Mechanisms of Polymyxin Resistance in Acid-Adapted Enteroinvasive Escherichia coli NCCP 13719 Revealed by Transcriptomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acid Adaptation of Pathogenic E. coli
2.2. Preparation of Inocula
2.3. Antimicrobial Resistances
2.4. Survival of Acid-Adapted E. coli in Acidic TSB
2.5. Transcriptomic Analysis
2.6. qRT-PCR Validation
2.7. Zeta Potential Measurements
2.8. OM Permeability
2.9. Statistical Analyses
3. Results and Discussion
3.1. Altered AMR
3.2. Survival in Acidic Medium
3.3. Analysis of DEGs and Functional Analysis
3.4. Validation of Transcriptomic Analysis
3.5. ZP Measurements
3.6. OM Permeability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Bassiri, M.; Najafi, R.; Najafi, K.; Yang, J.; Khosrovi, B.; Hwong, W.; Barati, E.; Belisle, B.; Celeri, C.; et al. Hypochlorous Acid as a Potential Wound Care Agent: Part I. Stabilized Hypochlorous Acid: A Component of the Inorganic Armamentarium of Innate Immunity. J. Burns Wounds 2007, 6, e5. [Google Scholar] [PubMed]
- Pijuan, M.; Wang, Q.; Ye, L.; Yuan, Z. Improving Secondary Sludge Biodegradability Using Free Nitrous Acid Treatment. Bioresour. Technol. 2012, 116, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, T.L.; Kalchayanand, N.; Bosilevac, J.M. Pre- and Post-Harvest Interventions to Reduce Pathogen Contamination in the U.S. Beef Industry. Meat Sci. 2014, 98, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Lund, P.; Tramonti, A.; De Biase, D. Coping with Low PH: Molecular Strategies in Neutralophilic Bacteria. FEMS Microbiol. Rev. 2014, 38, 1091–1125. [Google Scholar] [CrossRef]
- Sheikh, S.W.; Ali, A.; Ahsan, A.; Shakoor, S.; Shang, F.; Xue, T. Insights into Emergence of Antibiotic Resistance in Acid-Adapted Enterohaemorrhagic Escherichia Coli. Antibiotics 2021, 10, 522. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Beuchat, L.R. Influence of Acid Tolerance Responses on Survival, Growth, and Thermal Cross-Protection of Escherichia Coli O157:H7 in Acidified Media and Fruit Juices. Int. J. Food Microbiol. 1998, 45, 185–193. [Google Scholar] [CrossRef]
- Clemente-Carazo, M.; Leal, J.-J.; Huertas, J.-P.; Garre, A.; Palop, A.; Periago, P.M. The Different Response to an Acid Shock of Two Salmonella Strains Marks Their Resistance to Thermal Treatments. Front. Microbiol. 2021, 12, 691248. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.; Kim, S.M.; Kim, H.J. Transcriptome Changes and Polymyxin Resistance of Acid-Adapted Escherichia Coli O157:H7 ATCC 43889. Gut Pathog. 2020, 12, 52. [Google Scholar] [CrossRef]
- Reynolds, D.; Burnham, J.P.; Vazquez Guillamet, C.; McCabe, M.; Yuenger, V.; Betthauser, K.; Micek, S.T.; Kollef, M.H. The Threat of Multidrug-Resistant/Extensively Drug-Resistant Gram-Negative Respiratory Infections: Another Pandemic. Eur. Respir. Rev. 2022, 31, 220068. [Google Scholar] [CrossRef]
- Gollan, B.; Grabe, G.; Michaux, C.; Helaine, S. Bacterial Persisters and Infection: Past, Present, and Progressing. Annu. Rev. Microbiol. 2019, 73, 359–385. [Google Scholar] [CrossRef]
- Gao, Y.; Dutta, S.; Wang, X. Serendipitous Discovery of a Highly Active and Selective Resistance-Modifying Agent for Colistin-Resistant Gram-Negative Bacteria. ACS Omega 2022, 7, 12442–12446. [Google Scholar] [CrossRef] [PubMed]
- Laurent, P.; Aurélie, J.; Patrice, N. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef]
- Van Camp, P.-J.; Haslam, D.B.; Porollo, A. Bioinformatics Approaches to the Understanding of Molecular Mechanisms in Antimicrobial Resistance. Int. J. Mol. Sci. 2020, 21, 1363. [Google Scholar] [CrossRef]
- Hwang, D.; Kim, H.J. Increased Antimicrobial Resistance of Acid-Adapted Pathogenic Escherichia Coli, and Transcriptomic Analysis of Polymyxin-Resistant Strain. Microb. Pathog. 2024, 196, 106974. [Google Scholar] [CrossRef]
- Olaitan, A.O.; Morand, S.; Rolain, J.-M. Mechanisms of Polymyxin Resistance: Acquired and Intrinsic Resistance in Bacteria. Front. Microbiol. 2014, 5, 643. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Santiago, J.; Cornejo-Juárez, P.; Silva-Sánchez, J.; Garza-Ramos, U. Polymyxin Resistance in Enterobacterales: Overview and Epidemiology in the Americas. Int. J. Antimicrob. Agents 2021, 58, 106426. [Google Scholar] [CrossRef]
- EUCAST Recommendations for MIC Determination of Colistin (Polymyxin E) As Recommended by the Joint CLSI-EUCAST Polymyxin Breakpoints Working Group. 2016. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recommendations_for_MIC_determination_of_colistin_March_2016.pdf (accessed on 2 June 2024).
- Bioinformatics, B.; Valencia, S. BioBam OmicsBox-Bioinformatics Made Easy. March 2019, 3, 2019. [Google Scholar]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Gogry, F.A.; Siddiqui, M.T.; Sultan, I.; Husain, F.M.; Al-Kheraif, A.A.; Ali, A.; Haq, Q.M.R. Colistin Interaction and Surface Changes Associated with Mcr-1 Conferred Plasmid Mediated Resistance in E. Coli and A. Veronii Strains. Pharmaceutics 2022, 14, 295. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, S.; Hu, Y.; Liu, X.; Tao, J.; Sagratini, G.; Xiang, Q. Insight into the Antibacterial Activity of Lauric Arginate against Escherichia Coli O157:H7: Membrane Disruption and Oxidative Stress. LWT 2022, 162, 113449. [Google Scholar] [CrossRef]
- Francis, A. Bile Salts and Ferric Iron-Induced PMRAB Dependent Resistance to Camps in EHEC O157:H7. Master’s Thesis, Ryerson University, Toronto, ON, Canada, 2017. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_14.0_Breakpoint_Tables.pdf (accessed on 2 June 2024).
- Koutsoumanis, K.P.; Sofos, J.N. Comparative Acid Stress Response of Listeria Monocytogenes, Escherichia Coli O157:H7 and Salmonella Typhimurium after Habituation at Different PH Conditions. Lett. Appl. Microbiol. 2004, 38, 321–326. [Google Scholar] [CrossRef] [PubMed]
- ÖZTÜRK, F.; Halkman, A. Determination of the Survival Levels of Acid-Adapted Escherichia Coli O157: H7in Sucuk (Turkish-Type Fermented Sausage). Turkish J. Vet. Anim. Sci. 2015, 39, 485–492. [Google Scholar] [CrossRef]
- Mao, Y.; Doyle, M.P.; Chen, J. Role of Colanic Acid Exopolysaccharide in the Survival of Enterohaemorrhagic Escherichia Coli O157:H7 in Simulated Gastrointestinal Fluids. Lett. Appl. Microbiol. 2006, 42, 642–647. [Google Scholar] [CrossRef]
- Berry, E.D.; Cutter, C.N. Effects of Acid Adaptation of Escherichia Coli O157:H7 on Efficacy of Acetic Acid Spray Washes To Decontaminate Beef Carcass Tissue. Appl. Environ. Microbiol. 2000, 66, 1493–1498. [Google Scholar] [CrossRef]
- Du, D.; Wang-Kan, X.; Neuberger, A.; van Veen, H.W.; Pos, K.M.; Piddock, L.J.V.; Luisi, B.F. Multidrug Efflux Pumps: Structure, Function and Regulation. Nat. Rev. Microbiol. 2018, 16, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Deininger, K.N.W.; Horikawa, A.; Kitko, R.D.; Tatsumi, R.; Rosner, J.L.; Wachi, M.; Slonczewski, J.L. A Requirement of TolC and MDR Efflux Pumps for Acid Adaptation and GadAB Induction in Escherichia Coli. PLoS ONE 2011, 6, e18960. [Google Scholar] [CrossRef]
- Lin, Q.Y.; Tsai, Y.-L.; Liu, M.-C.; Lin, W.-C.; Hsueh, P.-R.; Liaw, S.-J. Serratia Marcescens Arn, a PhoP-Regulated Locus Necessary for Polymyxin B Resistance. Antimicrob. Agents Chemother. 2014, 58, 5181–5190. [Google Scholar] [CrossRef]
- Baron, S.; Leulmi, Z.; Villard, C.; Olaitan, A.O.; Telke, A.A.; Rolain, J.-M. Inactivation of the Arn Operon and Loss of Aminoarabinose on Lipopolysaccharide as the Cause of Susceptibility to Colistin in an Atypical Clinical Isolate of Proteus Vulgaris. Int. J. Antimicrob. Agents 2018, 51, 450–457. [Google Scholar] [CrossRef]
- Sivasankar, C.; Lloren, K.K.; Lee, J.H. Deciphering the Interrelationship of ArnT Involved in Lipid-A Alteration with the Virulence of Salmonella Typhimurium. Int. J. Mol. Sci. 2024, 25, 2760. [Google Scholar] [CrossRef]
- Groisman, E.A.; Kayser, J.; Soncini, F.C. Regulation of Polymyxin Resistance and Adaptation to Low-Mg2+ Environments. J. Bacteriol. 1997, 179, 7040–7045. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Hinenoya, A.; Guan, Z.; Xu, F.; Lin, J. Critical Role of the RpoE Stress Response Pathway in Polymyxin Resistance of Escherichia Coli. J. Antimicrob. Chemother. 2023, 78, 732–746. [Google Scholar] [CrossRef]
- Yang, Q.; Li, M.; Spiller, O.B.; Andrey, D.O.; Hinchliffe, P.; Li, H.; MacLean, C.; Niumsup, P.; Powell, L.; Pritchard, M.; et al. Balancing Mcr-1 Expression and Bacterial Survival Is a Delicate Equilibrium between Essential Cellular Defence Mechanisms. Nat. Commun. 2017, 8, 2054. [Google Scholar] [CrossRef]
- Chae, J. Multi-Sectoral Surveillance Study: Gram-Negative Coccobacilli. In Proceedings of the 4th One Health AMR International Symposium; Korea Disease Control and Prevention Agency: Seoul, Republic of Korea, 2022. [Google Scholar]
- Soon, R.L.; Nation, R.L.; Cockram, S.; Moffatt, J.H.; Harper, M.; Adler, B.; Boyce, J.D.; Larson, I.; Li, J. Different Surface Charge of Colistin-Susceptible and -Resistant Acinetobacter Baumannii Cells Measured with Zeta Potential as a Function of Growth Phase and Colistin Treatment. J. Antimicrob. Chemother. 2011, 66, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Fernandes, M.R.; Lopes, R.; Muñoz, M.; Sabino, C.P.; Cunha, M.P.; Silva, K.C.; Cayô, R.; Martins, W.M.; Moreno, A.M.; et al. Detection of Colistin-Resistant MCR-1-Positive Escherichia Coli by Use of Assays Based on Inhibition by EDTA and Zeta Potential. J. Clin. Microbiol. 2017, 55, 3454–3465. [Google Scholar] [CrossRef]
- Lima, M.R.; Ferreira, G.F.; Nunes Neto, W.R.; Monteiro, J.d.M.; Santos, Á.R.C.; Tavares, P.B.; Denadai, Â.M.L.; Bomfim, M.R.Q.; dos Santos, V.L.; Marques, S.G.; et al. Evaluation of the Interaction between Polymyxin B and Pseudomonas Aeruginosa Biofilm and Planktonic Cells: Reactive Oxygen Species Induction and Zeta Potential. BMC Microbiol. 2019, 19, 115. [Google Scholar] [CrossRef]
- Velkov, T.; Deris, Z.Z.; Huang, J.X.; Azad, M.A.K.; Butler, M.; Sivanesan, S.; Kaminskas, L.M.; Dong, Y.-D.; Boyd, B.; Baker, M.A.; et al. Surface Changes and Polymyxin Interactions with a Resistant Strain of Klebsiella Pneumoniae. Innate Immun. 2013, 20, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.-J.; Cui, A.-L.; Chen, J.-R.; Yang, P.; Jin, J.; Shao, L.; Li, Z.-R. The Low-Alkalinity Polymyxin Derivative, AL-6, Shows High Activity Against Multidrug-Resistant Acinetobacter Baumannii Clinical Isolates In Vitro and A. Baumannii ATCC 19606 In Vivo: Preliminary Analysis of the Antibacterial Mechanism. Microb. Drug Resist. 2021, 27, 933–941. [Google Scholar] [CrossRef]
- Delcour, A.H. Outer Membrane Permeability and Antibiotic Resistance. Biochim. Biophys. Acta—Proteins Proteom. 2009, 1794, 808–816. [Google Scholar] [CrossRef]
- Sheng, X.; Wang, W.; Chen, L.; Zhang, H.; Zhang, Y.; Xu, S.; Xu, H.; Huang, X. Mig-14 May Contribute to Salmonella Enterica Serovar Typhi Resistance to Polymyxin B by Decreasing the Permeability of the Outer-Membrane and Promoting the Formation of Biofilm. Int. J. Med. Microbiol. 2019, 309, 143–150. [Google Scholar] [CrossRef]
- Dupont, M.; Dé, E.; Chollet, R.; Chevalier, J.; Pagès, J.-M. Enterobacter Aerogenes OmpX, a Cation-Selective Channel Mar- and Osmo-Regulated. FEBS Lett. 2004, 569, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Safi, A.U.R.; Bendixen, E.; Rahman, H.; Khattak, B.; Wu, W.; Ullah, W.; Khan, N.; Ali, F.; Yasin, N.; Qasim, M. Molecular Identification and Differential Proteomics of Drug Resistant Salmonella Typhi. Diagn. Microbiol. Infect. Dis. 2023, 105, 115883. [Google Scholar] [CrossRef] [PubMed]
Antimicrobials | Disk Contents (μg) | WHO Classifications 1 | Antimicrobial Resistance of NCCP 13719 Strain | Reference | |||
---|---|---|---|---|---|---|---|
Category | Abbreviations | Full Name | Control | Acid-Adapted | |||
Penicillins | AMP | Ampicillin | 10 | HIA | S | R | [14] |
AMC | Amoxicillin/Clavulanic Acid | 30 | HIA | S | R | [14] | |
SAM | Ampicillin/Sulbactam | 20 | HIA | S | R | [14] | |
Aminoglycosides | CN | Gentamicin | 10 | CIA | S | R | [14] |
Carbapenems | IPM | Imipenem | 10 | Authorized for use in humans only | S | S | [14] |
Sulfonamide | SXT | Sulfamethoxazole/Trimethoprim | 25 | HIA | S | S | [14] |
Cephalosporins | FEP | Cefepime (4th) | 30 | HP-CIA | S | S | [14] |
CTX | Cefotaxime (3rd) | 30 | HP-CIA | S | I | [14] | |
CRO | Ceftriaxone (3rd) | 30 | HP-CIA | S | S | [14] | |
FOX | Cefoxitin (2nd) | 30 | HIA | S | S | [14] | |
Phenicols | C | Chloramphenicol | 30 | HIA | S | S | [14] |
Quinolones | CIP | Ciprofloxacin | 5 | HP-CIA | S | I | [14] |
MIC of ECOFFs 2 (μg/mL) | MIC of NCCP 13719 strain against polymyxins (μg/mL) | Reference | |||||
Category | Abbreviations | Full name | WHO Classifications | Control | Acid-adapted | ||
Polymyxins | CT | Colistin | 2 | HP-CIA | 1 (S) | 8 (R) | This study |
PB | Polymyxin B | 2 | HP-CIA | 2 (S) | 4 (R) | This study |
Gene | Product | Log2 Fold Change * | FDR ** |
---|---|---|---|
Stress-related gene | |||
uspA | Universal stress protein A | −2.11 | 1.60 × 10−13 |
uspD | Universal stress protein D | 1.22 | 3.03 × 10−11 |
uspF | Universal stress protein F | −3.23 | 3.21 × 10−106 |
cspA | Cold shock protein CspA | −1.00 | 3.98 × 10−1 |
cspG | Cold shock-like protein CspG | −3.65 | 9.18 × 10−3 |
cspC | Cold shock-like protein CspC | −2.18 | 1.50 × 10−2 |
rpoS | RNA polymerase sigma factor RpoS | −10.23 | 3.63 × 10−125 |
ftsP | Cell division protein FtsP | −1.29 | 4.75 × 10−4 |
yaaA | Peroxide stress resistance protein YaaA | 1.27 | 2.04 × 10−8 |
Acid stress-related gene | |||
dctR | HTH-type transcriptional regulator DctR | −1.53 | 1.56 × 10−30 |
sapB | hypothetical protein | 2.83 | 2.09 × 10−11 |
hdeB | Acid stress chaperone HdeB | 2.31 | 1.58 × 10−4 |
hdeA | Acid stress chaperone HdeA | 2.32 | 1.68 × 10−4 |
hdeD | Protein HdeD | 2.46 | 4.97 × 10−6 |
gadE | Transcriptional regulator GadE | 1.93 | 1.08 × 10−7 |
mdtE | Multidrug resistance protein MdtE | 2.46 | 1.55 × 10−42 |
mdtF | Multidrug resistance protein MdtF | 2.21 | 5.90 × 10−178 |
Polymyxin resistance-related gene | |||
arnC | Undecaprenyl-phosphate 4-deoxy-4-formamido-L-arabinose transferase | 1.08 | 1.84 × 10−2 |
arnT | Undecaprenyl phosphate-alpha-4-amino-4-deoxy-L-arabinose arabinosyl transferase | 1.19 | 8.26 × 10−7 |
arnE | putative 4-amino-4-deoxy-L-arabinose-phosphoundecaprenol flippase subunit ArnE | 1.49 | 1.45 × 10−2 |
eptB | Kdo(2)-lipid A phosphoethanolamine 7″-transferase | −1.79 | 3.13 × 10−16 |
ugd | UDP-glucose 6-dehydrogenase | −7.46 | 5.06 × 10−29 |
ompX | Outer membrane protein X | 3.32 | 1.17 × 10−19 |
ompW | Outer membrane protein W | 2.90 | 5.85 × 10−5 |
ompN | Outer membrane porin N | 1.75 | 7.87 × 10−6 |
tolC | Outer membrane protein TolC | 1.05 | 2.73 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, D.; Kim, H.J. Mechanisms of Polymyxin Resistance in Acid-Adapted Enteroinvasive Escherichia coli NCCP 13719 Revealed by Transcriptomics. Microorganisms 2024, 12, 2549. https://doi.org/10.3390/microorganisms12122549
Hwang D, Kim HJ. Mechanisms of Polymyxin Resistance in Acid-Adapted Enteroinvasive Escherichia coli NCCP 13719 Revealed by Transcriptomics. Microorganisms. 2024; 12(12):2549. https://doi.org/10.3390/microorganisms12122549
Chicago/Turabian StyleHwang, Daekeun, and Hyun Jung Kim. 2024. "Mechanisms of Polymyxin Resistance in Acid-Adapted Enteroinvasive Escherichia coli NCCP 13719 Revealed by Transcriptomics" Microorganisms 12, no. 12: 2549. https://doi.org/10.3390/microorganisms12122549
APA StyleHwang, D., & Kim, H. J. (2024). Mechanisms of Polymyxin Resistance in Acid-Adapted Enteroinvasive Escherichia coli NCCP 13719 Revealed by Transcriptomics. Microorganisms, 12(12), 2549. https://doi.org/10.3390/microorganisms12122549