynamics of Pandemic Coronavirus in Mexico. Available online: https://gisaid.org/phylodynamics/mexico/ (accessed on 23 November 2024).
- Pavia, G.; Quirino, A.; Marascio, N.; Veneziano, C.; Longhini, F.; Bruni, A.; Garofalo, E.; Pantanella, M.; Manno, M.; Gigliotti, S.; et al. Persistence of SARS-CoV-2 infection and viral intra- and inter-host evolution in COVID-19 hospitalized patients. J. Med. Virol. 2024, 96, e29708. [Google Scholar] [CrossRef] [PubMed]
Non-Persistent | Persistent | p | |
---|---|---|---|
Sex (F/M) * | 46/29 | 44/23 | 0.606 |
Age (years) * | 44 ± 12 | 42 ± 13 | 0.203 |
Symptoms + | 58.1 | 34.3 | 0.016 |
Genotype Frecuency (%) | |||||
---|---|---|---|---|---|
NG_012575.2:g.14934 G>A (rs2285666) | A/A | A/G | G/G | p * | p * HWE |
Non-persistent (n = 46) | 0.44 | 0.66 | 0.5 | N.S. | 0.0383 |
Persistent (n = 44) | 0.56 | 0.34 | 0.5 | ||
NG_012575.2:g.25701 G>A (rs4646150) | G/G | G/A | A/A | ||
Non-persistent (n = 46) | 0.46 | 0.61 | 0 | N.S. | 3.8958 |
Persistent (n = 44) | 0.54 | 0.39 | 0 | ||
NG_012575.2:g.35481 C>T | C/C | C/T | T/T | ||
Non-persistent (n = 46) | 0.62 | 0.21 | 0 | 0.001 | 2.1302 |
Persistent (n = 44) | 0.38 | 0.79 | 0 | ||
NG_012575.2:g.35483 G>T | G/G | G/T | T/T | ||
Non-persistent (n = 46) | 0.62 | 0.21 | 0 | 0.001 | 2.132 |
Persistent (n = 44) | 0.38 | 0.79 | 0 | ||
NG_012575.2:g.35498 G>T | G/G | G/T | T/T | ||
Non-persistent (n = 46) | 0.62 | 0.21 | 0 | 0.001 | 2.132 |
Persistent (n = 44) | 0.38 | 0.79 | 0 | ||
NG_012575.2:g.36793 T>C | T/T | T/C | C/C | ||
Non-persistent (n = 46) | 0.52 | 0 | 0 | N.S. | 0.0028 |
Persistent (n = 44) | 0.48 | 1 | 0 | ||
NG_012575.2:g.42916 T>A | T/T | T/A | A/A | ||
Non-persistent (n = 46) | 0.51 | 0.50 | 0 | N.S. | 1.74 |
Persistent (n = 44) | 0.49 | 0.50 | 0 | ||
NG_012575.2:g.42984 A>G | A/A | A/G | G/G | ||
Non-persistent (n = 46) | 0.52 | 0 | 0 | N.S. | 0.0028 |
Persistent (n = 44) | 0.48 | 1 | 0 | ||
NG_012575.2:g.43073 G>A | G/G | G/A | A/A | ||
Non-persistent (n = 46) | 0.5 | 0.75 | 0 | N.S. | 0.046 |
Persistent (n = 44) | 0.5 | 0.25 | 0 | ||
NG_012575.2:g.43103 C>G | C/C | C/G | G/G | ||
Non-persistent (n = 46) | 0.55 | 0.42 | 0 | N.S. | 2.1302 |
Persistent (n = 44) | 0.45 | 0.58 | 0 |
p | OR | 95% C.I. | ||
---|---|---|---|---|
NG_012575.2:g.35481 C>T | 0.001 | 6.232 | 2.067 | 18.789 |
NG_012575.2:g.35483 G>T | 0.001 | 6.232 | 2.067 | 18.789 |
NG_012575.2:g.35498 G>T | 0.001 | 6.232 | 2.067 | 18.789 |
p | OR | 95% C.I. | ||
---|---|---|---|---|
NG_012575.2:g.14934 G>A | 0.031 | 3.796 | 1.127 | 12.778 |
NG_012575.2:g.35481 C>T | 0.000 | 19.275 | 4.480 | 82.930 |
NG_012575.2:g.35483 G>T | 0.001 | 19.275 | 4.480 | 82.930 |
NG_012575.2:g.35498 G>T | 0.001 | 19.275 | 4.480 | 82.930 |
Allelic Frecuency (%) | |||
---|---|---|---|
NG_012575.2:g.14934 G>A (rs2285666) | G | A | p * |
Non-persistent (n = 29) | 0.75 | 0.47 | N.S. |
Persistent (n = 23) | 0.25 | 0.53 | |
NG_012575.2:g.25701 G>A (rs4646150) | G | A | |
Non-persistent (n = 29) | 0.42 | 0.79 | 0.011 |
Persistent (n = 23) | 0.58 | 0.21 | |
NG_012575.2:g.35481 C>T | C | T | |
Non-persistent (n = 29) | 0.74 | 0.22 | <0.0001 |
Persistent (n = 23) | 0.26 | 0.78 | |
NG_012575.2:g.35483 G>T | G | T | |
Non-persistent (n = 29) | 0.74 | 0.22 | <0.0001 |
Persistent (n = 23) | 0.26 | 0.78 | |
NG_012575.2:g.35498 G>T | G | T | |
Non-persistent (n = 29) | 0.62 | 0.21 | 0.001 |
Persistent (n = 23) | 0.38 | 0.79 | |
NG_012575.2:g.36793 T>C | T | C | |
Non-persistent (n = 29) | 0.56 | 0 | N.S. |
Persistent (n = 23) | 0.44 | 0 | |
NG_012575.2:g.42916 T>A | T | A | |
Non-persistent (n = 29) | 0.56 | 0.57 | N.S. |
Persistent (n = 23) | 0.44 | 0.43 | |
NG_012575.2:g.42984 A>G | A | G | |
Non-persistent (n = 29) | 0.55 | 0.63 | N.S. |
Persistent (n = 23) | 0.45 | 0.38 | |
NG_012575.2:g.43073 G>A | G | A | |
Non-persistent (n = 29) | 0.56 | 0 | N.S. |
Persistent (n = 23) | 0.44 | 0 | |
NG_012575.2:g.43103 C>G | C | G | |
Non-persistent (n = 29) | 0.56 | 0 | N.S. |
Persistent (n = 23) | 0.44 | 0 |
p | OR | 95% C.I. | ||
---|---|---|---|---|
NG_012575.2:g.25701 G>A | 0.014 | 5.089 | 1.385 | 18.696 |
NG_012575.2:g.35481 C>T | 0.001 | 9.722 | 2.527 | 37.402 |
NG_012575.2:g.35483 G>T | 0.001 | 9.722 | 2.527 | 37.402 |
NG_012575.2:g.35498 G>T | 0.002 | 8.125 | 2.129 | 31.007 |
Variant | Ensembl Database Analysis | Further In Silico Analysis |
---|---|---|
NG_012575.2:g.14934 G>A (rs2285666) | Splice donor region variant (47%) Intron variant (47%) NMD transcript variant (7%) | ClinVar: Not reported |
NG_012575.2:g.25701 G>A (rs4646150) | Intronic variant | ClinVar: Not reported. |
NG_012575.2:g.35481 C>T c.1783 C>T | Exonic variant Synonymous variant | HSF: Disturb auxiliary sequences. Significant disturbance of ESE/ESS motif proportion |
NG_012575.2:g.35483 G>T c.1785 G>T | Exonic variant Synonymous variant | HSF: Disturb auxiliary sequences. Significant disturbance of ESE/ESS motif proportion |
NG_012575.2:g.35498 G>T | Missense variant. Substitution of lysine for asparagine in position 600 of the protein sequence. | PolyPhen: Possibly damaging. Panther: Most likely, benign SIFT: The substitution is predicted to affect protein function. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Gil, K.; Cerón-Albarrán, J.A.; Gonzalez-Fernandez, M.D.; Sevilla-Montoya, R.; Hidalgo-Bravo, A.; Angeles-Martínez, J.; Montes-Herrera, D.; Villavicencio-Carrisoza, O.; García-Romero, C.S.; Muñoz-Medina, J.E.; et al. Association of Single-Nucleotide Variants in ACE2 with the Persistence of Positive qPCR Test for SARS-CoV-2 in Healthcare Professionals During the First Wave of the COVID-19 Pandemic. Microorganisms 2024, 12, 2560. https://doi.org/10.3390/microorganisms12122560
Jiménez-Gil K, Cerón-Albarrán JA, Gonzalez-Fernandez MD, Sevilla-Montoya R, Hidalgo-Bravo A, Angeles-Martínez J, Montes-Herrera D, Villavicencio-Carrisoza O, García-Romero CS, Muñoz-Medina JE, et al. Association of Single-Nucleotide Variants in ACE2 with the Persistence of Positive qPCR Test for SARS-CoV-2 in Healthcare Professionals During the First Wave of the COVID-19 Pandemic. Microorganisms. 2024; 12(12):2560. https://doi.org/10.3390/microorganisms12122560
Chicago/Turabian StyleJiménez-Gil, Karina, Jorge Alberto Cerón-Albarrán, Melissa Daniella Gonzalez-Fernandez, Rosalba Sevilla-Montoya, Alberto Hidalgo-Bravo, Javier Angeles-Martínez, Daniel Montes-Herrera, Oscar Villavicencio-Carrisoza, Carmen Selene García-Romero, José Esteban Muñoz-Medina, and et al. 2024. "Association of Single-Nucleotide Variants in ACE2 with the Persistence of Positive qPCR Test for SARS-CoV-2 in Healthcare Professionals During the First Wave of the COVID-19 Pandemic" Microorganisms 12, no. 12: 2560. https://doi.org/10.3390/microorganisms12122560
APA StyleJiménez-Gil, K., Cerón-Albarrán, J. A., Gonzalez-Fernandez, M. D., Sevilla-Montoya, R., Hidalgo-Bravo, A., Angeles-Martínez, J., Montes-Herrera, D., Villavicencio-Carrisoza, O., García-Romero, C. S., Muñoz-Medina, J. E., & Monroy-Muñoz, I. E. (2024). Association of Single-Nucleotide Variants in ACE2 with the Persistence of Positive qPCR Test for SARS-CoV-2 in Healthcare Professionals During the First Wave of the COVID-19 Pandemic. Microorganisms, 12(12), 2560. https://doi.org/10.3390/microorganisms12122560