Microbiological Ecological Surveillance of Zoonotic Pathogens from Hamadryas Baboons in Southwestern Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Selection of Baboon Coprosamples
2.2. Sampling and Selection of Human Coprosamples
2.3. Microbial Analysis of Coprosamples
2.4. Molecular Characterization of Albaha City Isolates Using 16S rRNA Gene Sequencing
2.5. Randomized Sampling of Primary Health Centers for Clinical Correlations
2.6. Statistical Analysis of Pathogen Prevalence
3. Results
3.1. Baboon Demographics and Pathogen Prevalence Rates
3.2. Comparative Analysis of Infectious Agent Prevalence in Baboon and Human Fecal Samples
3.3. Molecular Diversity of Pathogens Among Baboon and Human Samples
3.4. Regional Differences in Pathogen Prevalence
3.5. Clinical Correlations
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wegner, G.I.; Murray, K.A.; Springmann, M.; Muller, A.; Sokolow, S.H.; Saylors, K.; Morens, D.M. Averting Wildlife-Borne Infectious Disease Epidemics Requires a Focus on Socio-Ecological Drivers and a Redesign of the Global Food System. EClinicalMedicine 2022, 47, 101386. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.M.; Turku, S.; Lehrfield, L.; Shoman, A. The Impact of Human Activities on Zoonotic Infection Transmissions. Animals 2023, 13, 1646. [Google Scholar] [CrossRef] [PubMed]
- Braam, D.H.; Jephcott, F.L.; Wood, J.L.N. Identifying the Research Gap of Zoonotic Disease in Displacement: A Systematic Review. Glob. Health Res. Policy 2021, 6, 25. [Google Scholar] [CrossRef]
- Skowron, K.; Grudlewska-Buda, K.; Khamesipour, F. Zoonoses and Emerging Pathogens. BMC Microbiol. 2023, 23, 232. [Google Scholar] [CrossRef]
- White, R.J.; Razgour, O. Emerging Zoonotic Diseases Originating in Mammals: A Systematic Review of Effects of Anthropogenic Land-Use Change. Mamm. Rev. 2020, 50, 336–352. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Fan, K.; Liang, X.; Gong, W.; Chen, W.; He, B.; Chen, X.; Wang, H.; Wang, X.; Zhang, P.; et al. Virus Diversity, Wildlife-Domestic Animal Circulation and Potential Zoonotic Viruses of Small Mammals, Pangolins and Zoo Animals. Nat. Commun. 2023, 14, 2488. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Chies, J.A.B. Zoonotic Spillover: Understanding Basic Aspects for Better Prevention. Genet. Mol. Biol. 2021, 44 (Suppl. S1), e20200355. [Google Scholar] [CrossRef]
- Taylor, L.H.; Latham, S.M.; Woolhouse, M.E. Risk Factors for Human Disease Emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001, 356, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Tull, A.; Valdmann, H.; Tammeleht, E.; Kaasiku, T.; Rannap, R.; Saarma, U. High Overlap of Zoonotic Helminths between Wild Mammalian Predators and Rural Dogs—An Emerging One Health Concern? Parasitology 2022, 149, 1565–1574. [Google Scholar] [CrossRef]
- Malone, K.M.; Gordon, S.V. Mycobacterium tuberculosis Complex Members Adapted to Wild and Domestic Animals. Adv. Exp. Med. Biol. 2017, 1019, 135–154. [Google Scholar]
- Dobson, A.P.; Pimm, S.L.; Hannah, L.; Kaufman, L.; Ahumada, J.A.; Ando, A.W.; Bernstein, A.; Busch, J.; Daszak, P.; Engelmann, J.; et al. Ecology and Economics for Pandemic Prevention. Science 2020, 369, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Rohr, J.; Cui, R.; Xin, Y.; Han, L.; Yang, X.; Gu, S.; Du, Y.; Liang, J.; Wang, X.; et al. Biological Invasions Facilitate Zoonotic Disease Emergences. Nat. Commun. 2022, 13, 1762. [Google Scholar] [CrossRef] [PubMed]
- Alqumber, M.A. Association between Papio hamadryas Populations and Human Gastrointestinal Infectious Diseases in Southwestern Saudi Arabia. Ann. Saudi Med. 2014, 34, 297–301. [Google Scholar] [CrossRef]
- Kasem, S.; Hussein, R.; Al-Doweriej, A.; Qasim, I.; Abu-Obeida, A.; Almulhim, I.; Alfarhan, H.; Hodhod, A.A.; Abel-Latif, M.; Hashim, O.; et al. Rabies among Animals in Saudi Arabia. J. Infect. Public Health 2019, 12, 445–447. [Google Scholar] [CrossRef]
- Carrillo-Bilbao, G.; Martin-Solano, S.; Saegerman, C. Zoonotic Blood-Borne Pathogens in Non-Human Primates in the Neotropical Region: A Systematic Review. Pathogens 2021, 10, 1009. [Google Scholar] [CrossRef]
- Menu, E.; Davoust, B.; Mediannikov, O.; Akiana, J.; Mulot, B.; Diatta, G.; Levasseur, A.; Ranque, S.; Raoult, D.; Bittar, F. Occurrence of Ten Protozoan Enteric Pathogens in Three Non-Human Primate Populations. Pathogens 2021, 10, 280. [Google Scholar] [CrossRef]
- Rondon, S.; Cavallero, S.; Renzi, E.; Link, A.; Gonzalez, C.; D’Amelio, S. Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms 2021, 9, 2546. [Google Scholar] [CrossRef] [PubMed]
- Sgroi, G.; Iatta, R.; Carelli, G.; Uva, A.; Cavalera, M.A.; Laricchiuta, P.; Otranto, D. Rickettsia conorii subspecies israelensis in Captive Baboons. Emerg. Infect. Dis. 2023, 29, 841–843. [Google Scholar] [CrossRef]
- Mendoza, A.P.; Munoz-Maceda, A.; Ghersi, B.M.; De La Puente, M.; Zariquiey, C.; Cavero, N.; Murillo, Y.; Sebastian, M.; Ibanez, Y.; Parker, P.G.; et al. Diversity and Prevalence of Zoonotic Infections at the Animal-Human Interface of Primate Trafficking in Peru. PLoS ONE 2024, 19, e0287893. [Google Scholar] [CrossRef]
- Medkour, H.; Amona, I.; Akiana, J.; Davoust, B.; Bitam, I.; Levasseur, A.; Tall, M.L.; Diatta, G.; Sokhna, C.; Hernandez-Aguilar, R.A.; et al. Adenovirus Infections in African Humans and Wild Non-Human Primates: Great Diversity and Cross-Species Transmission. Viruses 2020, 12, 657. [Google Scholar] [CrossRef]
- Olarinmoye, A.O.; Niphuis, H.; Verschoor, E.; Olugasa, B.O.; Ishola, O.O.; Aldosari, A.A.; Boug, A.; Ogunro, B.N.; Al-Hezaimi, K. Serological Detection of Flavivirus Infections in Saudi Baboons. Ecohealth 2021, 18, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Kopp, G.H.; Roos, C.; Butynski, T.M.; Wildman, D.E.; Alagaili, A.N.; Groeneveld, L.F.; Zinner, D. Out of Africa, but How and When? The Case of Hamadryas Baboons (Papio hamadryas). J. Hum. Evol. 2014, 76, 154–164. [Google Scholar] [CrossRef]
- Han, B.A.; Castellanos, A.A.; Schmidt, J.P.; Fischhoff, I.R.; Drake, J.M. The Ecology of Zoonotic Parasites in the Carnivora. Trends Parasitol. 2021, 37, 1096–1110. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Thrusfield, M. Veterinary Epidemiology, 3rd ed.; Blackwell Publishing: Hoboken, NJ, USA, 2005. [Google Scholar]
- Willis, A.T.; Hobbs, G. A Medium for the Identification of Clostridia Producing Opalescence in Egg-Yolk Emulsions. J. Pathol. Bacteriol. 1958, 75, 299–305. [Google Scholar] [CrossRef]
- Wilson, K.H.; Blitchington, R.B.; Greene, R.C. Amplification of Bacterial 16S Ribosomal DNA with Polymerase Chain Reaction. J. Clin. Microbiol. 1990, 28, 1942–1946. [Google Scholar] [CrossRef] [PubMed]
- Michel, A.L.; Hlokwe, T.M.; Espie, I.W.; van Zijll Langhout, M.; Koeppel, K.; Lane, E. Mycobacterium tuberculosis at the Human/Wildlife Interface in a High Tb Burden Country. Transbound. Emerg. Dis. 2013, 60 (Suppl. S1), 46–52. [Google Scholar] [CrossRef]
- Liu, Z.J.; Qian, X.K.; Hong, M.H.; Zhang, J.L.; Li, D.Y.; Wang, T.H.; Yang, Z.M.; Zhang, L.Y.; Wang, Z.M.; Nie, H.J.; et al. Global View on Virus Infection in Non-Human Primates and Implications for Public Health and Wildlife Conservation. Zool. Res. 2021, 42, 626–632. [Google Scholar] [CrossRef]
- Nasher, A.K. Zoonotic Parasite Infections of the Arabian Sacred Baboon Papio hamadryas Arabicus Thomas in Asir Province, Saudi Arabia. Ann. Parasitol. Hum. Comp. 1988, 63, 448–454. [Google Scholar] [CrossRef]
- Lapin, B.A.; Yakovleva, L.A.; Dzhikidze, E.K.; Gvozdik, T.E.; Agumava, A.A.; Stasilevich, Z.K.; Danilova, I.G. An Enzootic Outbreak of Acute Disease Associated with Pathogenic E. coli in Adler Monkey Colony. J. Med. Primatol. 2015, 44, 355–363. [Google Scholar] [CrossRef]
- Deere, J.R.; Parsons, M.B.; Lonsdorf, E.V.; Lipende, I.; Kamenya, S.; Collins, D.A.; Travis, D.A.; Gillespie, T.R. Entamoeba histolytica Infection in Humans, Chimpanzees and Baboons in the Greater Gombe Ecosystem, Tanzania. Parasitology 2019, 146, 1116–1122. [Google Scholar] [CrossRef]
- Abdulbaqi, A.; Ibrahim, A.S. Molecular Analysis of Staphylococcus aureus Isolated from Clinical Samples and Natural Flora. Cell. Mol. Biol. 2023, 69, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, I.N.; Lozano, C.; Zarazaga, M.; Trabelsi, I.; Reuben, R.C.; Stegger, M.; Torres, C. Nasal Staphylococci Microbiota and Resistome in Healthy Adults in La Rioja, Northern Spain: High Frequency of Toxigenic S. aureus and Mssa-Cc398 Subclade. Infect. Genet. Evol. 2023, 116, 105529. [Google Scholar] [CrossRef]
- Taylor, T.A.; Unakal, C.G. Staphylococcus aureus Infection. In Statpearls; Ineligible Companies: Treasure Island, FL, USA, 2024. [Google Scholar]
- Ragazzo, L.J.; Zohdy, S.; Velonabison, M.; Herrera, J.; Wright, P.C.; Gillespie, T.R. Entamoeba histolytica Infection in Wild Lemurs Associated with Proximity to Humans. Vet. Parasitol. 2018, 249, 98–101. [Google Scholar] [CrossRef]
- Devaux, C.A.; Mediannikov, O.; Medkour, H.; Raoult, D. Infectious Disease Risk across the Growing Human-Non Human Primate Interface: A Review of the Evidence. Front. Public Health 2019, 7, 305. [Google Scholar] [CrossRef]
- Ito, A.; Budke, C.M. Perspectives on Intestinal Tapeworm Infections: An Evaluation of Direct and Indirect Life-Cycles with a Special Emphasis on Species of Hymenolepis. Curr. Res. Parasitol. Vector Borne Dis. 2021, 1, 100023. [Google Scholar] [CrossRef] [PubMed]
- Eswarappa, S.M.; Janice, J.; Nagarajan, A.G.; Balasundaram, S.V.; Karnam, G.; Dixit, N.M.; Chakravortty, D. Differentially Evolved Genes of Salmonella Pathogenicity Islands: Insights into the Mechanism of Host Specificity in Salmonella. PLoS ONE 2008, 3, e3829. [Google Scholar] [CrossRef]
- Foley, S.L.; Johnson, T.J.; Ricke, S.C.; Nayak, R.; Danzeisen, J. Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars. Microbiol. Mol. Biol. Rev. 2013, 77, 582–607. [Google Scholar] [CrossRef] [PubMed]
- Merkushova, A.V.; Shikov, A.E.; Nizhnikov, A.A.; Antonets, K.S. For Someone, You Are the Whole World: Host-Specificity of Salmonella enterica. Int. J. Mol. Sci. 2023, 24, 13670. [Google Scholar] [CrossRef]
- Christopherson, J.B. The Cure of Schistosomiasis by the Intravenous Injection of Antimony Tartrate. Ind. Med. Gaz. 1925, 60, 108–111. [Google Scholar]
- Arfaa, F. Studies on Schistosomiasis in Saudi Arabia. Am. J. Trop. Med. Hyg. 1976, 25, 295–298. [Google Scholar] [CrossRef]
- Zahed, N.Z.; Ghandour, A.M.; Banaja, A.A.; Banerjee, R.K.; Dehlawi, M.S. Hamadryas Baboons Papio hamadryas as Maintenance Hosts of Schistosoma mansoni in Saudi Arabia. Trop. Med. Int. Health 1996, 1, 449–455. [Google Scholar] [CrossRef]
- Farrag, M.A.; Hamed, M.E.; Amer, H.M.; Almajhdi, F.N. Epidemiology of Respiratory Viruses in Saudi Arabia: Toward a Complete Picture. Arch. Virol. 2019, 164, 1981–1996. [Google Scholar] [CrossRef] [PubMed]
- Al-Eissa, Y.A.; Assuhaimi, S.A.; Abdullah, A.M.; AboBakr, A.M.; Al-Husain, M.A.; Al-Nasser, M.N.; Al Borno, M.K. Prevalence of Intestinal Parasites in Saudi Children: A Community-Based Study. J. Trop. Pediatr. 1995, 41, 47–49. [Google Scholar] [CrossRef] [PubMed]
- Qadri, M.H.; Ai-Gamdi, M.A.; Al-Harfi, R.A. Asymptomatic Salmonella, Shigella and Intestinal Parasites among Primary School Children in the Eastern Province. J. Fam. Community Med. 1995, 2, 36–40. [Google Scholar] [CrossRef]
- Yu, D.; Li, X.; Yu, J.; Shi, X.; Liu, P.; Tian, P. Whether Urbanization Has Intensified the Spread of Infectious Diseases-Renewed Question by the COVID-19 Pandemic. Front. Public Health 2021, 9, 699710. [Google Scholar] [CrossRef]
Baboon Samples | SCP Samples | SCC Samples | ECP Samples | ECC Samples | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Infective Agent | Taif | Baha | Abha | Taif | Baha | Abha | Taif | Baha | Abha | Jubail | Dammam | Khobar | Jubail | Dammam | Khobar |
Campylobacter spp. | 29.73 | 29.43 | 30.03 | 3.90 | 3.90 | 3.60 | 1.50 | 1.80 | 1.50 | 0.90 | 0.60 | 0.90 | 0.60 | 0.90 | 0.30 |
Clostridioides difficile | 29.13 | 28.53 | 28.83 | 6.01 | 5.71 | 6.31 | 2.70 | 3.00 | 3.00 | 1.80 | 2.10 | 1.80 | 1.50 | 2.10 | 1.80 |
Mycobacterium spp. | 24.62 | 24.32 | 24.62 | 2.70 | 2.40 | 3.00 | 1.20 | 0.90 | 1.50 | 0.60 | 0.60 | 0.60 | 1.20 | 0.90 | 1.20 |
Salmonella spp. | 11.11 | 11.41 | 10.81 | 3.00 | 2.70 | 3.30 | 2.10 | 2.40 | 2.10 | 1.80 | 2.10 | 1.80 | 2.40 | 2.40 | 1.80 |
Shigella spp. | 11.41 | 11.11 | 11.11 | 9.61 | 9.31 | 9.61 | 4.50 | 4.80 | 4.20 | 2.70 | 2.40 | 2.40 | 3.00 | 2.40 | 2.70 |
Staphylococcus aureus | 71.77 | 70.87 | 71.47 | 75.68 | 74.77 | 75.98 | 70.27 | 69.37 | 70.27 | 69.37 | 69.97 | 68.77 | 69.07 | 71.77 | 68.77 |
Entamoeba histolytica | 15.92 | 16.22 | 15.92 | 6.91 | 6.61 | 7.21 | 3.30 | 3.00 | 3.60 | 1.80 | 1.80 | 2.10 | 2.40 | 2.10 | 1.50 |
Giardia lamblia | 24.32 | 24.32 | 24.62 | 3.90 | 3.60 | 3.90 | 2.40 | 2.10 | 2.40 | 0.00 | 0.90 | 0.60 | 0.00 | 0.60 | 0.30 |
Cryptosporidium spp. | 39.64 | 39.94 | 40.84 | 23.72 | 23.42 | 23.72 | 9.91 | 9.31 | 9.61 | 7.21 | 6.61 | 6.31 | 6.91 | 7.21 | 6.31 |
Cyclospora spp. | 34.83 | 34.23 | 34.53 | 15.92 | 15.62 | 16.22 | 8.11 | 8.71 | 8.41 | 6.31 | 6.91 | 6.91 | 6.01 | 6.31 | 6.31 |
Balantidium coli | 23.72 | 23.12 | 24.02 | 12.31 | 12.91 | 12.91 | 9.31 | 9.01 | 9.31 | 6.91 | 7.51 | 6.61 | 7.21 | 7.51 | 7.51 |
Blastocystis hominis | 42.64 | 41.74 | 42.34 | 24.92 | 25.53 | 25.23 | 17.12 | 17.42 | 16.82 | 14.41 | 13.51 | 13.51 | 13.21 | 12.61 | 12.91 |
Enterobius vermicularis | 35.74 | 36.34 | 36.94 | 14.71 | 15.62 | 15.02 | 11.11 | 10.51 | 11.41 | 9.01 | 8.71 | 8.71 | 8.71 | 8.71 | 8.41 |
Hymenolepis spp. | 35.44 | 36.04 | 36.34 | 25.23 | 24.62 | 24.92 | 16.22 | 15.62 | 17.72 | 16.52 | 16.22 | 15.92 | 12.31 | 12.61 | 12.01 |
Hookworms | 37.54 | 37.24 | 37.54 | 25.83 | 26.43 | 26.73 | 16.82 | 15.92 | 17.12 | 14.41 | 14.41 | 14.71 | 14.11 | 14.71 | 14.41 |
Trichuris trichiura | 28.83 | 28.83 | 29.13 | 24.02 | 24.92 | 24.62 | 14.11 | 14.71 | 14.41 | 11.71 | 12.31 | 11.71 | 11.41 | 12.01 | 11.41 |
Schistosoma mansoni | 20.72 | 20.72 | 21.02 | 0.30 | 0.60 | 0.60 | 0.90 | 1.20 | 0.90 | 0.00 | 0.60 | 0.30 | 0.60 | 0.60 | 0.60 |
Strongyloides spp. | 37.24 | 37.54 | 37.24 | 21.92 | 22.52 | 22.22 | 18.02 | 18.62 | 18.62 | 14.71 | 14.41 | 14.11 | 13.51 | 13.21 | 12.31 |
Infectious Agent | p-Values for the Difference Between Baboons and Human Samples | p-Values for the Difference Between SCC and SCP | p-Values for the Difference Between ECC and ECP |
---|---|---|---|
Campylobacter spp. | 0.0001 * | 0.0004 * | 0.30 |
Clostridioides difficile | 0.009 * | 0.001 * | 0.43 |
Mycobacterium spp. | 0.002 * | 0.01 * | 0.89 |
Salmonella spp. | 0.1808 | 0.13 | 0.68 |
Shigella spp. | 0.004 * | 0.002 * | 0.61 |
Staphylococcus aureus | 0.41 | 0.005 * | 0.60 |
Entamoeba histolytica | 0.009 * | 0.007 * | 0.56 |
Giardia lamblia | 0.013 * | 0.03 * | 0.24 |
Cryptosporidium spp. | 0.005 * | 0.023 * | 0.54 |
Cyclospora spp. | 0.008 * | 0.0044 * | 0.32 |
Balantidium coli | 0.0021 * | 0.01 * | 0.64 |
Blastocystis hominis | 0.006 * | 0.037 * | 0.28 |
Enterobius vermicularis | 0.0004 * | 0.010 * | 0.44 |
Hymenolepis spp. | 0.0051 * | 0.025 * | 0.01 * |
Hookworms | 0.04 * | 0.030 * | 0.47 |
Trichuris trichiura | 0.022 * | 0.040 * | 0.42 |
Schistosoma mansoni | 0.04 * | 0.90 | 0.84 |
Strongyloides spp. | 0.038 * | 0.02 * | 0.18 |
Cluster Designation | Number | Source | 16S rRNA Gene Similarity | NCBI Accession |
---|---|---|---|---|
Clostridioides difficile strain DSM 11209 | 1 | PH (n = 1) | 100% | X73450.1 |
C. difficile strain JCM 5256 | 3 | PH (n = 1) SCP (n = 2) | 98% | AB632386.1 |
Clostridium sp. CYP4 | 4 | PH (n = 1) SCC (n = 1) SCP (n = 2) | 99% | DQ479414.1 |
C. difficile strain JCM 5244 | 2 | PH (n = 1) SCP (n = 1) | 99% | AB632375.1 |
C. difficile strain M120 | 1 | PH (n = 1) | 100% | FN665653.1 |
C. difficile strain CD196 | 5 | PH (n = 1) SCC (n = 2) SCP (n = 2) | 100% | FN538970.1 |
C. difficile strain JCM 1296 | 1 | PH (n = 1) | 99% | AB548672.1 |
C. difficile strain VPI 10463 | 1 | PH (n = 1) | 99% | AF072473.1 |
C. difficile strain M68 | 1 | SCC (n = 1) | 98% | FN668375.1 |
C. difficile strain 630 | 3 | SCC (n = 2) SCP (n = 1) | 98% | AM180355.1 |
Staphylococcus aureus strain 502A | 14 | PH (n = 4) SCC (n = 6) SCP (n = 4) | 98–99% | NZ_CP007454.1 |
S. aureus sp. NY-N1 | 2 | PH (n = 2) | 99% | FJ592986.1 |
S. aureus strain Y22 | 4 | PH (n = 4) | 99% | KF923962.1 |
S. aureus strain USA-ISMMS1 | 4 | PH (n = 2) SCP (n = 2) | 99% | NZ_CP007176.1 |
S. aureus strain Y19 | 2 | PH (n = 2) | 99% | KF923961.1 |
S. aureus strain P91-7354b | 10 | PH (n = 2) SCC (n = 4) SCP (n = 4) | 99% | DQ647042.1 |
S. aureus strain SMKV-2 | 6 | SCC (n = 4) SCP (n = 2) | 98% | DQ306891.1 |
S. aureus strain RKA6 | 2 | SCP (n = 2) | 99% | EF463060.1 |
S. aureus strain GSA-51 | 2 | SCP (n = 2) | 99% | JN315154.1 |
Campylobacter spp. 706H | 2 | PH (n = 2) | 98.7% | KF040443.1 |
Ca. hypointestinalis subsp. hypointestinalis stain 95-2 | 2 | PH (n = 2) | 98% | AB301960.1 |
Ca. jejuni subsp. jejuni strain 81-176 | 4 | PH (n = 2) SCC (n = 1) SCP (n = 1) | 98.4% | AF486558.1 |
Ca. jejuni subsp. jejuni strain 1182-3/95 | 3 | PH (n = 2) SCP (n = 1) | 99% | EU127533.1 |
Ca. jejuni strain 6871 | 2 | PH (n = 2) | 99% | AY628389.1 |
Ca. fetus subsp. venerealis strain 84-112 | 3 | PH (n = 2) SCC (n = 1) | 99% | HG004426.1 |
Ca. lanienae strain 24639 | 2 | PH (n = 2) | 99% | HM462455.1 |
Ca. jejuni subsp. jejuni NCTC 11168 | 3 | PH (n = 2) SCP (n = 1) | 98% | AL111168.1 |
Ca. lari strain RM2100 | 4 | PH (n = 2) SCP (n = 2) | 99% | KF855290.1 |
Ca. lanienae strain 24639 | 1 | SCP (n = 1) | 98.5% | HM462455.1 |
Ca. coli CVM N29710 | 1 | SCP (n = 1) | 98.5% | NR_121825.1 |
Mycobacterium simiae | 10 | PH (n = 8) SCC (n = 1) SCP (n = 1) | 98.7–99% | X52931.1 |
M. fortuitum ATCC 49403 | 3 | PH (n = 3) | 99.4% | X65528.1 |
M. kansasii | 4 | PH (n = 4) | 100% | M95469.1 |
M. kansasii strain DSM 44162 | 5 | PH (n = 4) SCP (n = 1) | 99.2% | NR_042164.1 |
M. abscessus | 3 | PH (n = 2) SCP (n = 1) | 98.8% | AY360327.1 |
M. simiae sequevar Msi-A | 1 | PH (n = 1) | 98% | Z46426.1 |
M. bovis subsp. bovis AF2122/97 | 5 | PH (n = 3) SCC (n = 1) SCP (n = 1) | 99% | BX248338.1 |
M. gordonae strain HA-1 | 4 | PH (n = 2) SCC (n = 1) SCP (n = 1) | 99.2% | KC684911.1 |
M. szulgai | 5 | PH (n = 3) SCC (n = 1) SCP (n = 1) | 99.3% | M61665.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqumber, M.A. Microbiological Ecological Surveillance of Zoonotic Pathogens from Hamadryas Baboons in Southwestern Saudi Arabia. Microorganisms 2024, 12, 2421. https://doi.org/10.3390/microorganisms12122421
Alqumber MA. Microbiological Ecological Surveillance of Zoonotic Pathogens from Hamadryas Baboons in Southwestern Saudi Arabia. Microorganisms. 2024; 12(12):2421. https://doi.org/10.3390/microorganisms12122421
Chicago/Turabian StyleAlqumber, Mohammed Abdullah. 2024. "Microbiological Ecological Surveillance of Zoonotic Pathogens from Hamadryas Baboons in Southwestern Saudi Arabia" Microorganisms 12, no. 12: 2421. https://doi.org/10.3390/microorganisms12122421
APA StyleAlqumber, M. A. (2024). Microbiological Ecological Surveillance of Zoonotic Pathogens from Hamadryas Baboons in Southwestern Saudi Arabia. Microorganisms, 12(12), 2421. https://doi.org/10.3390/microorganisms12122421