The Small RNA MicF Represses ObgE and SeqA in Escherichia coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth Conditions
2.2. Strains
2.3. Plasmids
2.4. CopraRNA and TargetRNA2
2.5. Fluorescence Measurement and Culturing Conditions
2.6. Determining Cell Doubling Time
2.7. Protein Purification and Western Blot
2.8. Cell-Free Protein Expression to Determine Hfq Dependency
3. Results
3.1. Identification of MicF Regulated mRNA Targets
3.2. The RNA Chaperone Protein Hfq Is Required for MicF’s Inhibition of obgE and seqA
3.3. MicF’s 13-Nucleotide Seed Pairing Region Is Required for the Repression of obgE and seqA
3.4. The Repression of obgE and seqA Is Not Influenced by RNase E Mediated Decay
3.5. Chromosomally Expressed MicF Represses obgE and seqA sfGFP Fusions
3.6. The obgE sfGFP Fusion Is Repressed by MicF upon Exposure to Hydrogen Peroxide
3.7. Overexpression of MicF Results in an Increase in Cell Doubling Time
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beisel, C.L.; Storz, G. Base Pairing Small RNAs and Their Roles in Global Regulatory Networks. FEMS Microbiol. Rev. 2010, 34, 866–882. [Google Scholar] [CrossRef] [PubMed]
- Storz, G.; Vogel, J.; Wassarman, K.M. Regulation by Small RNAs in Bacteria: Expanding Frontiers. Mol. Cell 2011, 43, 880–891. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, K.S.; Vogel, J. Activation of Gene Expression by Small RNA. Curr. Opin. Microbiol. 2009, 12, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Gottesman, S.; Storz, G. Bacterial Small RNA Regulators: Versatile Roles and Rapidly Evolving Variations. Cold Spring Harb. Perspect. Biol. 2011, 3, a003798. [Google Scholar] [CrossRef]
- Hör, J.; Matera, G.; Vogel, J.; Gottesman, S.; Storz, G. Trans-Acting Small RNAs and Their Effects on Gene Expression in Escherichia coli and Salmonella enterica. EcoSal Plus 2020, 9, 1–24. [Google Scholar] [CrossRef]
- Modi, S.R.; Camacho, D.M.; Kohanski, M.A.; Walker, G.C.; Collins, J.J. Functional Characterization of Bacterial sRNAs Using a Network Biology Approach. Proc. Natl. Acad. Sci. USA 2011, 108, 15522–15527. [Google Scholar] [CrossRef]
- Mizuno, T.; Chou, M.Y.; Inouye, M. A Unique Mechanism Regulating Gene Expression: Translational Inhibition by a Complementary RNA Transcript (micRNA). Proc. Natl. Acad. Sci. USA 1984, 81, 1966–1970. [Google Scholar] [CrossRef]
- Andersen, J.; Forst, S.A.; Zhao, K.; Inouye, M.; Delihas, N. The Function of micF RNA. micF RNA Is a Major Factor in the Thermal Regulation of OmpF Protein in Escherichia coli. J. Biol. Chem. 1989, 264, 17961–17970. [Google Scholar] [CrossRef]
- Schmidt, M.; Zheng, P.; Delihas, N. Secondary Structures of Escherichia coli Antisense micF RNA, the 5′-End of the Target ompF mRNA, and the RNA/RNA Duplex. Biochemistry 1995, 34, 3621–3631. [Google Scholar] [CrossRef]
- Esterling, L.; Delihas, N. The Regulatory RNA Gene micF Is Present in Several Species of Gram-Negative Bacteria and Is Phylogenetically Conserved. Mol. Microbiol. 1994, 12, 639–646. [Google Scholar] [CrossRef]
- Corcoran, C.P.; Podkaminski, D.; Papenfort, K.; Urban, J.H.; Hinton, J.C.D.; Vogel, J. Superfolder GFP Reporters Validate Diverse New mRNA Targets of the Classic Porin Regulator, MicF RNA. Mol. Microbiol. 2012, 84, 428–445. [Google Scholar] [CrossRef] [PubMed]
- Delihas, N.; Forst, S. MicF: An Antisense RNA Gene Involved in Response of Escherichia coli to Global Stress Factors. J. Mol. Biol. 2001, 313, 1–12. [Google Scholar] [CrossRef]
- Hächler, H.; Cohen, S.P.; Levy, S.B. marA, a Regulated Locus Which Controls Expression of Chromosomal Multiple Antibiotic Resistance in Escherichia coli. J. Bacteriol. 1991, 173, 5532–5538. [Google Scholar] [CrossRef]
- Oh, J.T.; Cajal, Y.; Skowronska, E.M.; Belkin, S.; Chen, J.; Van Dyk, T.K.; Sasser, M.; Jain, M.K. Cationic Peptide Antimicrobials Induce Selective Transcription of micF and osmY in Escherichia coli. Biochim. Biophys. Acta 2000, 1463, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.H.; Greenberg, J.T.; Demple, B. Posttranscriptional Repression of Escherichia coli OmpF Protein in Response to Redox Stress: Positive Control of the micF Antisense RNA by the soxRS Locus. J. Bacteriol. 1993, 175, 1026–1031. [Google Scholar] [CrossRef]
- Kim, T.; Bak, G.; Lee, J.; Kim, K. Systematic Analysis of the Role of Bacterial Hfq-Interacting sRNAs in the Response to Antibiotics. J. Antimicrob. Chemother. 2015, 70, 1659–1668. [Google Scholar] [CrossRef]
- Ferrario, M.; Ernsting, B.R.; Borst, D.W.; Wiese, D.E.; Blumenthal, R.M.; Matthews, R.G. The Leucine-Responsive Regulatory Protein of Escherichia coli Negatively Regulates Transcription of ompC and micF and Positively Regulates Translation of ompF. J. Bacteriol. 1995, 177, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Holmqvist, E.; Unoson, C.; Reimegård, J.; Wagner, E.G.H. A Mixed Double Negative Feedback Loop between the sRNA MicF and the Global Regulator Lrp. Mol. Microbiol. 2012, 84, 414–427. [Google Scholar] [CrossRef]
- Carrier, M.-C.; Lalaouna, D.; Massé, E. Hfq Protein and GcvB Small RNA Tailoring of oppA Target mRNA to Levels Allowing Translation Activation by MicF Small RNA in Escherichia coli. RNA Biol. 2023, 20, 59–76. [Google Scholar] [CrossRef]
- Cho, B.-K.; Barrett, C.L.; Knight, E.M.; Park, Y.S.; Palsson, B.Ø. Genome-Scale Reconstruction of the Lrp Regulatory Network in Escherichia coli. Proc. Natl. Acad. Sci. USA 2008, 105, 19462–19467. [Google Scholar] [CrossRef]
- Datsenko, K.A.; Wanner, B.L. One-Step Inactivation of Chromosomal Genes in Escherichia coli K-12 Using PCR Products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef] [PubMed]
- Canton, B.; Labno, A.; Endy, D. Refinement and Standardization of Synthetic Biological Parts and Devices. Nat. Biotechnol. 2008, 26, 787–793. [Google Scholar] [CrossRef]
- Wright, P.R.; Georg, J.; Mann, M.; Sorescu, D.A.; Richter, A.S.; Lott, S.; Kleinkauf, R.; Hess, W.R.; Backofen, R. CopraRNA and IntaRNA: Predicting Small RNA Targets, Networks and Interaction Domains. Nucleic Acids Res. 2014, 42, W119–W123. [Google Scholar] [CrossRef] [PubMed]
- Kery, M.B.; Feldman, M.; Livny, J.; Tjaden, B. TargetRNA2: Identifying Targets of Small Regulatory RNAs in Bacteria. Nucleic Acids Res. 2014, 42, W124–W129. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.; Delihas, N. micF RNA Binds to the 5′ End of ompF mRNA and to a Protein from Escherichia coli. Biochemistry 1990, 29, 9249–9256. [Google Scholar] [CrossRef]
- Melamed, S.; Peer, A.; Faigenbaum-Romm, R.; Gatt, Y.E.; Reiss, N.; Bar, A.; Altuvia, Y.; Argaman, L.; Margalit, H. Global Mapping of Small RNA-Target Interactions in Bacteria. Mol. Cell 2016, 63, 884–897. [Google Scholar] [CrossRef]
- Urban, J.H.; Vogel, J. Translational Control and Target Recognition by Escherichia coli Small RNAs In Vivo. Nucleic Acids Res. 2007, 35, 1018–1037. [Google Scholar] [CrossRef]
- Mandin, P.; Gottesman, S. A Genetic Approach for Finding Small RNAs Regulators of Genes of Interest Identifies RybC as Regulating the DpiA/DpiB Two-Component System. Mol. Microbiol. 2009, 72, 551–565. [Google Scholar] [CrossRef]
- Zadeh, J.N.; Steenberg, C.D.; Bois, J.S.; Wolfe, B.R.; Pierce, M.B.; Khan, A.R.; Dirks, R.M.; Pierce, N.A. NUPACK: Analysis and Design of Nucleic Acid Systems. J. Comput. Chem. 2011, 32, 170–173. [Google Scholar] [CrossRef]
- Fornace, M.E.; Huang, J.; Newman, C.T.; Porubsky, N.J.; Pierce, M.B.; Pierce, N.A. NUPACK: Analysis and Design of Nucleic Acid Structures, Devices, and Systems. ChemRxiv 2022. [Google Scholar] [CrossRef]
- Brennan, R.G.; Link, T.M. Hfq Structure, Function and Ligand Binding. Curr. Opin. Microbiol. 2007, 10, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Updegrove, T.B.; Zhang, A.; Storz, G. Hfq: The Flexible RNA Matchmaker. Curr. Opin. Microbiol. 2016, 30, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Arluison, V.; Hohng, S.; Roy, R.; Pellegrini, O.; Régnier, P.; Ha, T. Spectroscopic Observation of RNA Chaperone Activities of Hfq in Post-Transcriptional Regulation by a Small Non-Coding RNA. Nucleic Acids Res. 2007, 35, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Panja, S.; Schu, D.J.; Woodson, S.A. Conserved Arginines on the Rim of Hfq Catalyze Base Pair Formation and Exchange. Nucleic Acids Res. 2013, 41, 7536. [Google Scholar] [CrossRef] [PubMed]
- Małecka, E.M.; Woodson, S.A. RNA Compaction and Iterative Scanning for Small RNA Targets by the Hfq Chaperone. Nat. Commun. 2024, 15, 2069. [Google Scholar] [CrossRef]
- Schu, D.J.; Zhang, A.; Gottesman, S.; Storz, G. Alternative Hfq-sRNA Interaction Modes Dictate Alternative mRNA Recognition. EMBO J. 2015, 34, 2557–2573. [Google Scholar] [CrossRef]
- Shimizu, Y.; Inoue, A.; Tomari, Y.; Suzuki, T.; Yokogawa, T.; Nishikawa, K.; Ueda, T. Cell-Free Translation Reconstituted with Purified Components. Nat. Biotechnol. 2001, 19, 751–755. [Google Scholar] [CrossRef]
- Updegrove, T.B.; Shabalina, S.A.; Storz, G. How Do Base-Pairing Small RNAs Evolve? FEMS Microbiol. Rev. 2015, 39, 379–391. [Google Scholar] [CrossRef]
- Papenfort, K.; Bouvier, M.; Mika, F.; Sharma, C.M.; Vogel, J. Evidence for an Autonomous 5′ Target Recognition Domain in an Hfq-Associated Small RNA. Proc. Natl. Acad. Sci. USA 2010, 107, 20435–20440. [Google Scholar] [CrossRef]
- Na, D.; Yoo, S.M.; Chung, H.; Park, H.; Park, J.H.; Lee, S.Y. Metabolic Engineering of Escherichia coli Using Synthetic Small Regulatory RNAs. Nat. Biotechnol. 2013, 31, 170–174. [Google Scholar] [CrossRef]
- Yoo, S.M.; Na, D.; Lee, S.Y. Design and Use of Synthetic Regulatory Small RNAs to Control Gene Expression in Escherichia coli. Nat. Protoc. 2013, 8, 1694–1707. [Google Scholar] [CrossRef] [PubMed]
- Noh, M.; Yoo, S.M.; Yang, D.; Lee, S.Y. Broad-Spectrum Gene Repression Using Scaffold Engineering of Synthetic sRNAs. ACS Synth. Biol. 2019, 8, 1452–1461. [Google Scholar] [CrossRef] [PubMed]
- Sakai, Y.; Abe, K.; Nakashima, S.; Yoshida, W.; Ferri, S.; Sode, K.; Ikebukuro, K. Improving the Gene-Regulation Ability of Small RNAs by Scaffold Engineering in Escherichia coli. ACS Synth. Biol. 2014, 3, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Salis, H.M. The Ribosome Binding Site Calculator. Methods Enzymol. 2011, 498, 19–42. [Google Scholar] [CrossRef]
- Carpousis, A.J. The RNA Degradosome of Escherichia coli: An mRNA-Degrading Machine Assembled on RNase E. Annu. Rev. Microbiol. 2007, 61, 71–87. [Google Scholar] [CrossRef]
- Morita, T.; Maki, K.; Aiba, H. RNase E-Based Ribonucleoprotein Complexes: Mechanical Basis of mRNA Destabilization Mediated by Bacterial Noncoding RNAs. Genes Dev. 2005, 19, 2176–2186. [Google Scholar] [CrossRef]
- Leroy, A.; Vanzo, N.F.; Sousa, S.; Dreyfus, M.; Carpousis, A.J. Function in Escherichia coli of the Non-Catalytic Part of RNase E: Role in the Degradation of Ribosome-Free mRNA. Mol. Microbiol. 2002, 45, 1231–1243. [Google Scholar] [CrossRef]
- Lopez, P.J.; Marchand, I.; Joyce, S.A.; Dreyfus, M. The C-Terminal Half of RNase E, Which Organizes the Escherichia coli Degradosome, Participates in mRNA Degradation but Not rRNA Processing In Vivo. Mol. Microbiol. 1999, 33, 188–199. [Google Scholar] [CrossRef]
- De Lay, N.R.; Gottesman, S. Role of Polynucleotide Phosphorylase in sRNA Function in Escherichia coli. RNA 2011, 17, 1172–1189. [Google Scholar] [CrossRef]
- Dendooven, T.; Sinha, D.; Roeselová, A.; Cameron, T.A.; De Lay, N.R.; Luisi, B.F.; Bandyra, K.J. A Cooperative PNPase-Hfq-RNA Carrier Complex Facilitates Bacterial Riboregulation. Mol. Cell 2021, 81, 2901–2913.e5. [Google Scholar] [CrossRef]
- Ikeda, Y.; Yagi, M.; Morita, T.; Aiba, H. Hfq Binding at RhlB-Recognition Region of RNase E Is Crucial for the Rapid Degradation of Target mRNAs Mediated by sRNAs in Escherichia coli. Mol. Microbiol. 2011, 79, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Coyer, J.; Andersen, J.; Forst, S.A.; Inouye, M.; Delihas, N. micF RNA in ompB Mutants of Escherichia coli: Different Pathways Regulate micF RNA Levels in Response to Osmolarity and Temperature Change. J. Bacteriol. 1990, 172, 4143–4150. [Google Scholar] [CrossRef] [PubMed]
- Manchado, M.; Michán, C.; Pueyo, C. Hydrogen Peroxide Activates the SoxRS Regulon In Vivo. J. Bacteriol. 2000, 182, 6842–6844. [Google Scholar] [CrossRef] [PubMed]
- Waldminghaus, T.; Skarstad, K. The Escherichia coli SeqA Protein. Plasmid 2009, 61, 141–150. [Google Scholar] [CrossRef]
- Joshi, M.C.; Magnan, D.; Montminy, T.P.; Lies, M.; Stepankiw, N.; Bates, D. Regulation of Sister Chromosome Cohesion by the Replication Fork Tracking Protein SeqA. PLoS Genet. 2013, 9, e1003673. [Google Scholar] [CrossRef]
- Pedersen, I.B.; Helgesen, E.; Flåtten, I.; Fossum-Raunehaug, S.; Skarstad, K. SeqA Structures behind Escherichia coli Replication Forks Affect Replication Elongation and Restart Mechanisms. Nucleic Acids Res. 2017, 45, 6471–6485. [Google Scholar] [CrossRef]
- Lu, M.; Campbell, J.L.; Boye, E.; Kleckner, N. SeqA: A Negative Modulator of Replication Initiation in E. coli. Cell 1994, 77, 413–426. [Google Scholar] [CrossRef]
- Foti, J.J.; Persky, N.S.; Ferullo, D.J.; Lovett, S.T. Chromosome Segregation Control by Escherichia coli ObgE GTPase. Mol. Microbiol. 2007, 65, 569–581. [Google Scholar] [CrossRef]
- Kobayashi, G.; Moriya, S.; Wada, C. Deficiency of Essential GTP-Binding Protein ObgE in Escherichia coli Inhibits Chromosome Partition. Mol. Microbiol. 2001, 41, 1037–1051. [Google Scholar] [CrossRef]
- Persky, N.S.; Ferullo, D.J.; Cooper, D.L.; Moore, H.R.; Lovett, S.T. The ObgE/CgtA GTPase Influences the Stringent Response to Amino Acid Starvation in Escherichia coli. Mol. Microbiol. 2009, 73, 253–266. [Google Scholar] [CrossRef]
- Bouvier, M.; Sharma, C.M.; Mika, F.; Nierhaus, K.H.; Vogel, J. Small RNA Binding to 5′ mRNA Coding Region Inhibits Translational Initiation. Mol. Cell 2008, 32, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Bandyra, K.J.; Said, N.; Pfeiffer, V.; Górna, M.W.; Vogel, J.; Luisi, B.F. The Seed Region of a Small RNA Drives the Controlled Destruction of the Target mRNA by the Endoribonuclease RNase E. Mol. Cell 2012, 47, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Afonyushkin, T.; Večerek, B.; Moll, I.; Bläsi, U.; Kaberdin, V.R. Both RNase E and RNase III Control the Stability of sodB mRNA upon Translational Inhibition by the Small Regulatory RNA RyhB. Nucleic Acids Res. 2005, 33, 1678–1689. [Google Scholar] [CrossRef]
- Court, D.L.; Gan, J.; Liang, Y.-H.; Shaw, G.X.; Tropea, J.E.; Costantino, N.; Waugh, D.S.; Ji, X. RNase III: Genetics and Function; Structure and Mechanism. Annu. Rev. Genet. 2013, 47, 405–431. [Google Scholar] [CrossRef]
- Foti, J.J.; Schienda, J.; Sutera, V.A.; Lovett, S.T. A Bacterial G Protein-Mediated Response to Replication Arrest. Mol. Cell 2005, 17, 549–560. [Google Scholar] [CrossRef]
- Li, Z.; Demple, B. SoxS, an Activator of Superoxide Stress Genes in Escherichia coli. Purification and Interaction with DNA. J. Biol. Chem. 1994, 269, 18371–18377. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, H. Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiol. Mol. Biol. Rev. 2003, 67, 593–656. [Google Scholar] [CrossRef]
- Delcour, A.H. Outer Membrane Permeability and Antibiotic Resistance. Biochim. Biophys. Acta 2009, 1794, 808–816. [Google Scholar] [CrossRef]
- Lee, H.-J.; Gottesman, S. sRNA Roles in Regulating Transcriptional Regulators: Lrp and SoxS Regulation by sRNAs. Nucleic Acids Res. 2016, 44, 6907–6923. [Google Scholar] [CrossRef]
- Barshishat, S.; Elgrably-Weiss, M.; Edelstein, J.; Georg, J.; Govindarajan, S.; Haviv, M.; Wright, P.R.; Hess, W.R.; Altuvia, S. OxyS Small RNA Induces Cell Cycle Arrest to Allow DNA Damage Repair. EMBO J. 2018, 37, 413–426. [Google Scholar] [CrossRef]
- Bach, T.; Krekling, M.A.; Skarstad, K. Excess SeqA Prolongs Sequestration of oriC and Delays Nucleoid Segregation and Cell Division. EMBO J. 2003, 22, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Ferullo, D.J.; Lovett, S.T. The Stringent Response and Cell Cycle Arrest in Escherichia coli. PLoS Genet. 2008, 4, e1000300. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.D.; Levin, P.A. Metabolism, Cell Growth and the Bacterial Cell Cycle. Nat. Rev. Microbiol. 2009, 7, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Chiaramello, A.E.; Zyskind, J.W. Expression of Escherichia coli dnaA and mioC Genes as a Function of Growth Rate. J. Bacteriol. 1989, 171, 4272–4280. [Google Scholar] [CrossRef]
- Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.A.; Tomita, M.; Wanner, B.L.; Mori, H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2006, 2, 2006.0008. [Google Scholar] [CrossRef]
Strain | DT (min) ± STD |
---|---|
Wild type (BW25113) | 22.3 ± 1.6 |
ΔseqA | 29.7 ± 2.5 |
ΔmicF | 23.9 ± 2.4 |
ΔmicF pMicF | 27.6 ± 1.8 |
ΔmicF pMicF pSeqA | 25.1 ± 0.6 |
ΔmicF pControl | 24.1 ± 1.9 |
ΔmicF pMicC | 24.1 ± 1.8 |
Wild Type | ΔseqA | ΔmicF | ΔmicF pMicF | ΔmicF pMicF pSeqA | ΔmicF pControl | |
---|---|---|---|---|---|---|
ΔseqA | 1.70 × 10−6 * | |||||
ΔmicF | 1 | 0.00014 * | ||||
ΔmicF pMicF | 0.00036 * | 0.76882 | 0.02492 * | |||
ΔmicF pMicF pSeqA | 0.97255 | 0.00024 * | 1 | 0.03959 * | ||
ΔmicF pControl | 0.97255 | 0.00024 * | 1 | 0.03959 * | 1 | |
ΔmicF pMicC | 0.97255 | 0.00024 * | 1 | 0.03959 * | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stibelman, A.Y.; Sariles, A.Y.; Takahashi, M.K. The Small RNA MicF Represses ObgE and SeqA in Escherichia coli. Microorganisms 2024, 12, 2397. https://doi.org/10.3390/microorganisms12122397
Stibelman AY, Sariles AY, Takahashi MK. The Small RNA MicF Represses ObgE and SeqA in Escherichia coli. Microorganisms. 2024; 12(12):2397. https://doi.org/10.3390/microorganisms12122397
Chicago/Turabian StyleStibelman, Aaron Y., Amy Y. Sariles, and Melissa K. Takahashi. 2024. "The Small RNA MicF Represses ObgE and SeqA in Escherichia coli" Microorganisms 12, no. 12: 2397. https://doi.org/10.3390/microorganisms12122397
APA StyleStibelman, A. Y., Sariles, A. Y., & Takahashi, M. K. (2024). The Small RNA MicF Represses ObgE and SeqA in Escherichia coli. Microorganisms, 12(12), 2397. https://doi.org/10.3390/microorganisms12122397