Isolation and Detection of the Emerging Pathogen Escherichia albertii in Clinical Stool Samples and the Potential Transmission by Meat Samples in Retail
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. E. albertii Identification by MALDI-TOF MS
2.3. Selection of Isolation Media and Optimal Growth Conditions of E. albertii
2.4. Evaluation of Isolation of E. albertii from Meat
2.5. Evaluation of E. albertii Detection in Meat by PCR Assay
2.6. Examination of Meat Samples at Retail Level
2.6.1. Sample Collection
2.6.2. Determination of Fecal Contamination on Meat Samples
2.6.3. Determination of Presence of E. albertii on Meat
2.7. Examination of Clinical Stool Samples
2.7.1. Sample Collection
2.7.2. Isolation of E. albertii in Clinical Samples by Culture
2.7.3. Detection of E. albertii in Cultured Clinical Samples by PCR
2.8. Confirmation of PCR Amplicon by DNA Sequencing and E. albertii Isolates by WGS
2.9. Statistical Analysis
3. Results
3.1. Evaluation of E. albertii Identification by MALDI-TOF MS
3.2. Selection of Isolation Medium and Optimal Growth Conditions for E. albertii from Meat
3.3. Evaluation of Isolation of E. albertii from Meat
3.4. E. albertii Detection by PCR Assay
3.5. Examination of Meat Samples
3.5.1. Determination of Fecal Contamination on Meat Samples
3.5.2. Determination of Presence of E. albertii on Meat
3.6. Examination of Clinical Stool Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janda, J.M.; Abbott, S.L. The changing face of the family Enterobacteriaceae (Order: “Enterobacterales”): New members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clin. Microbiol. Rev. 2021, 34, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Huys, G.; Cnockaert, M.; Janda, J.M.; Swings, J. Escherichia albertii sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children. Int. J. Syst. Evol. Microbiol. 2003, 53, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Banting, G.; Neumann, N.F. A review of the taxonomy, genetics, and biology of the genus Escherichia and the type species Escherichia coli. Can. J. Microbiol. 2021, 67, 553–571. [Google Scholar] [CrossRef]
- Ooka, T.; Seto, K.; Kawano, K.; Kobayashi, H.; Etoh, Y.; Ichihara, S.; Kaneko, A.; Isobe, J.; Yamaguchi, K.; Horikawa, K. Clinical significance of Escherichia albertii. Emerg. Infect. Dis. 2012, 18, 488. [Google Scholar] [CrossRef]
- Bhatt, S.; Egan, M.; Critelli, B.; Kouse, A.; Kalman, D.; Upreti, C. The Evasive Enemy: Insights into the Virulence and Epidemiology of the Emerging Attaching and Effacing Pathogen Escherichia albertii. Infect. Immun. 2019, 87, 10-1128. [Google Scholar] [CrossRef]
- Masuda, K.; Ooka, T.; Akita, H.; Hiratsuka, T.; Takao, S.; Fukada, M.; Inoue, K.; Honda, M.; Toda, J.; Sugitani, W.; et al. Epidemiological Aspects of Escherichia albertii Outbreaks in Japan and Genetic Characteristics of the Causative Pathogen. Foodborne Pathog. Dis. 2020, 17, 144–150. [Google Scholar] [CrossRef]
- Inglis, T.J.; Merritt, A.J.; Bzdyl, N.; Lansley, S.; Urosevic, M.N. First bacteraemic human infection with Escherichia albertii. New Microbes New Infect. 2015, 8, 171–173. [Google Scholar] [CrossRef]
- Gomes, T.A.T.; Ooka, T.; Hernandes, R.T.; Yamamoto, D.; Hayashi, T. Escherichia albertii Pathogenesis. EcoSal Plus 2020, 9, 10-1128. [Google Scholar] [CrossRef]
- Hinenoya, A.; Yasuda, N.; Mukaizawa, N.; Sheikh, S.; Niwa, Y.; Awasthi, S.P.; Asakura, M.; Tsukamoto, T.; Nagita, A.; Albert, M.J. Association of cytolethal distending toxin-II gene-positive Escherichia coli with Escherichia albertii, an emerging enteropathogen. Int. J. Med. Microbiol. 2017, 307, 564–571. [Google Scholar] [CrossRef]
- Brandal, L.T.; Tunsjo, H.S.; Ranheim, T.E.; Lobersli, I.; Lange, H.; Wester, A.L. Shiga Toxin 2a in Escherichia albertii. J. Clin. Microbiol. 2015, 53, 1454–1455. [Google Scholar] [CrossRef]
- Murakami, K.; Etoh, Y.; Tanaka, E.; Ichihara, S.; Horikawa, K.; Kawano, K.; Ooka, T.; Kawamura, Y.; Ito, K. Shiga Toxin 2f-Producing Escherichia albertii from a Symptomatic Human. Jpn. J. Infect. Dis. 2014, 67, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.P.; Yamamoto, D.; de Mello Santos, A.C.; Ooka, T.; Hernandes, R.T.; Vieira, M.A.M.; Santos, F.F.; Silva, R.M.; Hayashi, T.; Gomes, T.A.T. Phenotypic characterization and virulence-related properties of Escherichia albertii strains isolated from children with diarrhea in Brazil. Pathog. Dis. 2019, 77, ftz014. [Google Scholar] [CrossRef] [PubMed]
- Asoshima, N.; Matsuda, M.; Shigemura, K.; Honda, M.; Yoshida, H.; Hiwaki, H.; Ogata, K.; Oda, T. Identification of Escherichia albertii as a causative agent of a food-borne outbreak occurred in 2003. Jpn. J. Infect. Dis. 2014, 67, 139–140. [Google Scholar] [CrossRef]
- Tokuoka, E.; Furukawa, K.; Nagamura, T.; Harada, F.; Ekinaga, K.; Tokunaga, H. Food poisoning outbreak due to atypical EPEC OUT: HNM, May 2011–Kumamoto. Infect. Agents Surveill Rep. 2012, 33, 8–9. [Google Scholar]
- Hinenoya, A.; Yasuda, N.; Hibino, T.; Shima, A.; Nagita, A.; Tsukamoto, T.; Yamasaki, S. Isolation and characterization of an Escherichia albertii strain producing three different toxins from a child with diarrhea. Jpn. J. Infect. Dis. 2017, 70, 252–257. [Google Scholar] [CrossRef]
- Muchaamba, F.; Barmettler, K.; Treier, A.; Houf, K.; Stephan, R. Microbiology and Epidemiology of Escherichia albertii-An Emerging Elusive Foodborne Pathogen. Microorganisms 2022, 10, 875. [Google Scholar] [CrossRef]
- Arai, S.; Yamaya, S.; Ohtsuka, K.; Konishi, N.; Obata, H.; Ooka, T.; Hirose, S.; Kai, A.; Hara-Kudo, Y. Detection of Escherichia albertii in Retail Oysters. J. Food Prot. 2022, 85, 173–179. [Google Scholar] [CrossRef]
- Hinenoya, A.; Wang, H.W.; Patrick, E.M.; Zeng, X.M.; Cao, L.; Li, X.P.; Lindsey, R.L.; Gillespie, B.; He, Q.; Yamasaki, S.; et al. Longitudinal surveillance and comparative characterization of Escherichia albertii in wild raccoons in the United States. Microbiol. Res. 2022, 262, 13. [Google Scholar] [CrossRef]
- Barmettler, K.; Biggel, M.; Treier, A.; Muchaamba, F.; Stephan, R. Livestock as possible reservoir of Escherichia albertii in Switzerland. Schweiz. Arch. Tierheilkd. 2023, 165, 299–306. [Google Scholar] [CrossRef]
- Gordon, D.M. Reservoirs of Infection: The Epidemiological Characteristics of an Emerging Pathogen, Escherichia albertii. Australian National University: Canberra, Australia, 2011. [Google Scholar]
- Oaks, J.L.; Besser, T.E.; Walk, S.T.; Gordon, D.M.; Beckmen, K.B.; Burek, K.A.; Haldorson, G.J.; Bradway, D.S.; Ouellette, L.; Rurangirwa, F.R.; et al. Escherichia albertii in Wild and Domestic Birds. Emerg. Infect. Dis. 2010, 16, 638–646. [Google Scholar] [CrossRef]
- Asoshima, N.; Matsuda, M.; Shigemura, K.; Honda, M.; Yoshida, H.; Oda, T.; Hiwaki, H. Isolation of Escherichia albertii from Raw Chicken Liver in Fukuoka City, Japan. Jpn. J. Infect. Dis. 2015, 68, 248–250. [Google Scholar] [CrossRef] [PubMed]
- Maeda, E.; Murakami, K.; Sera, N.; Ito, K.; Fujimoto, S. Detection of Escherichia albertii from chicken meat and giblets. J. Vet. Med. Sci. 2015, 77, 871–873. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Q.; Bai, X.; Xu, Y.; Zhao, A.; Sun, H.; Deng, J.; Xiao, B.; Liu, X.; Sun, S.; et al. Prevalence of eae-positive, lactose non-fermenting Escherichia albertii from retail raw meat in China. Epidemiol. Infect. 2016, 144, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Saad, N.M.; Sabreen, M.S.; Amin, W.F.; Gendi, M.K. Prevalence of Escherichia albertii and other Escherichia species in raw milk and some dairy products in Assiut City, Egypt. J. Am. Sci. 2012, 8, 333–341. [Google Scholar]
- Fiedler, G.; Brinks, E.; Bohnlein, C.; Cho, G.S.; Koberg, S.; Kabisch, J.; Franz, C. Draft Genome Sequence of the Intimin-Positive Enteropathogenic Escherichia albertii Strain MBT-EA1, Isolated from Lettuce. Genom. Ann. 2018, 6, 2. [Google Scholar] [CrossRef]
- Felfoldi, T.; Heeger, Z.; Vargha, M.; Marialigeti, K. Detection of potentially pathogenic bacteria in the drinking water distribution system of a hospital in Hungary. Clin. Microbiol. Infect. 2010, 16, 89–92. [Google Scholar] [CrossRef]
- Takahashi, S.; Konno, T.; Kashio, H.; Suzuki, S.; Kumagai, Y. Isolation and Characterization of Escherichia albertii from Environmental Water in Akita Prefecture, Japan. Jpn. J. Food Microbiol. 2020, 37, 81–86. [Google Scholar] [CrossRef]
- Maheux, A.F.; Brodeur, S.; Berube, E.; Boudreau, D.K.; Abed, J.Y.; Boissinot, M.; Bissonnette, L.; Bergeron, M.G. Method for isolation of both lactose-fermenting and—Non-fermenting Escherichia albertii strains from stool samples. J. Microbiol. Methods 2018, 154, 134–140. [Google Scholar] [CrossRef]
- Hinenoya, A.; Nagano, K.; Okuno, K.; Nagita, A.; Hatanaka, N.; Awasthi, S.P.; Yamasaki, S. Development of XRM-MacConkey agar selective medium for the isolation of Escherichia albertii. Diag. Microbiol. Infect. Dis. 2020, 97, 115006. [Google Scholar] [CrossRef]
- Arai, S.; Ohtsuka, K.; Konishi, N.; Ohya, K.; Konno, T.; Tokoi, Y.; Nagaoka, H.; Asano, Y.; Maruyama, H.; Uchiyama, H.; et al. Evaluating Methods for Detecting Escherichia albertii in Chicken Meat. J. Food Prot. 2021, 84, 553–562. [Google Scholar] [CrossRef]
- Wakabayashi, Y.; Seto, K.; Kanki, M.; Harada, T.; Kawatsu, K. Proposal of a novel selective enrichment broth, NCT-mTSB, for isolation of Escherichia albertii from poultry samples. J. Appl. Microbiol. 2022, 132, 2121–2130. [Google Scholar] [CrossRef] [PubMed]
- Hinenoya, A.; Ichimura, H.; Yasuda, N.; Harada, S.; Yamada, K.; Suzuki, M.; Iijima, Y.; Nagita, A.; Albert, M.J.; Hatanaka, N. Development of a specific cytolethal distending toxin (cdt) gene (Eacdt)–based PCR assay for the detection of Escherichia albertii. Diag. Microbiol. Infect. Dis. 2019, 95, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Konno, T.; Yatsuyanagi, J.; Takahashi, S.; Kumagai, Y.; Wada, E.; Chiba, M.; Saito, S. Isolation and Identification of Escherichia albertii from a Patient in an Outbreak of Gastroenteritis. Jpn. J. Infect. Dis. 2012, 65, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, R.L.; Garcia-Toledo, L.; Fasulo, D.; Gladney, L.M.; Strockbine, N. Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii. J. Microbiol. Methods 2017, 140, 1–4. [Google Scholar] [CrossRef]
- Nimri, L.F. Escherichia albertii, a newly emerging enteric pathogen with poorly defined properties. Diag. Microbiol. Infect. Dis. 2013, 77, 91–95. [Google Scholar] [CrossRef]
- Ooka, T.; Ogura, Y.; Katsura, K.; Seto, K.; Kobayashi, H.; Kawano, K.; Tokuoka, E.; Furukawa, M.; Harada, S.; Yoshino, S.; et al. Defining the Genome Features of Escherichia albertii, an Emerging Enteropathogen Closely Related to Escherichia coli. Genome Biol. Evol. 2015, 7, 3170–3179. [Google Scholar] [CrossRef]
- De Rauw, K.; Jacobs, S.; Piérard, D. Twenty-seven years of screening for Shiga toxin-producing Escherichia coli in a university hospital. Brussels, Belgium, 1987–2014. PLoS ONE 2018, 13, e0199968. [Google Scholar] [CrossRef]
- Yu, Z.; Joossens, M.; Houf, K. Analyses of the bacterial contamination on Belgian broiler carcasses at retail level. Front. Microbiol. 2020, 11, 539540. [Google Scholar] [CrossRef]
- Arai, S.; Ooka, T.; Shibata, M.; Nagai, Y.; Tokoi, Y.; Nagaoka, H.; Maeda, R.; Tsuchiya, A.; Kojima, Y.; Ohya, K. Development of a novel real-time polymerase chain reaction assay to detect Escherichia albertii in chicken meat. Foodborne Pathog. Dis. 2022, 19, 823–829. [Google Scholar] [CrossRef]
- Maeda, E.; Murakami, K.; Okamoto, F.; Etoh, Y.; Sera, N.; Ito, K.; Fujimoto, S. Nonspecificity of Primers for Escherichia albertii Detection. Jpn. J. Infect. Dis. 2014, 67, 503–505. [Google Scholar] [CrossRef]
- ISO 16649-2; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Escherichia coli. Organisation of standardisation: Geneva, Switzerland, 2001.
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Shovill. 2020. Available online: https://github.com/tseemann/shovill (accessed on 10 September 2024).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Hinenoya, A.; Li, X.P.; Zeng, X.; Sahin, O.; Moxley, R.A.; Logue, C.M.; Gillespie, B.; Yamasaki, S.; Lin, J. Isolation and characterization of Escherichia albertii in poultry at the pre-harvest level. Zoonoses Public Health 2021, 68, 213–225. [Google Scholar] [CrossRef]
- Maheux, A.F.; Boudreau, D.K.; Bergeron, M.G.; Rodriguez, M.J. Characterization of Escherichia fergusonii and Escherichia albertii isolated from water. J. Appl. Microbiol. 2014, 117, 597–609. [Google Scholar] [CrossRef]
- Hirose, S.; Nakamura, Y.; Arai, S.; Hara-Kudo, Y. The Development and Evaluation of a Selective Enrichment for the Detection of Escherichia albertii in Food. Foodborne Pathog. Dis. 2022, 19, 704–712. [Google Scholar] [CrossRef]
- Xu, B.; Hatanaka, N.; Awasthi, S.P.; Tekehira, K.; Hinenoya, A.; Yamasaki, S. Cefixime–tellurite-deoxycholate tryptic soy broth (CTD-TSB), a selective enrichment medium, for enhancing isolation of Escherichia albertii from wild raccoon fecal samples. J. Appl. Microbiol. 2023, 134, lxad123. [Google Scholar] [CrossRef]
- Adams, E. The antibacterial action of crystal violet. J. Pharm. Pharmacol. 1967, 19, 821–826. [Google Scholar] [CrossRef]
- Zhao, C.; Ge, B.; De Villena, J.; Sudler, R.; Yeh, E.; Zhao, S.; White, D.G.; Wagner, D.; Meng, J. Prevalence of Campylobacter spp., Escherichia coli, and Salmonella serovars in retail chicken, turkey, pork, and beef from the Greater Washington, DC, area. Appl. Environ. Microbiol. 2001, 67, 5431–5436. [Google Scholar] [CrossRef]
- Awasthi, S.P.; Nagita, A.; Hatanaka, N.; Hassan, J.; Xu, B.; Hinenoya, A.; Yamasaki, S. Detection of prolong excretion of Escherichia albertii in stool specimens of a 7-year-old child by a newly developed Eacdt gene-based quantitative real-time PCR method and molecular characterization of the isolates. Heliyon 2024, 10, e30042. [Google Scholar] [CrossRef] [PubMed]
- Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR inhibitors–occurrence, properties and removal. J. Appl. Microbiol. 2012, 113, 1014–1026. [Google Scholar] [CrossRef] [PubMed]
- Van den Abeele, A.-M.; Vogelaers, D.; Van Hende, J.; Houf, K. Prevalence of Arcobacter species among humans, Belgium, 2008–2013. Emerg. Infect. Dis. 2014, 20, 1731. [Google Scholar] [CrossRef] [PubMed]
Genus | Species | Number of Strains | Strain Origin | Country | Strain Designation |
---|---|---|---|---|---|
Escherichia | albertii | 5 | Human feces | Bangladesh | LMG: 20972-20975, LMG: 20976T |
albertii | 8 | Human feces | Belgium | EH2338, EH2349, EH2581, EH2582, EH2675, EH3051, 14/1207, 14/1248 | |
albertii | 6 | Bird feces | Japan | NIAH_Bird_3, NIAH_Bird_5, NIAH_Bird_8, NIAH_Bird_13 NIAH_Bird_16, NIAH_Bird_23 | |
coli | 1 | N.A. | N.A. | LMG 33204 | |
hermannii | 1 | Human toe | United States | LMG 7867T | |
vulneris | 1 | Rice | Philippines | LMG 20123 | |
fergusonii | 1 | Human feces | United States | LMG 7866T |
Meat | Type | Enrichment Time in h | Strain | Spiked Concentrations of 4 E. albertii Strains (CFU/g Meat) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
106 | 105 | 104 | 103 | 102 | 101 | 100 | ||||
Chicken | minced | 0 | EH2338 | 4/4a | 4/4 | 4/4 | 4/4 | 0/4 | 0/4 | 0/4 |
0 | 14/1248 | 4/4 | 4/4 | 4/4 | 4/4 | 0/4 | 0/4 | 0/4 | ||
0 | NIAH_Bird_23 | 4/4 | 4/4 | 4/4 | 4/4 | 0/4 | 0/4 | 0/4 | ||
0 | LMG 20976T | 4/4 | 4/4 | 4/4 | 4/4 | 0/4 | 0/4 | 0/4 | ||
24 | EH2338 | 4/4 | 4/4 | 4/4 | 4/4 | 4/4 | 4/4 | 4/4 | ||
24 | 14/1248 | 4/4 | 4/4 | 4/4 | 4/4 | 4/4 | 4/4 | 4/4 | ||
24 | NIAH_Bird_23 | 4/4 | 4/4 | 4/4 | 4/4 | 4/4 | 4/4 | 4/4 | ||
24 | LMG 20976T | 4/4 | 4/4 | 4/4 | 4/4 | 4/4 | 4/4 | 4/4 | ||
48 | EH2338 | 2/4 | 2/4 | 2/4 | 2/4 | 2/4 | 2/4 | 2/4 | ||
48 | 14/1248 | 2/4 | 2/4 | 2/4 | 2/4 | 2/4 | 2/4 | 2/4 | ||
48 | NIAH_Bird_23 | 2/4 | 2/4 | 2/4 | 2/4 | 2/4 | 2/4 | 2/4 | ||
48 | LMG 20976T | 2/4 | 2/4 | 2/4 | 2/4 | 2/4 | 2/4 | 2/4 | ||
Pork | minced | 0 | NIAH_Bird_23 | 1/1b | 1/1 | 1/1 | 1/1 | 0/1 | 0/1 | 0/1 |
24 | NIAH_Bird_23 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | ||
48 | NIAH_Bird_23 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 |
Sample Type | Isolation | PCR | Plate Washing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample No. | No. of Positive Samples | Sample No. | No. of Positive Samples | Sample No. | No. of Positive Samples | Sample No. | No. of Positive Samples | ||||
Pre- Enrichment | Post- Enrichment | 24 h Enrichment | 48 h Enrichment | Pre- Enrichment | Post- Enrichment | ||||||
Beef | minced | 51 | 0 | 0 | 35 | 0 | 0 | 10 | 0 | 19 | 0 |
fillets | 45 | 0 | 0 | 37 | 0 | 0 | 9 | 0 | 19 | 0 | |
Pork | minced | 30 | 0 | 0 | 19 | 0 | 0 | 10 | 0 | 9 | 0 |
fillets | 50 | 0 | 0 | 42 | 0 | 0 | 8 | 0 | 22 | 0 | |
Chicken | minced | 35 | 0 | 0 | 26 | 1 b | 1 b | 13 | 0 | 15 | 0 |
fillets | 51 | 1 a | 1 | 44 | 2 c | 2 c | 31 | 1 a | 31 | 0 | |
carcass | 30 | 0 | 0 | 19 | 0 | 0 | 3 | 0 | 3 | 0 | |
total | 292 | 1 | 1 | 222 | 3 | 3 | 84 | 1 | 118 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafar, M.Z.; De Rauw, K.; Van den Abeele, A.-M.; Joossens, M.; Heyvaert, L.; Houf, K. Isolation and Detection of the Emerging Pathogen Escherichia albertii in Clinical Stool Samples and the Potential Transmission by Meat Samples in Retail. Microorganisms 2024, 12, 2408. https://doi.org/10.3390/microorganisms12122408
Zafar MZ, De Rauw K, Van den Abeele A-M, Joossens M, Heyvaert L, Houf K. Isolation and Detection of the Emerging Pathogen Escherichia albertii in Clinical Stool Samples and the Potential Transmission by Meat Samples in Retail. Microorganisms. 2024; 12(12):2408. https://doi.org/10.3390/microorganisms12122408
Chicago/Turabian StyleZafar, Muhammad Zeeshan, Klara De Rauw, Anne-Marie Van den Abeele, Marie Joossens, Lore Heyvaert, and Kurt Houf. 2024. "Isolation and Detection of the Emerging Pathogen Escherichia albertii in Clinical Stool Samples and the Potential Transmission by Meat Samples in Retail" Microorganisms 12, no. 12: 2408. https://doi.org/10.3390/microorganisms12122408
APA StyleZafar, M. Z., De Rauw, K., Van den Abeele, A.-M., Joossens, M., Heyvaert, L., & Houf, K. (2024). Isolation and Detection of the Emerging Pathogen Escherichia albertii in Clinical Stool Samples and the Potential Transmission by Meat Samples in Retail. Microorganisms, 12(12), 2408. https://doi.org/10.3390/microorganisms12122408