Synthesis of Super-High-Viscosity Poly-γ-Glutamic Acid by pgdS-Deficient Strain of Bacillus licheniformis and Its Application in Microalgae Harvesting
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Plasmids
2.2. Culture and Medium
2.3. Knockout of pgdS Gene in B. licheniformis
2.4. Batch Cultures in 5 L Stirred Fermenters
2.5. Analytic Methods
2.6. Observation of Cell and γ-PGA Morphology
2.7. Transcriptional Analysis
2.8. Flocculation of Microalgae Culture
3. Results
3.1. Disruption of pgdS and Its Effect on γ-PGA Production
3.2. Effects of pgdS Deficiency on Cell Morphology and the Transcription of Genes Related to Respiration
3.3. γ-PGA Enhancement of WX-ΔpgdS by Optimization of Precursor Substrate and Oxygen Supply Conditions
3.4. Effects of pgdS Deficiency on the Characteristics of γ-PGA
3.5. Harvesting Microalgae Using Fermentation Broth Containing Super-High-Viscosity γ-PGA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Chen, S.; Yu, B. Poly-γ-glutamic acid: Recent achievements, diverse applications and future perspectives. Trends Food Sci. Technol. 2022, 119, 1–12. [Google Scholar] [CrossRef]
- Pal, P.; Singh, A.K.; Sarangi, P.K.; Sahoo, U.K.; Singh, H.B.; Subudhi, S.; Singh, T.A. Production of gamma–polyglutamic acid microgel by Bacillus species: Industrial applications and future perspectives. Polym. Adv. Technol. 2024, 35, e6565. [Google Scholar] [CrossRef]
- Park, S.-B.; Sung, M.-H.; Uyama, H.; Han, D.-K. Poly (glutamic acid): Production, composites, and medical applications of the next-generation biopolymer. Prog. Polym. Sci. 2021, 113, 101341. [Google Scholar] [CrossRef]
- Elbanna, K.; Alsulami, F.S.; Neyaz, L.A.; Abulreesh, H.H. Poly (γ) glutamic acid: A unique microbial biopolymer with diverse commercial applicability. Front. Microbiol. 2024, 15, 1348411. [Google Scholar] [CrossRef]
- Luo, Z.; Guo, Y.; Liu, J.; Qiu, H.; Zhao, M.; Zou, W.; Li, S. Microbial synthesis of poly-γ-glutamic acid: Current progress, challenges, and future perspectives. Biotechnol. Biofuels 2016, 9, 134. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Y.; Wei, X.; Hu, Z.; Zhu, F.; Xu, L.; Luo, M.; Liu, H. Production of ultra-high molecular weight poly-γ-glutamic acid with Bacillus licheniformis P-104 and characterization of its flocculation properties. Appl. Biochem. Biotechnol. 2013, 170, 562–572. [Google Scholar] [CrossRef]
- Liu, Z.; He, Y.; Ma, X. Preparation, Characterization and drug delivery research of γ-polyglutamic acid nanoparticles: A review. Curr. Drug Deliv. 2024, 21, 795–806. [Google Scholar] [CrossRef]
- Tan, J.; Wang, H.; Xu, F.; Chen, Y.; Zhang, M.; Peng, H.; Sun, X.; Shen, Y.; Huang, Y. Poly-γ-glutamic acid-based GGT-targeting and surface camouflage strategy for improving cervical cancer gene therapy. J. Mater. Chem. B 2017, 5, 1315–1327. [Google Scholar] [CrossRef]
- Fuad, N.; Omar, R.; Kamarudin, S.; Harun, R.; Idris, A.; WAKG, W.A. Mass harvesting of marine microalgae using different techniques. Food Bioprod. Process. 2018, 112, 169–184. [Google Scholar] [CrossRef]
- Mubarak, M.; Shaija, A.; Suchithra, T. Flocculation: An effective way to harvest microalgae for biodiesel production. J. Environ. Chem. Eng. 2019, 7, 103221. [Google Scholar] [CrossRef]
- Najar, I.; Das, S. Poly-glutamic acid (PGA)-Structure, synthesis, genomic organization and its application: A Review. Int. J. Pharm. Sci. Res. 2015, 6, 2258. [Google Scholar]
- Zeng, W.; Liu, Y.; Shu, L.; Guo, Y.; Wang, L.; Liang, Z. Production of ultra–high–molecular–weight poly–γ–glutamic acid by a newly isolated Bacillus subtilis strain and genomic and transcriptomic analyses. Biotechnol. J. 2024, 19, 2300614. [Google Scholar] [CrossRef] [PubMed]
- Ndikubwimana, T.; Zeng, X.; Liu, Y.; Chang, J.-S.; Lu, Y. Harvesting of microalgae Desmodesmus sp. F51 by bioflocculation with bacterial bioflocculant. Algal Res. 2014, 6, 186–193. [Google Scholar] [CrossRef]
- Li, M.; Zhu, X.; Yang, H.; Xie, X.; Zhu, Y.; Xu, G.; Hu, X.; Jin, Z.; Hu, Y.; Hai, Z. Treatment of potato starch wastewater by dual natural flocculants of chitosan and poly-glutamic acid. J. Clean. Prod. 2020, 264, 121641. [Google Scholar] [CrossRef]
- Taniguchi, M.; Kato, K.; Shimauchi, A.; Xu, P.; Fujita, K.-I.; Tanaka, T.; Tarui, Y.; Hirasawa, E. Physicochemical properties of cross-linked poly-γ-glutamic acid and its flocculating activity against kaolin suspension. J. Biosci. Bioeng. 2005, 99, 130–135. [Google Scholar] [CrossRef]
- Taniguchi, M.; Kato, K.; Matsui, O.; Ping, X.; Nakayama, H.; Usuki, Y.; Ichimura, A.; Fujita, K.-i.; Tanaka, T.; Tarui, Y.; et al. Flocculating activity of cross-linked poly-γ-glutamic acid against bentonite and Escherichia coli suspension pretreated with FeCl3 and its interaction with Fe3+. J. Biosci. Bioeng. 2005, 100, 207–211. [Google Scholar] [CrossRef]
- Zeng, W.; Liang, Z.; Li, Z.; Bian, Y.; Li, Z.; Tang, Z.; Chen, G. Regulation of poly-γ-glutamic acid production in Bacillus subtilis GXA-28 by potassium. J. Taiwan Inst. Chem. Eng. 2016, 61, 83–89. [Google Scholar] [CrossRef]
- Feng, J.; Shi, Q.; Zhou, G.; Wang, L.; Chen, A.; Xie, X.; Huang, X.; Hu, W. Improved production of poly-γ-glutamic acid with low molecular weight under high ferric ion concentration stress in Bacillus licheniformis ATCC 9945a. Process Biochem. 2017, 56, 30–36. [Google Scholar] [CrossRef]
- Kimura, K.; Fujimoto, Z. Enzymatic degradation of poly-gamma-glutamic acid. Amino-Acid Homopolymers Occur. Nat. 2010, 15, 95–117. [Google Scholar]
- Suzuki, T.; Tahara, Y. Characterization of the Bacillus subtilis ywtD gene, whose product is involved in γ-polyglutamic acid degradation. J. Bacteriol. 2003, 185, 2379–2382. [Google Scholar] [CrossRef]
- Tian, G.; Fu, J.; Wei, X.; Ji, Z.; Ma, X.; Qi, G.; Chen, S. Enhanced expression of pgdS gene for high production of poly–γ–glutamic aicd with lower molecular weight in Bacillus licheniformis WX–02. J. Chem. Technol. Biotechnol. 2014, 89, 1825–1832. [Google Scholar]
- Wang, D.; Wang, H.; Zhan, Y.; Xu, Y.; Deng, J.; Chen, J.; Cai, D.; Wang, Q.; Sheng, F.; Chen, S. Engineering expression cassette of pgdS for efficient production of poly-γ-glutamic acids with specific molecular weights in Bacillus licheniformis. Front. Bioeng. Biotechnol. 2020, 8, 728. [Google Scholar]
- Ojima, Y.; Kobayashi, J.; Doi, T.; Azuma, M. Knockout of pgdS and ggt gene changes poly-γ-glutamic acid production in Bacillus licheniformis RK14-46. J. Biotechnol. 2019, 304, 57–62. [Google Scholar] [PubMed]
- Simon, J.; van Spanning, R.J.; Richardson, D.J. The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems. Biochim. Biophys. Acta-Bioenerg. 2008, 1777, 1480–1490. [Google Scholar]
- Li, X.; Gou, X.; Long, D.; Ji, Z.; Hu, L.; Xu, D.; Liu, J.; Chen, S. Physiological and metabolic analysis of nitrate reduction on poly-gamma-glutamic acid synthesis in Bacillus licheniformis WX-02. Arch. Microbiol. 2014, 196, 791–799. [Google Scholar]
- Cai, D.; Hu, S.; Chen, Y.; Liu, L.; Yang, S.; Ma, X.; Chen, S. Enhanced production of poly-γ-glutamic acid by overexpression of the global anaerobic regulator Fnr in Bacillus licheniformis WX-02. Appl. Biochem. Biotechnol. 2018, 185, 958–970. [Google Scholar]
- Li, X.; Yang, H.; Zhou, M.; Zhan, Y.; Liu, J.; Yan, D.; Cai, D.; Chen, S. A novel strategy of feeding nitrate for cost-effective production of poly-γ-glutamic acid from crude glycerol by Bacillus licheniformis WX-02. Biochem. Eng. J. 2021, 176, 108156. [Google Scholar]
- Xu, Q.; Hou, G.; Chen, J.; Wang, H.; Yuan, L.; Han, D.; Hu, Q.; Jin, H. Heterotrophically ultrahigh-cell-density cultivation of a high protein-yielding unicellular alga Chlorella with a novel nitrogen-supply strategy. Front. Bioeng. Biotechnol. 2021, 9, 774854. [Google Scholar]
- Li, X.; Yang, J.; Liu, J.; Zhang, X.; Wu, W.; Yan, D.; Miao, L.; Cai, D.; Ma, X.; Chen, S. High production of nattokinase via fed-batch fermentation of the γ-PGA-deficient strain of Bacillus licheniformis. Fermentation 2023, 9, 1018. [Google Scholar] [CrossRef]
- Cataldo, D.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar]
- Nicholas, D.J.D.; Nason, A. Determination of nitrate and nitrite. Methods Enzymol. 1957, 3, 981–984. [Google Scholar]
- Kongklom, N.; Shi, Z.; Chisti, Y.; Sirisansaneeyakul, S. Enhanced production of poly-γ-glutamic acid by Bacillus licheniformis TISTR 1010 with environmental controls. Appl. Biochem. Biotechnol. 2017, 182, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhang, T.; Mu, W.; Miao, M.; Jiang, B. Intracellular synthesis of glutamic acid in Bacillus methylotrophicus SK19. 001, a glutamate–independent poly (γ–glutamic acid)–producing strain. J. Sci. Food Agric. 2016, 96, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Niu, X.; Zhang, D.; Ma, J.; Zhu, X.; Zheng, X.; Lin, Z.; Fu, M. The novel chitosan-amphoteric starch dual flocculants for enhanced removal of Microcystis aeruginosa and algal organic matter. Carbohydr. Polym. 2023, 304, 120474. [Google Scholar] [CrossRef]
- Härtig, E.; Jahn, D. Regulation of the anaerobic metabolism in Bacillus subtilis. Adv. Microb. Physiol. 2012, 61, 195–216. [Google Scholar]
- Bueno, E.; Mesa, S.; Bedmar, E.J.; Richardson, D.J.; Delgado, M.J. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: Redox control. Antioxid. Redox Signal. 2012, 16, 819–852. [Google Scholar] [CrossRef]
- Jiang, D.; Tikhomirova, A.; Bent, S.J.; Kidd, S.P. A discrete role for FNR in the transcriptional response to moderate changes in oxygen by Haemophilus influenzae Rd KW20. Res. Microbiol. 2016, 167, 103–113. [Google Scholar] [CrossRef]
- Wessel, A.K.; Arshad, T.A.; Fitzpatrick, M.; Connell, J.L.; Bonnecaze, R.T.; Shear, J.B.; Whiteley, M. Oxygen limitation within a bacterial aggregate. MBio 2014, 5, 10.1128. [Google Scholar] [CrossRef]
- Wang, S.; Cao, X.; Shen, M.; Guo, R.; Bányai, I.; Shi, X. Fabrication and morphology control of electrospun poly (γ-glutamic acid) nanofibers for biomedical applications. Colloids Surf. B Biointerfaces 2012, 89, 254–264. [Google Scholar] [CrossRef]
- Yao, J.; Jing, J.; Xu, H.; Liang, J.; Wu, Q.; Feng, X.; Ouyang, P. Investigation on enzymatic degradation of γ-polyglutamic acid from Bacillus subtilis NX-2. J. Mol. Catal. B Enzym. 2009, 56, 158–164. [Google Scholar] [CrossRef]
- Zeng, J.; Jin, Y.; Liu, Z. Solution scattering study of the Bacillus subtilis PgdS enzyme involved in poly-γ-glutamic acids degradation. PLoS ONE 2018, 13, e0195355. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Gao, W.; Gu, Y.; Zhang, W.; Cao, M.; Song, C.; Zhang, P.; Sun, M.; Yang, C.; Wang, S. Functions of poly-gamma-glutamic acid (γ-PGA) degradation genes in γ-PGA synthesis and cell morphology maintenance. Appl. Microbiol. Biotechnol. 2014, 98, 6397–6407. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Ito, Y.; Ohmachi, T.; Asada, Y. Purification and properties of two isozymes of γ-glutamyltranspeptidase from Bacillus subtilis TAM-4. Biosci. Biotechnol. Biochem. 1997, 61, 1621–1625. [Google Scholar] [CrossRef] [PubMed]
- Sha, Y.; Zhang, Y.; Qiu, Y.; Xu, Z.; Li, S.; Feng, X.; Wang, M.; Xu, H. Efficient biosynthesis of low-molecular-weight poly-γ-glutamic acid by stable overexpression of PgdS hydrolase in Bacillus amyloliquefaciens NB. J. Agric. Food Chem. 2018, 67, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Sha, Y.; Huang, Y.; Zhu, Y.; Sun, T.; Luo, Z.; Qiu, Y.; Zhan, Y.; Lei, P.; Li, S.; Xu, H. Efficient biosynthesis of low-molecular-weight poly-γ-glutamic acid based on stereochemistry regulation in Bacillus amyloliquefaciens. ACS Synth. Biol. 2020, 9, 1395–1405. [Google Scholar] [CrossRef]
- Scoffone, V.; Dondi, D.; Biino, G.; Borghese, G.; Pasini, D.; Galizzi, A.; Calvio, C.J. Knockout of pgdS and ggt genes improves γ–PGA yield in B. subtilis. Biotechnol. Bioeng. 2013, 110, 2006–2012. [Google Scholar] [CrossRef]
- Candela, T.; Fouet, A. Bacillus anthracis CapD, belonging to the γ--glutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. Mol. Microbiol. 2005, 57, 717–726. [Google Scholar] [CrossRef]
- Richter, S.; Anderson, V.J.; Garufi, G.; Lu, L.; Budzik, J.M.; Joachimiak, A.; He, C.; Schneewind, O.; Missiakas, D. Capsule anchoring in Bacillus anthracis occurs by a transpeptidation reaction that is inhibited by capsidin. Mol. Microbiol. 2009, 71, 404–420. [Google Scholar] [CrossRef]
- Moud, A.A. Polymer based flocculants: Review of water purification applications. J. Water Process Eng. 2022, 48, 102938. [Google Scholar] [CrossRef]
- Yanagibashi, T.; Kobayashi, M.; Omori, K. Application of poly-γ-glutamic acid Flocculant to flocculation–sedimentation treatment of ultrafine cement suspension. Water 2019, 11, 1748. [Google Scholar] [CrossRef]
- Campos, V.; Fernandes, A.R.; Medeiros, T.A.; Andrade, E.L. Physicochemical characterization and evaluation of PGA bioflocculant in coagulation-flocculation and sedimentation processes. J. Environ. Chem. Eng. 2016, 4, 3753–3760. [Google Scholar] [CrossRef]
- Zheng, H.; Gao, Z.; Yin, J.; Tang, X.; Ji, X.; Huang, H. Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresour. Technol. 2012, 112, 212–220. [Google Scholar] [CrossRef]
Strains and Plasmids | Relevant Characteristics | Source of Reference |
---|---|---|
Strains | ||
E. coli DH5α | supE44 ΔlacU169 (f 80 lacZΔM15) hsdR17 recA1 gyrA96 thi1 relA1 | Lab collection |
B. licheniformis WX-02 | Wide-type host strain (CCTCC M208065) | Lab collection |
WX-ΔpgdS | Knockout of pgdS gene in WX-02 | This study |
Chlorella sp. CMBB266 | A freshwater protein-yielding Chlorella strain | Provided by Dr. Hu Jin |
Plasmids | ||
T2(2)-Ori | E. coli–B. licheniformis shuttle vector, kanamycin resistance, for gene knockout | Lab collection |
T2-PgdS | T2(2)-Ori derivative containing homologous arms of pgdS to block γ-DL-glutamyl hydrolase synthesis | This study |
Flocculant Component and Dosage | Flocculating Object | Initial Turbidity | pH | Settling Time | Flocculation Efficiency | References |
---|---|---|---|---|---|---|
PGa21Ca 80–90 mg/L (calcium sulfate, 87%; cross-linked γ-PGA, 5.26%) | Raw water | 100 NTU | - | 15 min | 89.74–96.89% | [51] |
Chitosan, 50 mg/L; γ-PGA, 50 mg/L | Potato starch wastewater | - | 6.0 | 15 min | 98.30% | [14] |
Cross-linked γ-PGA, 2 mg/L; FeCl3, 16 mg/L | Escherichia coli | A660 = 0.02 | 5.0 | 4 h | 88.80% | [16] |
B. licheniformis broth, 2.5 mL/L | Desmodesmus sp. F51 | A685 = 1.67 | 3.0 | 20 min | 99.35% | [13] |
Commercial γ-PGA, 22.03 mg/L | Chlorella vulgaris | A680 = 1.01 | 7.5 | 2 h | 91% | [52] |
Commercial γ-PGA, 19.08 mg/L | Chlorella protothecoides | A680 = 1.08 | 7.5 | 2 h | 98% | |
PSAF, 50 mg/L; B. licheniformis WX-ΔpgdS broth, 125 μL/L (γ-PGA = 2.5 mg/L) | Chlorella vulgaris | A680 = 1.04 | 7.0 | 2 min | 83.80% | In this study |
30 min | 93.50% | |||||
PSAF, 50 mg/L; B. licheniformis WX-ΔpgdS broth, 250 μL/L (γ-PGA = 5.0 mg/L) | Chlorella vulgaris | A680 = 1.08 | 7.0 | 2 min | 89.50% | In this study |
30 min | 95.70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wu, W.; Mou, H.; Liu, J.; Lei, L.; Li, X.; Cai, D.; Zhan, Y.; Ma, X.; Chen, S. Synthesis of Super-High-Viscosity Poly-γ-Glutamic Acid by pgdS-Deficient Strain of Bacillus licheniformis and Its Application in Microalgae Harvesting. Microorganisms 2024, 12, 2398. https://doi.org/10.3390/microorganisms12122398
Zhang X, Wu W, Mou H, Liu J, Lei L, Li X, Cai D, Zhan Y, Ma X, Chen S. Synthesis of Super-High-Viscosity Poly-γ-Glutamic Acid by pgdS-Deficient Strain of Bacillus licheniformis and Its Application in Microalgae Harvesting. Microorganisms. 2024; 12(12):2398. https://doi.org/10.3390/microorganisms12122398
Chicago/Turabian StyleZhang, Xiaohui, Wei Wu, Hongxiao Mou, Jun Liu, Lei Lei, Xin Li, Dongbo Cai, Yangyang Zhan, Xin Ma, and Shouwen Chen. 2024. "Synthesis of Super-High-Viscosity Poly-γ-Glutamic Acid by pgdS-Deficient Strain of Bacillus licheniformis and Its Application in Microalgae Harvesting" Microorganisms 12, no. 12: 2398. https://doi.org/10.3390/microorganisms12122398
APA StyleZhang, X., Wu, W., Mou, H., Liu, J., Lei, L., Li, X., Cai, D., Zhan, Y., Ma, X., & Chen, S. (2024). Synthesis of Super-High-Viscosity Poly-γ-Glutamic Acid by pgdS-Deficient Strain of Bacillus licheniformis and Its Application in Microalgae Harvesting. Microorganisms, 12(12), 2398. https://doi.org/10.3390/microorganisms12122398