Robust and Transparent Silver Oxide Coating Fabricated at Room Temperature Kills Clostridioides difficile Spores, MRSA, and Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ag2O Microparticle Synthesis
2.3. Preparation of Silver Oxide Coatings
2.4. Characterization of Microparticles and Coatings
2.5. Microbial Strains
2.6. Growth of Microbial Strains
2.7. Measurement of Cell Number and Surface Killing
2.7.1. P. aeruginosa and MRSA
2.7.2. C. difficile Endospores
2.8. Coating Robustness
3. Results and Discussion
3.1. Coated Glass Is Transparent and Contains Exposed Silver Oxide
3.2. The Ag2O Coating Has Strong Antimicrobial Activity
3.3. Antimicrobial Activity Depends on the Silver Loading
3.4. Antimicrobial Activity Is Retained after Abrasion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antonovics, J.; Wilson, A.J.; Forbes, M.R.; Hauffe, H.C.; Kallio, E.R.; Leggett, H.C.; Longdon, B.; Okamura, B.; Sait, S.M.; Webster, J.P. The Evolution of Transmission Mode. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160083. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 2006, 6, 130. [Google Scholar] [CrossRef] [PubMed]
- CDC. Pseudomonas aeruginosa in Healthcare Settings. Available online: https://www.cdc.gov/hai/organisms/pseudomonas.html (accessed on 25 October 2023).
- CDC. Vancomycin-Resistant Enterococci (VRE) in Healthcare Settings. Available online: https://www.cdc.gov/hai/organisms/vre/vre.html (accessed on 25 October 2023).
- CDC. Available online: https://www.cdc.gov/mrsa/healthcare/index.html (accessed on 25 October 2023).
- Duizer, E.; Koopmans, M. Tracking foodborne viruses: Lessons from noroviruses. In Emerging Food-Borne Pathogens; Motarjemi, Y., Adams, M., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 77–110. [Google Scholar]
- Birkett, M.; Dover, L.; Cherian Lukose, C.; Wasy Zia, A.; Tambuwala, M.M.; Serrano-Aroca, Á. Recent advances in metal-based antimicrobial coatings for high-touch surfaces. Int. J. Mol. Sci. 2022, 23, 1162. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Mukherjee, R.; Mahajan, V.S.; Boucau, J.; Pillai, S.; Haldar, J. Permanent, antimicrobial coating to rapidly kill and prevent transmission of bacteria, fungi, influenza, and SARS-CoV-2. ACS Appl. Mater. Interfaces 2022, 14, 42483–42493. [Google Scholar] [CrossRef] [PubMed]
- Driver, M. Coatings for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Schweitzer, P.A. Paint and Coatings: Applications and Corrosion Resistance; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Olding, T.; Sayer, M.; Barrow, D. Ceramic sol–gel composite coatings for electrical insulation. Thin Solid Film. 2001, 398, 581–586. [Google Scholar] [CrossRef]
- Hosseini, M.; Rodriguez, A.; Ducker, W.A. Super-enhanced evaporation of droplets from porous coatings. J. Colloid Interface Sci. 2023, 633, 132–141. [Google Scholar] [CrossRef]
- Knetsch, M.L.; Koole, L.H. New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers 2011, 3, 340–366. [Google Scholar] [CrossRef]
- Vigneswari, S.; Amelia, T.S.M.; Hazwan, M.H.; Mouriya, G.K.; Bhubalan, K.; Amirul, A.-A.A.; Ramakrishna, S. Transformation of biowaste for medical applications: Incorporation of biologically derived silver nanoparticles as antimicrobial coating. Antibiotics 2021, 10, 229. [Google Scholar] [CrossRef]
- Hosseini, M.; Poon, L.L.; Chin, A.W.; Ducker, W.A. Effect of surface porosity on SARS-CoV-2 fomite infectivity. ACS Omega 2022, 7, 18238–18246. [Google Scholar] [CrossRef]
- Hosseini, M.; Behzadinasab, S.; Benmamoun, Z.; Ducker, W.A. The Viability of SARS-COV-2 on Solid Surfaces. Curr. Opin. Colloid Interface Sci. 2021, 55, 101481. [Google Scholar] [CrossRef]
- Hosseini, M.; Chin, A.W.; Williams, M.D.; Behzadinasab, S.; Falkinham, J.O., III; Poon, L.L.; Ducker, W.A. Transparent anti-SARS-CoV-2 and antibacterial silver oxide coatings. ACS Appl. Mater. Interfaces 2022, 14, 8718–8727. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Sun, D.; Su, J.; Zhang, H.-W.; Sue, H.J. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J. Food Sci. 2009, 74, M46–M52. [Google Scholar] [CrossRef] [PubMed]
- Perelshtein, I.; Levi, I.; Perkas, N.; Pollak, A.; Gedanken, A. CuO-coated antibacterial and antiviral car air-conditioning filters. ACS Appl. Mater. Interfaces 2022, 14, 24850–24855. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Behzadinasab, S.; Chin, A.W.; Poon, L.L.; Ducker, W.A. Reduction of Infectivity of SARS-CoV-2 by Zinc Oxide Coatings. ACS Biomater. Sci. Eng. 2021, 7, 5022–5027. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Chin, A.W.; Behzadinasab, S.; Poon, L.L.; Ducker, W.A. Cupric Oxide Coating That Rapidly Reduces Infection by SARS-CoV-2 via Solids. ACS Appl. Mater. Interfaces 2021, 13, 5919–5928. [Google Scholar] [CrossRef] [PubMed]
- Michels, H.T.; Keevil, C.W.; Salgado, C.D.; Schmidt, M.G. From laboratory research to a clinical trial: Copper alloy surfaces kill bacteria and reduce hospital-acquired infections. HERD Health Environ. Res. Des. J. 2015, 9, 64–79. [Google Scholar] [CrossRef] [PubMed]
- Devi, P.S.; Vijayalakshmi, K. Analysis of antibacterial activity and cytotoxicity of silver oxide doped hydroxyapatite exposed to DC glow discharge plasma. Mater. Today Proc. 2020, 26, 3604–3608. [Google Scholar] [CrossRef]
- Tsendzughul, N.T.; Ogwu, A.A. Physicochemical aspects of the mechanisms of rapid antimicrobial contact-killing by sputtered silver oxide thin films under visible light. ACS Omega 2019, 4, 16847–16859. [Google Scholar] [CrossRef]
- Shahrbabak, M.S.N.; Sharifianjazi, F.; Rahban, D.; Salimi, A. A Comparative Investigation on Bioactivity and Antibacterial Properties of Sol-Gel Derived 58S Bioactive Glass Substituted by Ag and Zn. Silicon 2019, 11, 2741–2751. [Google Scholar] [CrossRef]
- Carvalho, I.; Lima, M.J.; Nobre, D.; Marques, S.M.; Castro, D.; Leite, T.R.; Henriques, M.; Duarte, F.; Ramalho, A.; Carvalho, S. Silver oxide coatings deposited on leathers to prevent diabetic foot infections. Surf. Coat. Technol. 2022, 442, 128338. [Google Scholar] [CrossRef]
- Nandkumar, A.M.; Ranjit, M.; Kumar, S.P.; Hari, P.; Ramesh, P.; Sreenivasan, K. Antimicrobial silver oxide incorporated urinary catheters for infection resistance. Trends Biomater. Artif. Organs 2010, 24, 156–164. [Google Scholar]
- Yoo, J.-Y.; Jang, E.-Y.; Jeong, S.-Y.; Hwang, D.-Y.; Son, H.-J. Bacterial indoleacetic acid-induced synthesis of colloidal Ag2O nanocrystals and their biological activities. Bioprocess Biosyst. Eng. 2019, 42, 401–414. [Google Scholar] [CrossRef]
- Babu, P.J.; Doble, M.; Raichur, A.M. Silver Oxide Nanoparticles Embedded Silk Fibroin Spuns: Microwave Mediated Preparation, Characterization and Their Synergistic Wound Healing and Anti-bacterial Activity. J. Colloid Interface Sci. 2018, 513, 62–71. [Google Scholar] [CrossRef]
- Patel, H.; Joshi, J. Green and chemical approach for synthesis of Ag2O nanoparticles and their antimicrobial activity. J. Sol-Gel Sci. Technol. 2023, 105, 814–826. [Google Scholar] [CrossRef]
- Singh, G.; Singh, G.; Damarla, K.; Sharma, P.K.; Kumar, A.; Kang, T.S. Gelatin-based highly stretchable, self-healing, conducting, multiadhesive, and antimicrobial ionogels embedded with Ag2O nanoparticles. ACS Sustain. Chem. Eng. 2017, 5, 6568–6577. [Google Scholar] [CrossRef]
- Mani, M.; Harikrishnan, R.; Purushothaman, P.; Pavithra, S.; Rajkumar, P.; Kumaresan, S.; Al Farraj, D.A.; Elshikh, M.S.; Balasubramanian, B.; Kaviyarasu, K. Systematic green synthesis of silver oxide nanoparticles for antimicrobial activity. Environ. Res. 2021, 202, 111627. [Google Scholar] [CrossRef]
- Haq, S.; Rehman, W.; Waseem, M.; Meynen, V.; Awan, S.U.; Saeed, S.; Iqbal, N. Fabrication of pure and moxifloxacin functionalized silver oxide nanoparticles for photocatalytic and antimicrobial activity. J. Photochem. Photobiol. B Biol. 2018, 186, 116–124. [Google Scholar] [CrossRef]
- Li, R.; Chen, Z.; Ren, N.; Wang, Y.; Wang, Y.; Yu, F. Biosynthesis of silver oxide nanoparticles and their photocatalytic and antimicrobial activity evaluation for wound healing applications in nursing care. J. Photochem. Photobiol. B Biol. 2019, 199, 111593. [Google Scholar] [CrossRef]
- Page, K.; Wilson, M.; Parkin, I.P. Antimicrobial Surfaces and Their Potential in Reducing the Role of the Inanimate Environment in the Incidence of Hospital-acquired Infections. J. Mater. Chem. 2009, 19, 3819–3831. [Google Scholar] [CrossRef]
- Hardalo, C.; Edberg, S.C. Pseudomonas aeruginosa: Assessment of risk from drinking water. Crit. Rev. Microbiol. 1997, 23, 47–75. [Google Scholar] [CrossRef]
- Bodey, G.P.; Bolivar, R.; Fainstein, V.; Jadeja, L. Infections caused by Pseudomonas aeruginosa. Rev. Infect. Dis. 1983, 5, 279–313. [Google Scholar] [CrossRef]
- Williams, C.; Davis, D.L. Methicillin-resistant Staphylococcus aureus fomite survival. Am. Soc. Clin. Lab. Sci. 2009, 22, 34–38. [Google Scholar]
- Zeller, J.L.; Burke, A.E.; Glass, R.M. MRSA infections. JAMA 2007, 298, 1826. [Google Scholar] [CrossRef]
- Czepiel, J.; Dróżdż, M.; Pituch, H.; Kuijper, E.J.; Perucki, W.; Mielimonka, A.; Goldman, S.; Wultańska, D.; Garlicki, A.; Biesiada, G. Clostridium difficile infection. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1211–1221. [Google Scholar] [CrossRef]
- Smits, W.K.; Lyras, D.; Lacy, D.B.; Wilcox, M.H.; Kuijper, E.J. Clostridium difficile infection. Nat. Rev. Dis. Primers 2016, 2, 1–20. [Google Scholar] [CrossRef]
- Redelings, M.D.; Sorvillo, F.; Mascola, L. Increase in Clostridium difficile–related mortality rates, United States, 1999–2004. Emerg. Infect. Dis. 2007, 13, 1417. [Google Scholar] [CrossRef]
- Feuerstadt, P.; Theriault, N.; Tillotson, G. The burden of CDI in the United States: A multifactorial challenge. BMC Infect. Dis. 2023, 23, 132. [Google Scholar] [CrossRef]
- Claro, T.; Daniels, S.; Humphreys, H. Detecting Clostridium difficile spores from inanimate surfaces of the hospital environment: Which method is best? J. Clin. Microbiol. 2014, 52, 3426–3428. [Google Scholar] [CrossRef]
- Stark, W.J. Nanoparticles in biological systems. Angew. Chem. Int. Ed. 2011, 50, 1242–1258. [Google Scholar] [CrossRef]
- World Health Organization. Ammonia; World Health Organization: Geneva, Switzerland, 1986. [Google Scholar]
- Fox, B.S.; Beyer, M.K.; Bondybey, V.E. Coordination chemistry of silver cations. J. Am. Chem. Soc. 2002, 124, 13613–13623. [Google Scholar] [CrossRef]
- Wang, X.; Wu, H.-F.; Kuang, Q.; Huang, R.-B.; Xie, Z.-X.; Zheng, L.-S. Shape-dependent Antibacterial Activities of Ag2O Polyhedral Particles. Langmuir 2010, 26, 2774–2778. [Google Scholar] [CrossRef]
- Huang, J.; Park, G.W.; Jones, R.M.; Fraser, A.M.; Vinjé, J.; Jiang, X. Efficacy of EPA-registered disinfectants against two human norovirus surrogates and Clostridioides difficile endospores. J. Appl. Microbiol. 2022, 132, 4289–4299. [Google Scholar] [CrossRef]
- Edwards, A.N.; McBride, S.M. Isolating and purifying Clostridium difficile spores. Methods Protoc. 2016, 1476, 117–128. [Google Scholar]
- Nerandzic, M.M.; Donskey, C.J. A quaternary ammonium disinfectant containing germinants reduces Clostridium difficile spores on surfaces by inducing susceptibility to environmental stressors. Open Forum Infect. Dis. 2016, 30, ofw196. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Interim Method for Evaluating the Efficacy of Antimicrobial Surface Coatings, 10/2/2020 ed.; United States Environmental Protection Agency: Washington, DC, USA, 2020. [Google Scholar]
- Setlow, P. Spore resistance properties. In The Bacterial Spore: From Molecules to Systems; Weily: Hoboken, NJ, USA, 2016; pp. 201–215. [Google Scholar]
- Weaver, L.; Michels, H.; Keevil, C. Survival of Clostridium difficile on copper and steel: Futuristic options for hospital hygiene. J. Hosp. Infect. 2008, 68, 145–151. [Google Scholar] [CrossRef]
- Wheeldon, L.; Worthington, T.; Lambert, P.A.; Hilton, A.; Lowden, C.; Elliott, T.S. Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: The germination theory. J. Antimicrob. Chemother. 2008, 62, 522–525. [Google Scholar] [CrossRef]
Organism | Killing, 60 min | Reduction, 60 min | Half-Life (min.) 1 |
---|---|---|---|
MRSA cells | >99.9% | >99.9% | 3.3–3.8 |
P. aeruginosa cells | >99.9% | >99.9% | 2.6–3.3 |
C. difficile spores | 98.55% | 98.55% | 8.8–11.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseini, M.; Huang, J.; Williams, M.D.; Gonzalez, G.A.; Jiang, X.; Falkinham, J.O., III; Ducker, W.A. Robust and Transparent Silver Oxide Coating Fabricated at Room Temperature Kills Clostridioides difficile Spores, MRSA, and Pseudomonas aeruginosa. Microorganisms 2024, 12, 83. https://doi.org/10.3390/microorganisms12010083
Hosseini M, Huang J, Williams MD, Gonzalez GA, Jiang X, Falkinham JO III, Ducker WA. Robust and Transparent Silver Oxide Coating Fabricated at Room Temperature Kills Clostridioides difficile Spores, MRSA, and Pseudomonas aeruginosa. Microorganisms. 2024; 12(1):83. https://doi.org/10.3390/microorganisms12010083
Chicago/Turabian StyleHosseini, Mohsen, Jinge Huang, Myra D. Williams, Gerardo Alexander Gonzalez, Xiuping Jiang, Joseph O. Falkinham, III, and William A. Ducker. 2024. "Robust and Transparent Silver Oxide Coating Fabricated at Room Temperature Kills Clostridioides difficile Spores, MRSA, and Pseudomonas aeruginosa" Microorganisms 12, no. 1: 83. https://doi.org/10.3390/microorganisms12010083
APA StyleHosseini, M., Huang, J., Williams, M. D., Gonzalez, G. A., Jiang, X., Falkinham, J. O., III, & Ducker, W. A. (2024). Robust and Transparent Silver Oxide Coating Fabricated at Room Temperature Kills Clostridioides difficile Spores, MRSA, and Pseudomonas aeruginosa. Microorganisms, 12(1), 83. https://doi.org/10.3390/microorganisms12010083