The Growing Phenomenon of ‘Frozen’ Virus Genome Sequences and Their Likely Origin in Research Facility Escapes
Abstract
:1. Introduction
2. 1977 ‘ Russian’ H1N1 Flu
3. 1995 Venezuelan Equine Encephalitis Virus in Venezuela
4. 2007–2009 Hand, Foot and Mouth Disease in Beijing, China
5. 2014 Polio in Anhui, China
6. 2021 Guinea Ebola Outbreak
7. Are There Alternative Explanations for ‘Frozen’ Virus Sequences?
8. What Action Should Be Taken When a ‘Frozen’ Virus Sequence Is Detected?
9. Measures to Enhance Traceability of Escaped Viruses
10. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scholtissek, C.; von Hoyningen, V.; Rott, R. Genetic relatedness between the new 1977 epidemic strains (H1N1) of influenza and human influenza strains isolated between 1947 and 1957 (H1N1). Virology 1978, 89, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Brault, A.C.; Powers, A.M.; Medina, G.; Wang, E.; Kang, W.; Salas, R.A.; De Siger, J.; Weaver, S.C. Potential sources of the 1995 Venezuelan equine encephalitis subtype IC epidemic. J. Virol. 2001, 75, 5823–5832. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Luo, Z.; Wang, J.; Xu, Z.; Chen, H.; Fan, D.; Gao, N.; Ping, G.; Zhou, Z.; Zhang, Y.; et al. Phylogenetic analysis of Enterovirus 71 circulating in Beijing, China from 2007 to 2009. PLoS ONE. 2013, 8, e56318. [Google Scholar] [CrossRef] [PubMed]
- Chesnais, M.; Bujaki, E.; Filhol, T.; Caval, V.; Joffret, M.-L.; Martin, J.; Jouvenet, N.; Bessaud, M. Opening a 60-year time capsule: Sequences of historical poliovirus cold variants shed a new light on a contemporary strain. Virus Evol. 2024, 10, veae063. [Google Scholar] [CrossRef]
- Keita, A.K.; Koundouno, F.R.; Faye, M.; Düx, A.; Hinzmann, J.; Diallo, H.; Ayouba, A.; Le Marcis, F.; Soropogui, B.; Ifono, K.; et al. Resurgence of Ebola virus in 2021 in Guinea suggests a new paradigm for outbreaks. Nature 2021, 597, 539–543. [Google Scholar] [CrossRef]
- Massey, S.E. The proteomic constraint and its role in molecular evolution. Mol. Biol. Evol. 2009, 26, 951. [Google Scholar] [CrossRef]
- Firquet, S.; Beaujard, S.; Lobert, P.-E.; Sané, F.; Caloone, D.; Izard, D.; Hober, D. Survival of enveloped and non-enveloped viruses on inanimate surfaces. Microbes Environ. 2015, 30, 140–144. [Google Scholar] [CrossRef]
- French, A.J.; Longest, A.K.; Pan, J.; Vikesland, P.J.; Duggal, N.K.; Marr, L.C.; Lakdawala, S.S. Environmental stability of enveloped viruses is impacted by initial volume and evaporation kinetics of droplets. MBio 2023, 14, e0345222. [Google Scholar] [CrossRef]
- Gregg, M.B. The Russian flu. JAMA 1978, 240, 2260. [Google Scholar] [CrossRef]
- Kung, H.C.; Jen, K.F.; Yuan, W.C.; Tien, S.F.; Chu, C.M. Influenza in China in 1977: Recurrence of influenzavirus A subtype H1N1. Bull. World Health Organ. 1978, 56, 913–918. [Google Scholar]
- Zimmer, S.M.; Burke, D.S. Historical perspective—Emergence of influenza A (H1N1) viruses. N. Engl. J. Med. 2009, 361, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.S.; Schleunes, A. A self-fulfilling prophecy pandemic: The 1977 “Russian flu”. Perspect. Biol. Med. 2024, 67, 386–405. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Desselberger, U.; Palese, P. Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950. Nature 1978, 274, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Wertheim, J.O. The re-emergence of H1N1 influenza virus in 1977: A cautionary tale for estimating divergence times using biologically unrealistic sampling dates. PLoS ONE 2010, 5, e11184. [Google Scholar] [CrossRef] [PubMed]
- Rozo, M.; Gronvall, G.K. The reemergent 1977 H1N1 strain and the gain-of-function debate. MBio 2015, 6, e01013-15. [Google Scholar] [CrossRef]
- Furmanski, M. The 1977 H1N1 influenza virus reemergence demonstrated gain-of-function hazards. mBio Am. Soc. Microbiol. 2015, 6, e01434-15. [Google Scholar] [CrossRef]
- Horimoto, T.; Kawaoka, Y. Influenza: Lessons from past pandemics, warnings from current incidents. Nat. Rev. Microbiol. 2005, 3, 591–600. [Google Scholar] [CrossRef]
- Palese, P. Influenza: Old and new threats. Nat. Med. 2004, 10, S82–S87. [Google Scholar] [CrossRef]
- Weaver, S.C.; Pfeffer, M.; Marriott, K.; Kang, W.; Kinney, R.M. Genetic evidence for the origins of Venezuelan equine encephalitis virus subtype IAB outbreaks. Am. J. Trop. Med. Hyg. 1999, 60, 441–448. [Google Scholar] [CrossRef]
- Schmidt, N.J.; Lennette, E.H.; Ho, H.H. An apparently new enterovirus isolated from patients with disease of the central nervous system. J. Infect. Dis. 1974, 129, 304–309. [Google Scholar] [CrossRef]
- Arita, M.; Nagata, N.; Iwata, N.; Ami, Y.; Suzaki, Y.; Mizuta, K.; Iwasaki, T.; Sata, T.; Wakita, T.; Shimizu, H. An attenuated strain of enterovirus 71 belonging to genotype a showed a broad spectrum of antigenicity with attenuated neurovirulence in cynomolgus monkeys. J. Virol. 2007, 81, 9386–9395. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, C.; He, D.; Cheng, T.; Ge, S.; Shih, J.W.-K.; Zhao, Q.; Chen, P.-J.; Zhang, J.; Xia, N. Antigenic analysis of divergent genotypes human Enterovirus 71 viruses by a panel of neutralizing monoclonal antibodies: Current genotyping of EV71 does not reflect their antigenicity. Vaccine 2013, 31, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Li, H.; Yue, L.; Song, X.; Xie, T.; Ma, S.; Meng, H.; Zhang, Y.; He, X.; Long, R.; et al. A comparative study of multiple clinical enterovirus 71 isolates and evaluation of cross protection of inactivated vaccine strain FY-23 K-B in vitro. Virol. J. 2017, 14, 206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qin, C.; Li, W.; Zheng, Z.; Wang, H.; Cui, Z. Isolation and characterization of a highly evolved type 3 vaccine-derived poliovirus in China. Virus Res. 2017, 238, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Salk, J.E.; Bennett, B.L.; Lewis, L.J.; Ward, E.N.; Youngner, J.S. Studies in human subjects on active immunization against poliomyelitis. J. Am. Med. Assoc. 1953, 151, 1081. [Google Scholar] [CrossRef]
- Murdin, A.D.; Barreto, L.; Plotkin, S. Inactivated poliovirus vaccine: Past and present experience. Vaccine 1996, 14, 735–746. [Google Scholar] [CrossRef]
- Yang, Z.; Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 2000, 17, 32–43. [Google Scholar] [CrossRef]
- Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef]
- Jorba, J.; Campagnoli, R.; De, L.; Kew, O. Calibration of multiple Poliovirus molecular clocks covering an extended evolutionary range. J. Virol. 2008, 82, 4429–4440. [Google Scholar] [CrossRef]
- Raab, M.; Roth, E.; Nguyen, V.-K.; Froeschl, G. The 2021 Ebola virus outbreak in Guinea: Mistrust and the shortcomings of outbreak surveillance. PLOS Neglected Trop. Dis. 2021, 15, e0009487. [Google Scholar] [CrossRef]
- Baize, S.; Pannetier, D.; Oestereich, L.; Rieger, T.; Koivogui, L.; Magassouba, N.; Soropogui, B.; Sow, M.S.; Kéïta, S.; De Clerck, H.; et al. Emergence of Zaire Ebola virus disease in Guinea. N. Engl. J. Med. 2014, 371, 1418–1425. [Google Scholar] [CrossRef] [PubMed]
- Husseini, S.; Latham, J. Did West Africa’s Ebola Outbreak of 2014 Have a Lab Origin? Independent Science News. 2022. Available online: https://www.independentsciencenews.org/health/did-west-africas-ebola-outbreak-of-2014-have-a-lab-origin/ (accessed on 17 September 2024).
- Koch, L.K.; Cunze, S.; Kochmann, J.; Klimpel, S. Bats as putative Zaire ebolavirus reservoir hosts and their habitat suitability in Africa. Sci. Rep. 2020, 10, 14268. [Google Scholar] [CrossRef] [PubMed]
- Honigsbaum, M. Between securitisation and neglect: Managing Ebola at the borders of global health. Med. Hist. 2017, 61, 270–294. [Google Scholar] [CrossRef] [PubMed]
- USAID Predict Guinea, One Health in Action (2016–2020). 2020. Available online: https://static1.squarespace.com/static/5c7d60a711f7845f734d4a73/t/5f22f8160562d96cc256612b/1596127271008/FINAL+REPORT+COUNTRY-GUINEA-FULL.pdf (accessed on 17 September 2024).
- International Ebola Response and Preparedness. USAID; DoD; DOS; HHS. 2015. Available online: https://oig.usaid.gov/sites/default/files/2018-06/ebola_response_09302015.pdf (accessed on 17 September 2024).
- Gould, E.A. Methods for long-term virus preservation. Mol. Biotechnol. 1999, 13, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Legendre, M.; Bartoli, J.; Shmakova, L.; Jeudy, S.; Labadie, K.; Adrait, A.; Lescot, M.; Poirot, O.; Bertaux, L.; Bruley, C.; et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc. Natl. Acad. Sci. USA. 2014, 111, 4274–4279. [Google Scholar] [CrossRef]
- Legendre, M.; Lartigue, A.; Bertaux, L.; Jeudy, S.; Bartoli, J.; Lescot, M.; Alempic, J.M.; Ramus, C.; Bruley, C.; Labadie, K.; et al. In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. Proc. Natl. Acad. Sci. USA 2015, 112, E5327–E5335. [Google Scholar] [CrossRef]
- Shoham, D.; Jahangir, A.; Ruenphet, S.; Takehara, K. Persistence of avian influenza viruses in various artificially frozen environmental water types. Influenza Res. Treat. 2012, 2012, 912326. [Google Scholar] [CrossRef]
- Domingo, E.; Baranowski, E.; Ruiz-Jarabo, C.M.; Martín-Hernández, A.M.; Sáiz, J.C.; Escarmís, C. Quasispecies structure and persistence of RNA viruses. Emerg. Infect. Dis. 1998, 4, 521–527. [Google Scholar] [CrossRef]
- Domingo, E.; Escarmís, C.; Sevilla, N.; Baranowski, E. Population dynamics in the evolution of RNA viruses. Adv. Exp. Med. Biol. 1998, 440, 721–727. [Google Scholar]
- Ulmer, J.B.; Valley, U.; Rappuoli, R. Vaccine manufacturing: Challenges and solutions. Nat. Biotechnol. 2006, 24, 1377–1383. [Google Scholar] [CrossRef]
- Chung, H.; Noh, J.Y.; Koo, B.-S.; Hong, J.J.; Kim, H.K. SARS-CoV-2 mutations acquired during serial passage in human cell lines are consistent with several of those found in recent natural SARS-CoV-2 variants. Comput. Struct. Biotechnol. J. 2022, 20, 1925–1934. [Google Scholar] [CrossRef] [PubMed]
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Bostickson, B.; Demaneuf, G.; Ghannam, Y. The October surprise in Wuhan. Drastic, 2021; unpublished. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massey, S.E. The Growing Phenomenon of ‘Frozen’ Virus Genome Sequences and Their Likely Origin in Research Facility Escapes. Microorganisms 2024, 12, 2412. https://doi.org/10.3390/microorganisms12122412
Massey SE. The Growing Phenomenon of ‘Frozen’ Virus Genome Sequences and Their Likely Origin in Research Facility Escapes. Microorganisms. 2024; 12(12):2412. https://doi.org/10.3390/microorganisms12122412
Chicago/Turabian StyleMassey, Steven E. 2024. "The Growing Phenomenon of ‘Frozen’ Virus Genome Sequences and Their Likely Origin in Research Facility Escapes" Microorganisms 12, no. 12: 2412. https://doi.org/10.3390/microorganisms12122412
APA StyleMassey, S. E. (2024). The Growing Phenomenon of ‘Frozen’ Virus Genome Sequences and Their Likely Origin in Research Facility Escapes. Microorganisms, 12(12), 2412. https://doi.org/10.3390/microorganisms12122412