Lateral Flow Immunosensing of Salmonella Typhimurium Cells in Milk: Comparing Three Sequences of Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. ELISA Testing of Anti-Salmonella Antibodies
2.3. Biotinylation of Antibodies
2.4. ELISA Detection of Salmonella Cells
2.5. Measuring Constants of Antigen-Antibody Reactions
2.6. Synthesis of Gold Nanoparticles
2.7. Conjugation of Anti-Salmonella Antibodies with GNPs
2.8. Characteristics of GNPs and Their Conjugates with Antibodies
2.9. Manufacturing Test Strips for LFIA
2.10. Implementation of S. Typhimurium LFIAs in Three Formats
2.11. Preparation of Milk Samples for Their Testing by LFIA
3. Results
3.1. Characterization of Anti-S. Typhimurium Antibodies
- −
- Immobilized 1E6ss clone—biotinylated 1E6ss clone.
- −
- Immobilized 10D9H clone—biotinylated 1E6ss clone.
- −
- Immobilized 5D12A clone—biotinylated 1E6ss clone.
3.2. Measurement of Binding Constants for Salmonella Cells–Antibodies Interactions
3.3. Synthesis and Characterization of Gold Nanoparticles
3.4. Synthesis and Characterization of Conjugates Between GNPs with Antibodies
3.5. Development of S. Typhimurium LFIAs in Three Formats
- (A)
- All immunoreagents were pre-applied to test strip membranes and the assay was started by immersing the test strip in the sample.
- (B)
- Only reagents were applied in the control and test zones of the test strip, and the antibody conjugate with GNPs was pre-incubated with the sample.
- (C)
- Reagents were applied in the test and control zones of the test strip, and the assay was carried out by sequentially immersing the strip in the sample, washing buffer, conjugate, and washing buffer again.
3.6. LFIA of S. Typhimurium in Cow’s Milk
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, H.; Yoon, Y. Etiological agents implicated in foodborne illness world wide. Food Sci. Anim. Resour. 2021, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Kaur, I.; Mishra, S. Foodborne disease symptoms, diagnostics, and predictions using artificial intelligence-based learning approaches: A systematic review. Arch. Comput. Methods Eng. 2024, 31, 553–578. [Google Scholar] [CrossRef]
- Kapoor, S.; Goel, A.D.; Jain, V. Milk-borne diseases through the lens of one health. Front. Microbiol. 2023, 14, 1041051. [Google Scholar] [CrossRef] [PubMed]
- Van Asselt, E.D.; van der Fels-Klerx, H.J.; Marvin, H.J.P.; van Bokhorst-van de Veen, H.; Nierop Groot, M. Overview of food safety hazards in the European dairy supply chain. Compr. Rev. Food Sci. Food Saf. 2017, 16, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Fusco, V.; Chieffi, D.; Fanelli, F.; Logrieco, A.F.; Cho, G.-S.; Kabisch, J.; Böhnlein, C.; Franz, C.M.A.P. Microbial quality and safety of milk and milk products in the 21st century. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2013–2049. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-M.; Runyon, M.; Herrman, T.J.; Phillips, R.; Hsieh, J. Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety. Food Control 2015, 47, 264–276. [Google Scholar] [CrossRef]
- Ntuli, V.; Sibanda, T.; Elegbeleye, J.A.; Mugadza, D.T.; Seifu, E.; Buys, E.M. Chapter 30—Dairy Production: Microbial Safety of Raw Milk and Processed Milk Products. In Present Knowledge in Food Safety; Knowles, M.E., Anelich, L.E., Boobis, A.R., Popping, B., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 439–454. [Google Scholar] [CrossRef]
- Smithers, G.W. (Ed.) Encyclopedia of Food Safety. Reference Work, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2023; ISBN 978-0-12-822520-2. Available online: https://www.sciencedirect.com/referencework/9780128225202/encyclopedia-of-food-safety (accessed on 31 October 2024).
- Mkangara, M. Prevention and control of human Salmonella enterica infections: An implication in food safety. Int. J. Food Sci. 2023, 2023, 899596. [Google Scholar] [CrossRef]
- Teklemariam, A.D.; Al-Hindi, R.R.; Albiheyri, R.S.; Alharbi, M.G.; Alghamdi, M.A.; Filimban, A.A.R.; Al Mutiri, A.S.; Al-Alyani, A.M.; Alseghayer, M.S.; Almaneea, A.M.; et al. Human salmonellosis: A continuous global threat in the farm-to-fork food safety continuum. Foods 2023, 12, 1756. [Google Scholar] [CrossRef]
- Santos, A.C.; Roberts, J.A.; Cook, A.J.C.; Simons, R.; Sheehan, R.; Lane, C.; Adak, G.K.; Clifton-Hadley, F.A.; Rodrigues, L.C. Salmonella Typhimurium and Salmonella Enteritidis in England: Costs to patients, their families, and primary and community health services of the NHS. Epidemiol. Infect. 2011, 139, 742–753. [Google Scholar] [CrossRef]
- Du, M.; Li, J.; Liu, Q.; Wang, Y.; Chen, E.; Kang, F.; Tu, C. Rapid detection of trace Salmonella in milk using an effective pretreatment combined with droplet digital polymerase chain reaction. Microbiol. Res. 2021, 251, 126838. [Google Scholar] [CrossRef]
- Rahman, U.U.; Shahzad, T.; Sahar, A.; Ishaq, A.; Khan, M.I.; Zahoor, T.; Aslam, S. Recapitulating the competence of novel & rapid monitoring tools for microbial documentation in food systems. LWT-Food Sci. Technol. 2016, 67, 62–66. [Google Scholar] [CrossRef]
- Kabiraz, M.P.; Majumdar, P.R.; Mahmud, M.M.C.; Bhowmik, S.; Ali, A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023, 9, e15482. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Bhat, A.; O’Connor, C.; Curtin, J.; Singh, B.; Tian, F. Review of detection limits for various techniques for bacterial detection in food samples. Nanomaterials 2024, 14, 855. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Yang, H.; Cao, J.; Zhang, J.; He, Q.; Deng, R. Isothermal nucleic acid amplification for food safety analysis. TrAC Trends Anal. Chem. 2022, 153, 116641. [Google Scholar] [CrossRef]
- Chen, M.; Lan, X.; Zhu, L.; Ru, P.; Liu, H.; Xu, W. Nucleic acid-aided molecular amplification techniques for food microorganism detection. TrAC Trends Anal. Chem. 2023, 165, 117116. [Google Scholar] [CrossRef]
- Parolo, C.; Sena-Torralba, A.; Bergua, J.F.; Calucho, E.; Fuentes-Chust, C.; Hu, L.; Rivas, L.; Álvarez-Diduk, R.; Nguyen, E.P.; Cinti, S.; et al. Tutorial: Design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat. Protoc. 2020, 15, 3788–3816. [Google Scholar] [CrossRef]
- Wei, C.; Wu, A.; Xu, L.; Xu, C.; Liu, L.; Kuang, H.; Xu, X. Recent progress on lateral flow immunoassays in foodborne pathogen detection. Food Biosci. 2023, 52, 102475. [Google Scholar] [CrossRef]
- Silva, G.B.L.; Campos, F.V.; Guimarães, M.C.C.; Oliveira, J.P. Recent developments in lateral flow assays for Salmonella detection in food products: A review. Pathogens 2023, 12, 1441. [Google Scholar] [CrossRef]
- Sena-Torralba, A.; Álvarez-Diduk, R.; Parolo, C.; Piper, A.; Merkoçi, A. Toward next generation lateral flow assays: Integration of nanomaterials. Chem. Rev. 2022, 122, 14881–14910. [Google Scholar] [CrossRef]
- Bishop, J.D.; Hsieh, H.V.; Gasperino, D.J.; Weigl, B.H. Sensitivity enhancement in lateral flow assays: A systems perspective. Lab. A Chip 2019, 19, 2486–2499. [Google Scholar] [CrossRef]
- Panferov, V.G.; Zherdev, A.V.; Dzantiev, B.B. Post-assay chemical enhancement for highly sensitive lateral flow immunoassays: A critical review. Biosensors 2023, 13, 866. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. Ten years of lateral flow immunoassay technique applications: Trends, challenges and future perspectives. Sensors 2021, 21, 5185. [Google Scholar] [CrossRef]
- Nath, P.; Ray, A. Nanotechnology-based strategies for advancing point-of-care lateral flow immunoassays. Curr. Opin. Biomed. Eng. 2023, 28, 100504. [Google Scholar] [CrossRef]
- Kim, J.; Shin, M.-S.; Shin, J.; Kim, H.-M.; Pham, X.-H.; Park, S.-M.; Kim, D.-E.; Kim, Y.J.; Jun, B.-H. Recent trends in lateral flow immunoassays with optical nanoparticles. Int. J. Mol. Sci. 2023, 24, 9600. [Google Scholar] [CrossRef]
- Yin, X.; Liu, S.; Kukkar, D.; Zhang, D.; Kim, K.-H. Performance enhancement of the lateral flow immunoassay by use of composite nanoparticles as signal labels. TrAC Trends Anal. Chem. 2023, 170, 117441. [Google Scholar] [CrossRef]
- Chowdhury, P.; Lawrance, R.; Lu, Z.-Y.; Lin, H.-C.; Chan, Y.-H. Recent progress in dual/multi-modal detection modes for improving sensitivity and specificity of lateral flow immunoassays applied for point-of-care diagnostics. TrAC Trends Anal. Chem. 2024, 177, 117798. [Google Scholar] [CrossRef]
- Razo, S.C.; Panferov, V.G.; Safenkova, I.V.; Varitsev, Y.A.; Zherdev, A.V.; Pakina, E.N.; Dzantiev, B.B. How to improve sensitivity of sandwich lateral flow immunoassay for corpuscular antigens on the example of potato virus Y? Sensors 2018, 18, 3975. [Google Scholar] [CrossRef] [PubMed]
- Sena-Torralba, A.; Ngo, D.B.; Parolo, C.; Hu, L.; Álvarez-Diduk, R.; Bergua, J.F.; Rosati, G.; Surareungchai, W.; Merkoçi, A. Lateral flow assay modified with time-delay wax barriers as a sensitivity and signal enhancement strategy. Biosens. Bioelectron. 2020, 168, 112559. [Google Scholar] [CrossRef]
- Hendrickson, O.D.; Zvereva, E.A.; Zherdev, A.V.; Dzantiev, B.B. Cascade-enhanced lateral flow immunoassay for sensitive detection of okadaic acid in seawater, fish, and seafood. Foods 2022, 11, 1691. [Google Scholar] [CrossRef]
- Iles, A.H.; He, P.J.; Katis, I.N.; Horak, P.; Eason, R.W.; Sones, C.L. Optimization of flow path parameters for enhanced sensitivity lateral flow devices. Talanta 2022, 248, 123579. [Google Scholar] [CrossRef]
- Kumsab, J.; Deenin, W.; Yakoh, A.; Pimpitak, U.; Amornkitbamrung, L.; Rengpipat, S.; Hirankarn, N.; Crespo, G.A.; Chaiyo, S. Integrated lateral flow immunoassays using trimethylsilyl cellulose barriers for the enhanced sensitivity of COVID-19 diagnosis. J. Sci. Adv. Mater. Devices 2023, 8, 100620. [Google Scholar] [CrossRef]
- Cho, J.; Song, H.; Yoon, H.C.; Yoon, H. Rapid dot-blot immunoassay for detecting multiple Salmonella enterica serotypes. J. Microbiol. Biotechnol. 2024, 34, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Bu, S.-J.; Wang, K.-Y.; Liu, X.; Ma, L.; Wei, H.-G.; Zhang, W.-G.; Liu, W.-S.; Wan, J.-Y. Ferrocene-functionalized nanocomposites as signal amplification probes for electrochemical immunoassay of Salmonella Typhimurium. Mikrochim. Acta 2020, 187, 600. [Google Scholar] [CrossRef]
- Dou, X.; Zhang, Z.; Li, C.; Du, Y.; Tian, F. A novel nanoparticle-based fluorescent sandwich immunoassay for specific detection of Salmonella Typhimurium. Int. J. Food Microbiol. 2024, 413, 110593. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Z.; Bai, M.; Wang, Y.; Liao, X.; Zhang, Y.; Wang, P.; Wei, J.; Zhang, H.; Wang, J.; et al. An ultrasensitive sandwich chemiluminescent enzyme immunoassay based on phage-mediated double-nanobody for detection of Salmonella Typhimurium in food. Sens. Actuators B Chem. 2022, 352, 131058. [Google Scholar] [CrossRef]
- Angelopoulou, M.; Petrou, P.; Misiakos, K.; Raptis, I.; Kakabakos, S. Simultaneous detection of Salmonella typhimurium and Escherichia coli O157:H7 in drinking water and milk with Mach–Zehnder interferometers monolithically integrated on silicon chips. Biosensors 2022, 12, 507. [Google Scholar] [CrossRef]
- Hermanson, G.T. Chapter 20—Antibody Modification and Conjugation. In Bioconjugate Techniques, 3rd ed.; Hermanson, G.T., Ed.; Academic Press: Boston, MA, USA, 2013; pp. 867–920. [Google Scholar]
- Safenkova, I.V.; Zherdev, A.V.; Dzantiev, B.B. Correlation between the composition of multivalent antibody conjugates with colloidal gold nanoparticles and their affinity. J. Immunol. Methods 2010, 357, 17–25. [Google Scholar] [CrossRef]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Byzova, N.A.; Zherdev, A.V.; Vengerov, Y.Y.; Starovoitova, T.A.; Dzantiev, B.B. A triple immunochromatographic test for simultaneous determination of cardiac troponin I, fatty acid binding protein, and C-reactive protein biomarkers. Microchim. Acta 2017, 184, 463–471. [Google Scholar] [CrossRef]
- Byzova, N.A.; Zherdev, A.V.; Khlebtsov, B.N.; Burov, A.M.; Khlebtsov, N.G.; Dzantiev, B.B. Advantages of highly spherical gold nanoparticles as labels for lateral flow immunoassay. Sensors 2020, 20, 3608. [Google Scholar] [CrossRef]
- Khlebtsov, N.G.; Dykman, L.A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1–35. [Google Scholar] [CrossRef]
- Sotnikov, D.V.; Byzova, N.A.; Zherdev, A.V.; Dzantiev, B.B. Retention of activity by antibodies immobilized on gold nanoparticles of different sizes: Fluorometric method of determination and comparative evaluation. Nanomaterials 2021, 11, 3117. [Google Scholar] [CrossRef] [PubMed]
- Clayton, K.N.; Salameh, J.W.; Wereley, S.T.; Kinzer-Ursem, T.L. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics 2016, 10, 054107. [Google Scholar] [CrossRef] [PubMed]
- Conrad, M.; Proll, G.; Builes-Münden, E.; Dietzel, A.; Wagner, S.; Gauglitz, G. Tools to compare antibody gold nanoparticle conjugates for a small molecule immunoassay. Microchim. Acta 2023, 190, 62. [Google Scholar] [CrossRef] [PubMed]
- Raiko, K.; Nääjärvi, O.; Ekman, M.; Koskela, S.; Soukka, T.; Martiskainen, I.; Salminen, T. Improved sensitivity and automation of a multi-step upconversion lateral flow immunoassay using a 3D-printed actuation mechanism. Anal. Bioanal. Chem. 2024, 416, 1517–1525. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, L. Improvement in detection limit for lateral flow assay of biomacromolecules by test-zone pre-enrichment. Sci. Rep. 2020, 10, 9604. [Google Scholar] [CrossRef]
- Paswan, R.; Park, Y. Survivability of Salmonella and Escherichia coli O157: H7 pathogens and food safety concerns on commercial powder milk products. Dairy 2020, 1, 189–201. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar] [CrossRef]
- Bedassa, A.; Nahusenay, H.; Asefa, Z.; Sisay, T.; Girmay, G.; Kovac, J.; Vipham, J.L.; Zewdu, A. Prevalence and associated risk factors for Salmonella enterica contamination of cow milk and cottage cheese in Ethiopia. Food Saf. Risk 2023, 10, 2. [Google Scholar] [CrossRef]
- Cancino-Padilla, N.; Fellenberg, A.; Franco, W.; Ibáñez, R.; Vargas-Bello-Pérez, E. Foodborne bacteria in dairy products: Detection by molecular techniques. Cienc. Investig. Agrar. 2017, 44, 215–229. [Google Scholar] [CrossRef]
- Hasan, A.S. Detection of Salmonella Spp. in milk samples of selected regions of Diyala city. Kufa J. Vet. Med. Sci. 2017, 8, 193–198. [Google Scholar] [CrossRef]
- Byzova, N.A.; Zvereva, E.A.; Zherdev, A.V.; Eremin, S.A.; Dzantiev, B.B. Rapid pretreatment-free immunochromatographic assay of chloramphenicol in milk. Talanta 2010, 81, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Samsonova, J.V.; Safronova, V.A.; Osipov, A.P. Pretreatment-free lateral flow enzyme immunoassay for progesterone detection in whole cows’ milk. Talanta 2015, 132, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, O.D.; Byzova, N.A.; Safenkova, I.V.; Panferov, V.G.; Dzantiev, B.B.; Zherdev, A.V. Sensitive immunochromatographic determination of Salmonella typhimurium in food products using Au@ Pt nanozyme. Nanomaterials 2023, 13, 3074. [Google Scholar] [CrossRef]
Antibody Clone | ka, M−1s−1 | kd, s−1 | KD, M |
---|---|---|---|
1E6cc | (5.0 ± 1.7) × 104 | (6.2 ± 0.6) × 10−4 | 1.2 × 10−8 |
10D9H | (5.5 ± 0.4) × 104 | (2.7 ± 0.3) × 10−3 | 4.9 × 10−8 |
5D12A | (1.5 ± 0.4) × 104 | (1.5 ± 0.1) × 10−3 | 1.0 × 10−7 |
Antibodies in TZ | 1E6cc | 1E6cc | 1E6cc | 10D9H | 10D9H | 10D9H | 5D12A | 5D12A | 5D12A |
Antibodies with GNP | 1E6cc | 10D9H | 5D12A | 1E6cc | 10D9H | 5D12A | 1E6cc | 10D9H | 5D12A |
Format A | |||||||||
LOD, cells/mL | (9.3 ± 0.8) × 104 | (7.0 ± 0.9) × 106 | (9.2 ± 1.2) × 106 | (9.0 ± 1.1) × 104 | – | – | (1.8 ± 0.6) × 106 | – | – |
Coloration of TZ, arb. un. | 68.0 ± 1.4 | 6.8 ± 0.8 | 5.3 ± 0.3 | 14.8 ± 1.4 | – | – | 7.4 ± 1.0 | – | – |
Background coloration, arb. un. | 0 | 0 | 0 | 0 | – | – | 0 | – | – |
Format B | |||||||||
LOD, cells/mL | (8.8 ± 0.3) × 105 | (8.2 ± 0.6) × 105 | (2.2 ± 0.5) × 106 | (3.3 ± 0.4) × 104 | – | – | (1.3 ± 0.8) × 105 | – | – |
Coloration of TZ, arb. un. | 54.2 ± 3.1 | 79.0 ± 9.5 | 80.8 ± 5.4 | 26.4 ± 4.2 | – | – | 43.9 ± 1.1 | – | – |
Background coloration, arb. un. | 0 | 21.5 ± 0.1 | 3.5 ± 1.0 | 4.8 ± 0.6 | – | – | 8.2 ± 0.7 | – | – |
Format C | |||||||||
LOD, cells/mL | (6.5 ± 0.4) × 105 | – | (9.1 ± 0.8) × 105 | (1.3 ± 0.3) × 106 | – | – | (7.0 ± 1.2) × 105 | – | – |
Coloration of TZ, arb. un. | 69.5 ± 2.7 | – | 40.1 ± 3.3 | 63.1 ± 4.7 | – | – | 54.0 ± 4.3 | – | – |
Background coloration, arb. un. | 0 | – | 0 | 2.0 ± 0.2 | – | – | 1.8 ± 0.7 | – | – |
Added S. Typhimurium, Cells/mL | Revealed S. Typhimurium, Cells/mL | Recovery ± SD (%) |
---|---|---|
Format A | ||
Milk with 2.5% fat content | ||
5 × 106 | (5.5 ± 0.4) × 106 | 110 ± 8.0 |
2 × 106 | (1.8 ± 0.1) × 106 | 90 ± 6.0 |
5 × 105 | (3.8 ± 0.1) × 105 | 76 ± 1.0 |
Milk with 4.0% fat content | ||
5 × 106 | (4.8 ± 0.2) × 106 | 96 ± 4.2 |
2 × 106 | (1.6 ± 0.1) × 106 | 80 ± 2.5 |
5 × 105 | (3.5 ± 0.1) × 105 | 70 ± 2.9 |
Format B | ||
Milk with 2.5% fat content | ||
5 × 106 | (4.7 ± 0.6) × 105 | 9.4 ± 1.3 |
2 × 106 | (1.2 ± 0.2) × 105 | 6.0 ± 1.0 |
5 × 105 | <3 × 104 | – |
Milk with 4.0% fat content | ||
5 × 106 | (7.5 ± 0.5) × 105 | 15.3 ± 0.7 |
2 × 106 | (1.4 ± 0.1) × 105 | 7.0 ± 0.6 |
5 × 105 | (4.5 ± 0.1) × 104 | 9.0 ± 0.2 |
Format C | ||
Milk with 2.5% fat content | ||
5 × 106 | (3.6 ± 0.3) × 106 | 72 ± 5.1 |
2 × 106 | (1.8 ± 0.1) × 106 | 90 ± 5.5 |
5 × 105 | (2.5 ± 0.2) × 105 | 50 ± 3.8 |
Milk with 4.0% fat content | ||
5 × 106 | (3.4 ± 0.1) × 106 | 68 ± 0.6 |
2 × 106 | (4.8 ± 0.1) × 105 | 24 ± 2.1 |
5 × 105 | (1.7 ± 0.1) × 105 | 34 ± 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byzova, N.A.; Safenkova, I.V.; Gorbatov, A.A.; Biketov, S.F.; Dzantiev, B.B.; Zherdev, A.V. Lateral Flow Immunosensing of Salmonella Typhimurium Cells in Milk: Comparing Three Sequences of Interactions. Microorganisms 2024, 12, 2555. https://doi.org/10.3390/microorganisms12122555
Byzova NA, Safenkova IV, Gorbatov AA, Biketov SF, Dzantiev BB, Zherdev AV. Lateral Flow Immunosensing of Salmonella Typhimurium Cells in Milk: Comparing Three Sequences of Interactions. Microorganisms. 2024; 12(12):2555. https://doi.org/10.3390/microorganisms12122555
Chicago/Turabian StyleByzova, Nadezhda A., Irina V. Safenkova, Alexey A. Gorbatov, Sergey F. Biketov, Boris B. Dzantiev, and Anatoly V. Zherdev. 2024. "Lateral Flow Immunosensing of Salmonella Typhimurium Cells in Milk: Comparing Three Sequences of Interactions" Microorganisms 12, no. 12: 2555. https://doi.org/10.3390/microorganisms12122555
APA StyleByzova, N. A., Safenkova, I. V., Gorbatov, A. A., Biketov, S. F., Dzantiev, B. B., & Zherdev, A. V. (2024). Lateral Flow Immunosensing of Salmonella Typhimurium Cells in Milk: Comparing Three Sequences of Interactions. Microorganisms, 12(12), 2555. https://doi.org/10.3390/microorganisms12122555