Pathological In Vivo Analysis of Helicobacter DNA Infection in Stomach Cells Using Carbon Nanotube Microsensor
Abstract
:1. Introduction
2. Materials and Method
2.1. Technical Systems
2.2. Sensor Preparation
3. Results
3.1. Voltammetric Procedure and the Electron Microscope
3.2. HP Culture and Tissue Collection
4. Results and Discussion
4.1. Electrode and Voltammetric Concentration Effects
4.2. SW Parameters and Statistics
4.3. Working Range and Application in Patients’ Stomach Tissue
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Chen, C.; Si, S.; Du, J.; Li, H. Prospective cohort study of Helicobacter pyloriinfection on the risk of nonalcoholic fatty liver diseas. FACETS 2024, 9, 1–8. [Google Scholar] [CrossRef]
- Asran, A.M.; Aldhalmi, A.K.; Musa, E.N.; Fayek, A.A.; Mansour, M.S.; El-Sherif, A.A. Tridentate N-donor Schiff base metal Complexes: Synthesis, Characterization, computational Studies, and assessment of biomedical applications in cancer Therapy, Helicobacter pylori Eradication, and COVID-19 treatment. Inorg. Chem. Commun. 2025, 171, 113371. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, S.; Zheng, Y.; Wang, Y.; Zhou, Y. The role of THBS1 and PDGFD in the immune microenvironment of Helicobacter pylori-associated gastric cancer. Arab. J. Gastroenterol. 2024, 25, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Fan, X.; Zheng, M.; Zhang, S.; Wang, P.; Wang, Y.; Zhang, S. GDF6 in gastric cancer upregulated by helicobacter pylori induces epithelial-mesenchymal translation via the TGF-β/SMAD3 signaling pathway. Pathol. Res. Pract. 2024, 260, 155384. [Google Scholar] [CrossRef] [PubMed]
- Hoft, S.G.; Brennan, M.; Carrero, J.A.; Jackson, N.M.; Pretorius, C.A.; Bigley, T.M.; Sáenz, J.B.; DiPaolo, R.K. Unveiling Cancer-Related Metaplastic Cells in Both Helicobacter pylori Infection and Au-toimmune Gastritis. Gastroenterology 2024, 24, 05415-5. [Google Scholar] [CrossRef]
- Nuvjeevan, S.D.; Nicole, A.H.; Sarah, L.J.M. Characterization of the Helicobacter pylori NikR-PureA DNA Interaction: Metal Ion Requirements and Sequence Specificity. Biochemistry 2007, 46, 2520–2529. [Google Scholar]
- Stephanie, A.C.; Robert, J.O. Application of polymerase chain reaction-based assays for rapid identification and antibiotic resistance screening of Helicobacter pylori in gastric biopsies. Diagn. Microbiol. Infect. Dis. 2008, 61, 67–71. [Google Scholar]
- Queiroz, D.M.; Mendes, E.N.; Rocha, G.A.; Oliveira, A.M.; Oliveira, C.A.; Magalhães, P.P.; Moura, S.B.; Cabral, M.M.D.A.; Nogueira, A.M.M.F. cagA-positive helicobacter pylori and risk for developing gastric Carcinoma in Brazil. Int. J. Cancer 1998, 78, 135–139. [Google Scholar] [CrossRef]
- Gill, P.; Amini, M.; Ghaemi, A.; Shokouhizadeh, L.; Abdul-Tehrani, H.; Karami, A.; Gilak, A. Detection of Helicobacter pylori by enzyme-linked immunosorbent assay of thermophilic helicase-dependent isothermal DNA amplification. Diagn. Microbiol. Infect. Dis. 2007, 59, 243–249. [Google Scholar] [CrossRef]
- Liviu, A.S.; Pelayo, C.; Luis, E.B.; Barbara, G.S. Detection and typing of Helicobacter pylori cagA/vacA genes by radioactive, one-step polymerase chain reaction in stool samples from children. J. Microbiol. Methods 2003, 52, 197–207. [Google Scholar]
- Randhir, P.D.; Joseph, W. Electrochemical detection of carbohydrates at carbon-nanotube modified glassy-carbonelectrodes. Electrochem. Commun. 2004, 6, 284–287. [Google Scholar]
- Lu, Y.; Yang, X.; Ma, Y.; Du, F.; Liu, Z.; Chen, Y. Self-assembled branched nanostructures of single-walled carbon nanotubes with DNA aslinkers. Chem. Phys. Lett. 2006, 419, 390–393. [Google Scholar]
- Ly, S.Y. Diagnosis of copper ions in vascular tracts using a fluorine-doped carbon nanotube sensor. Talanta 2008, 74, 1635–1641. [Google Scholar] [CrossRef]
- Zoran, M.; Primoč, B. Copper (I) hexafluoroantimonate—An example of a compound with CuI in a solely fluorine environment. J. Fluor. Chem. 2005, 126, 803–808. [Google Scholar]
- Tsuyoshi, N.; Vinay, G.; Yoshimi, O.; Henri, G.; Zoran, M.; Boris, Ž. Influence of cointercalated HF on the electrochemical behavior of highly fluorinated graphite. J. Power Sources 2004, 137, 80–87. [Google Scholar]
- Choi, J.; Min, J.; Kim, J.S.; Park, J.H.; Ly, S. Neurotransmitter Assay for In Vivo Nerve Signal Detection Using Bismuth Immobilizedona Carbon Nanotube Paste Electrode. Micromachines 2023, 14, 1899. [Google Scholar] [CrossRef]
- Lesley, E.S.; Jo, A.C.; Russell, L.J.; Paolo, G.; Phillip, D.S.; Ken, B.W. Quantitative analysis of Helicobacter pylori infection in a mouse model. J. Immunol. Methods 2000, 242, 67–78. [Google Scholar]
- Agnes, R.; Bela, M.; Zsuzsa, U.; Zsolt, T.; Laszlo, P. Determination of Helicobacter pylori cagA, vacA genotypes with real-time PCR melting curve analysis. J. Physiol. 2001, 95, 369–377. [Google Scholar]
- Ly, S.Y.; Jung, Y.S.; Kim, M.H.; Han, I.K.; Jung, W.W.; Kim, H.S. Determination of Caffeine Using a Simple Graphite Pencil Electrodewith Square-Wave Anodic Stripping Voltammetry. Microchim. Acta 2004, 146, 207–213. [Google Scholar] [CrossRef]
- Ly, S.Y.; Kim, Y.K. Assay of glucose in urine and drinking water with voltammetric working sensors of infrared photo diode electrode. Sens. Actuators A Phys. 2006, 127, 41–48. [Google Scholar] [CrossRef]
- Ly, S.Y. Detection of dopamine in the pharmacy with a carbon nanotube paste electrode using voltammetry. Bioelectrochemistry 2005, 68, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Ly, S.Y.; Jung, Y.S.; Kim, S.K.; Lee, H.K. Trace Analysis of Lead and Copper Ions in Fish Tissue Using Paste Electrodes. Anal. Lett. 2007, 40, 2683–2692. [Google Scholar] [CrossRef]
- Ly, S.Y.; Song, S.S.; Kim, S.k.; Jung, Y.S.; Lee, C.H. Determination of Ge(IV)in rice in a mercury coated glassy carbon electrode in the presence of catechol. Food Chem. 2006, 96, 337–343. [Google Scholar] [CrossRef]
- Ly, S.Y. Real-time Voltammetric Assay of Cadmium Ions in Plant Tissue and Fish Brain Core. Bull. Korean Chem. Soc. 2006, 27, 1613–1617. [Google Scholar]
- Monica, R.P.; Tania, G.; Encarnacion, L.; Felix, P. Comprehensive study of interactions between DNA and new electroactive Schiff base ligands Application to the detection of singly mismatched Helicobacter pylori sequences. Biosens. Bioelectron. 2007, 22, 2675–2681. [Google Scholar]
- German, A.M.; Angel, A.J.T.; Irma, E.D.V.; Roberto, A.O.; Julio, R. Continuous flow/stopped flow system using an immunobiosensor for quantification of human serum IgG antibodies to Helicobacter pylori. Anal. Biochem. 2005, 337, 195–202. [Google Scholar]
- German, A.M.; Irma, E.D.V.; Julio, R. Screen printed immunosensor for quantification of human serum IgG antibodies to Helicobacter pylori. Sens. Actuators B Chem. 2007, 128, 23–30. [Google Scholar]
- Hong, H.J.; Ly, S.Y. Voltammetric Detection of Tetrodotoxin Real-time In Vivo of Mouse Organs using DNA-immobilized Carbon Nanotube Sensors. Curr. Anal. Chem. 2019, 15, 567–574. [Google Scholar] [CrossRef]
- Bulmer, J.S.; Kaniyoor, A.; Elliott, J.A. A Meta Analysis of Conductive and Strong Carbon Nanotube Materials. Adv. Mater. 2021, 7, 19. [Google Scholar] [CrossRef]
- Oh, D.H.; Kang, Y.J.; Jung, H.; Song, H.J.; Cho, Y.S.; Kim, D.J. Electrical and Optical Property of Single-Wall Carbon Nanotubes Films. Korean J. Mater. Res. 2009, 19, 488–493. [Google Scholar] [CrossRef]
- Ly, S.Y.; Kim, J.E.; Moon, W.Y. Diagnostic assay of carcinoembryonic antigen tumor markers using a fluorine immobilized biosensor with handmade voltammetric circuit. Eur. J. Cancer Prev. 2011, 20, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, M.; Chowdhury, A.K.M.R.H.; Kassanos, P.; Tan, B.; Venkatakrishnan, K. Self-assembled N-doped Q-dot carbon nanostructures as a SERS-active biosensor with selective therapeutic functionality. Sens. Actuators B Chem. 2020, 323, 128703. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Goel, S.G. Microfluidic devices for synthesizing nanomaterials—A review. Nano Express 2020, 1, 032004. [Google Scholar] [CrossRef]
- Pop, R.; Tăbăran, A.-F.; Ungur, A.P.; Negoescu, A.; Cătoi, C. Helicobacter Pylori-Induced Gastric Infections: From Pathogenesis to Novel Therapeutic Approaches Using Silver NanoparticlesbyRomelia Pop. Pharmaceutics 2022, 14, 1463. [Google Scholar] [CrossRef]
- Hlaoperm, C.; Choowongkomon, K.; Pruksakorn, C.; Rattanasrisomporn, J. Development of an easy-to-use urease kit for detecting Helicobacter pylori in canine gastric mucosa. Vet. World 2021, 14, 1977–1987. [Google Scholar] [CrossRef]
- Sohrabi, A.; Franzen, J.; Tertipis, N.; Zagai, U.; Li, W.; Zheng, Z.; Ye, W. Efficacy of Loop-Mediated Isothermal Amplification for H. pylori Detection as Point-of-Care Testing by Noninvasive Sampling. Diagnostics 2021, 9, 1538. [Google Scholar]
- Noh, J.H.; Ahn, J.Y.; Choi, J.; Park, Y.S.; Na, H.K.; Lee, J.H.; Jung, K.W.; Kim, D.H.; Choi, K.D.; Song, H.J.; et al. Real-Time Polymerase Chain Reaction for the Detection of Helicobacter pylori and Clarithromycin Resistance. Gut Liver 2023, 17, 375–381. [Google Scholar] [CrossRef]
Sensor Type | (HFCNT) The Fluorine Immobilized on aCarbon Nanotube | (DNACNT) Double-Stranded DNA and Carbon Nanotube Powder Mixed Paste | (HGCNT) Metal Mercury and Carbon Nanotube Mixed Paste | (PE) The Graphite Pencil |
---|---|---|---|---|
Synthetic material | Mixing paste of 40% carbon nanotube powder (Nanotech Co., Ltd., Choongnam, Republic of Korea, 330–816), 40% HF (sigma standard, concentrated solution), and 20% mineral oil. | In total, 40% DNA (double-stranded and prepared from calf thymus sigma), 40% carbon nanotube graphite powder, and 20% mineral oil. | In total, 40% Hg (1000 mg/L mercury stranded from sigma), 40% carbon nanotube graphite powder, and 20% mineral oil. | Prepared with 5H or 2B pencil lead (2 mm in diameter). |
Sensor sensitivity/ concentration lange | High sensitivity <10 μg ~/L | High sensitivity <10 μg ~/L | High sensitivity <10 μg ~/L | Low sensitivity <100 μg ~/L |
Sw Stripping Voltammetry | HFCNT | 100 s Accumulation Time | |
---|---|---|---|
0.003 mL−1, Repeated Spike | x-Axis HP Concentration Number | CFUs/mL | Peak Current (10−7) |
0 | 0 | 0 | 0 |
1 | 5.29 | 29,694.53157 | 2.728 |
2 | 7.639 | 42,880.25079 | 3.899 |
3 | 9.695 | 54,421.26344 | 4.924 |
4 | 11.369 | 63,817.98288 | 5.759 |
5 | 14.089 | 79,086.24864 | 7.115 |
6 | 16.81 | 94,360.12773 | 8.472 |
7 | 19.993 | 11,2227.3667 | 10.059 |
8 | 22.202 | 12,4627.2193 | 11.16 |
Sw Stripping Voltammetry | Accumulation Time 100 s | |
---|---|---|
0.01 mL. HP Spike | 10X-6 Amper Current | |
1 | 1.069 | Average coefficient: 1.3412 |
2 | 1.055 | Standard deviation: 0.08376 |
3 | 1.202 | |
4 | 1.478 | RSD = 0.062452 |
5 | 1.385 | Relative standard deviation: RSD = s/X averge |
6 | 1.149 | Coefficientof variation: CV = (s/x) × 100% |
7 | 1.452 | |
8 | 1.345 | |
9 | 1.327 | |
10 | 0.952 | |
11 | 1.268 | |
12 | 1.536 | |
13 | 1.438 | |
14 | 1.371 | |
15 | 1.475 |
Healthy | Patients | ||
---|---|---|---|
100 s | 100 s | ||
Repeated Cell Spike | 10−7 Peak Current | 10−7 Peak Current | |
0 | 0.103 | healthy: Y = 0.186X | |
1 | 0.864 | 1.297 | |
2 | 0.802 | 1.525 | patients: Y = 0.049X2 + 0.061X − 0.181 |
3 | 0.974 | 1.925 | R2 = 0.987 |
4 | 1.351 | 2.846 | |
5 | 0.951 | 3.133 | |
6 | 1.044 | 4.285 | |
7 | 1.364 | 5.193 | |
8 | 0.983 | 6.718 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Jun, S.; Oh, Y.; Lee, S.; Oh, Y.J.; Kim, K.S.; Ly, S.Y. Pathological In Vivo Analysis of Helicobacter DNA Infection in Stomach Cells Using Carbon Nanotube Microsensor. Microorganisms 2024, 12, 2531. https://doi.org/10.3390/microorganisms12122531
Lee K, Jun S, Oh Y, Lee S, Oh YJ, Kim KS, Ly SY. Pathological In Vivo Analysis of Helicobacter DNA Infection in Stomach Cells Using Carbon Nanotube Microsensor. Microorganisms. 2024; 12(12):2531. https://doi.org/10.3390/microorganisms12122531
Chicago/Turabian StyleLee, Kyung, Sihyun Jun, Yeseul Oh, Seojun Lee, Ye Jun Oh, Keum Sook Kim, and Suw Young Ly. 2024. "Pathological In Vivo Analysis of Helicobacter DNA Infection in Stomach Cells Using Carbon Nanotube Microsensor" Microorganisms 12, no. 12: 2531. https://doi.org/10.3390/microorganisms12122531
APA StyleLee, K., Jun, S., Oh, Y., Lee, S., Oh, Y. J., Kim, K. S., & Ly, S. Y. (2024). Pathological In Vivo Analysis of Helicobacter DNA Infection in Stomach Cells Using Carbon Nanotube Microsensor. Microorganisms, 12(12), 2531. https://doi.org/10.3390/microorganisms12122531