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Abstract: Antimicrobial coatings can inhibit the transmission of infectious diseases when they provide
a quick kill that is achieved long after the coating application. Here, we describe the fabrication and
testing of a glass coating containing Ag2O microparticles that was prepared from sodium silicate
at room temperature. The half-lives of both methicillin-resistant Staphylococcus aureus (MRSA) and
Pseudomonas aeruginosa on this coating are only 2–4 min. The half-life of Clostridioides difficile spores is
about 9–12 min, which is extremely short for a spore. Additional tests on MRSA demonstrate that the
coating retains its antimicrobial activity after abrasion and that an increased loading of Ag2O leads to
a shorter half-life. This coating combines the properties of optical transparency, robustness, fast kill,
and room temperature preparation that are highly desirable for an antimicrobial coating.
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1. Introduction

Bacteria play a significant role in causing many healthcare-related diseases and deaths.
They are transferred between people via a variety of mechanisms (skin-to-skin contact,
droplet-borne, airborne, vector-borne, etc.) [1], but our particular interest here is in bacteria
that are transmitted via inanimate surfaces. Bacteria remain viable on solids for an extended
period (hours to months) [2]. Human contact with handrails, doorknobs, touchscreens,
buttons, etc., is a route to transmission [3–6], and such contacts occur frequently in hospitals.
Our overarching goal is to reduce the number of healthcare-related infections through the
use of antimicrobial coatings that could be applied to common touch surfaces, such as
hand-railings, or high-touch surfaces in healthcare settings, etc.

Current methods for reducing surface transmission encompass practices such as hand
washing, cleaning, and surface disinfection [7]. However, these methods demand fastidious
attention and repetition on a timescale that is shorter than the time between users. The
use of chemical disinfectants also comes with its own set of health-related risks, such as
potential harm to the eyes, skin, and respiratory tract [8]. Additionally, some disinfectants,
such as bleach, are environmentally harmful, so continual application is not ideal.

Coatings are used in various applications [9–12], and an alternative or complementary
approach for mitigating infection via surfaces is the development and implementation of
antimicrobial coatings. These coatings operate on two timescales. They must provide (1) a
fast kill: a kill time faster than the period between users, and (2) an ongoing kill: the fast
kill should be effective over weeks, months, or even years in order to save the cost and
inconvenience of reapplying the coating.
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Antibacterial coatings have been reviewed [7,13–16], and metal oxide-based coatings
containing silver (Ag), zinc (Zn), or copper (Cu) are proven to kill bacteria and viruses such
as MRSA [17], E. coli [18], influenza A [19], SARS-CoV-2 [20,21], and norovirus [22]. The
speed at which antimicrobial coatings kill bacteria is of paramount importance.

In this study, we use silver oxide (Ag2O) as the active ingredient of a coating. Ag2O
has been widely used in the medical industry due to its robust mechanical properties
and biocompatibility [23–27] and for antimicrobial materials [17,28–34]. For example,
Tsendzughul et al. [24] fabricated an optically transparent film by sputtering silver oxide
on a surface. A significant concern regarding the use of silver oxide is whether it exhibits
any cytotoxic effects. Silver oxide has shown no sign of cytotoxicity against L929 fibroblast
cells [29] and G292 osteoblastic cells [25]. A study onusing silver and silver oxide as
an antimicrobial coating on footwear demonstrated impressive antibacterial properties
without cytotoxicity [26]. Silver oxide is also used in urinary catheters to enhance infection
resistance and has shown antimicrobial efficacy while remaining non-cytotoxic [27].

Our objective was to design and test a transparent and robust silver oxide antimicrobial
coating that is fabricated at room temperature. A transparent coating is a necessity for
important applications such as touchscreens and is desirable in many applications because
of their aesthetics.

Test organisms for antimicrobial coatings should be those that are both medically
significant pathogens and have significant transmission via surfaces. We test our coatings
against Pseudomonas aeruginosa (P. aeruginosa), methicillin-resistant Staphylococcus aureus
(MRSA), and Clostridioides difficile (C. difficile). P. aeruginosa (Gram-negative) is a significant
cause of community and hospital-acquired infections and can be transferred through con-
taminated objects (fomites) [35]. P. aeruginosa spreads to organs that have already been
damaged and those with implants [36]. P. aeruginosa causes between 10% and 20% of
infections in most hospitals [37]. MRSA (Gram-positive) is an antibiotic-resistant strain of
Staphylococcus aureus that causes pneumonia, sepsis, and skin infections. MRSA is typically
found on the skin or nose. It can remain viable on surfaces for as long as months [2,38]
and can be transmitted through direct contact or contaminated surfaces [39]. C. difficile is
an anaerobic, Gram-positive spore-forming bacillus that is primarily found in the intesti-
nal tract of humans and animals [40,41] and can cause diarrhea, colitis, and septicemia,
potentially resulting in death [42]; in the US, 500,000 people annually are affected by this
bacterium [43]. C. difficile is known to persist and spread through inanimate surfaces [44],
surviving for up to 5 months on surfaces [44]; therefore, it is a good target for antimicro-
bial coatings.

Here, we describe a novel, transparent, and highly robust antimicrobial coating. The
coating is primarily silicate glass, which is a robust and transparent material. Our design
was to use 2 µm particles as a compromise between small particles to achieve a high
surface-to-volume ratio while avoiding nanoparticles because of potential toxicological
effects due to easier cellular entry [45]. We wanted the silver particles to span the coating,
so the coating was less than 2 µm thick by design. Thicker coatings would submerge
some particles, and thinner coatings would be less robust. The matrix was prepared by
room-temperature spin coating of a sodium silicate solution containing a suspension of
Ag2O particles. Very good antimicrobial properties were achieved: >3 logs (99.9%) of kills
within 40 min for MRSA and P. aeruginosa, and 1.84 logs (98.6%) of kills within 60 min
against C. difficile endospores.

In a previous work [17], we fabricated an optically transparent film by employing a
variant of the Stöber process to bind silver oxide to surfaces, followed by a heat treatment
at 50 ◦C for 40 min. Fabrication at 50 ◦C is a practical disadvantage for coatings applied
to existing infrastructure; typical infrastructure, such as a touch screen or railing, cannot
be maintained at 50 ◦C in the field. Here, we describe a novel coating method that can be
applied at room temperature, overcoming this limitation. The new coating method also
has the following advantages over the previous method: it eliminates a 40-h reaction with
ammonia, a category 3 toxin that causes acute hazards to the aquatic environment [46] and,
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therefore, is less suitable for field application. This is achieved by using a different coating
method based on sodium silicate. By eliminating ammonia, we also eliminate a (Lewis
base) ligand that binds strongly to metal cations [47]. As a result, in contrast to previous
work, we are able to maintain the morphology of the Ag2O particles during the fabrication
of the coating. This advantage will likely apply to other particles that react or dissolve
in ammonia. Longevity and resistance to abrasion are important to increase the period
between repeated applications of the coating. Here, we also show that the new coating
is highly abrasion-resistant by demonstrating the antimicrobial properties after abrasion.
Compared to our previous Ag2O coating [17], the new coating is more potent and kills
almost 2 logs of MRSA in only 20 min, whereas the previous coating did not produce a
measurable kill in this time. The new coating kills almost two logs of C. difficile endospores
in 60 min. This is particularly notable because, despite its clinical importance, we find no
reports of similar or better killing of C. difficile by any coating in the literature.

2. Materials and Methods
2.1. Materials

Silver nitrate (AgNO3) 99.9% and ammonia solution certified as ACS Plus were pur-
chased from Fisher Scientific (Waltham, MA, USA). Sodium hydroxide pellets (NaOH,
ACS grade), 100% Ethanol (EtOH, ACS grade), nitric acid (ACS grade), and glass slides
measuring 25 × 75 × 1 mm were obtained from VWR (Radnor, PA, USA). Sodium silicate
solution (catalog model N) was generously provided by PQ Corporation (Malvern, PA,
USA). Deionized (DI) water was used from a Milli-Q Reference (MilliporeSigma, Burling-
ton, MA, USA) water purification system. All water used in the preparation of the coatings
was purified water from the Milli-Q Reference system.

2.2. Ag2O Microparticle Synthesis

The synthesis of silver oxide microparticles has been discussed previously [48]. Here,
200 mL of aqueous 0.1 M AgNO3 was stirred while 400 mL of aqueous 0.1 M ammonia
was introduced dropwise, stirred for an additional 10 min, and then 20 mL of 2 M NaOH
solution was slowly added. This introduction of NaOH caused the solution to transition
into a deep brown color, signaling the formation of silver oxide precipitates. The resulting
suspension was left undisturbed at room temperature overnight, during which time, silver
oxide particles gradually sedimented. The supernatant was then decanted, and silver oxide
particles were rinsed three times with DI water and then three times with ethanol. Finally,
the collected particles were allowed to air dry.

2.3. Preparation of Silver Oxide Coatings

Glass slides were cut into 15 × 15 mm samples and subjected to a rinse with DI water,
ethanol, 6 M nitric acid, and another 3× DI water. A uniform 75% vol. solution of sodium
silicate in water was prepared by vortexing for 30 s and then leaving in an ultrasonic bath
for 3 min. The viscosity was 1.08 mPs and pH was 11; Ag2O particles are resistant to this
pH. This solution was used to create a 13.5% wt. silver oxide in sodium silicate suspension
that was homogenized by vortexing for 30 s and ultrasonic waves for >10 min. Glass pieces
underwent O2 plasma cleaning at 100 W with a pressure of less than 200 torr for 4 min
and then were immediately positioned on a spin coater. A 100 µL suspension solution
was applied to the surface of the substrate and spin-coated for 30 s at 1200 rpm and with
a startup acceleration of 3000 rpm/s. The resulting samples are described as the “Ag2O
coating” in the remainder of this paper.

2.4. Characterization of Microparticles and Coatings

The crystal structure of the synthesized Ag2O particles was determined by analyzing
the X-ray diffraction (XRD, Bruker D8 Advance diffractometer with a monochromatic Cu
Kα X-ray source with a wavelength of 1.5418 Å). The peaks in the range of 2θ = 20–80◦ were
compared to the known structure of Ag2O to check consistency with the product being
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crystalline Ag2O. The chemical composition of the few outer nanometers of the surface
of the Ag2O coating was obtained using a survey spectrum using X-ray photoelectron
spectroscopy (XPS, PHI VersaProbe III (Chanhassen, MN, USA) with Al Kα source at
1486.6 eV). The coating morphology was examined using scanning electron microscopy
(SEM, JEOL, Japan JSM-IT500). The sample was sputtered with 5 nm of iridium in a no-tilt
position to increase the signal-to-noise ratio during the SEM imaging of the nonconductive
materials. Optical transmittance measurements were performed using an Agilent model
8453 UV−Vis spectrometer. Air was used as the blank spectrum.

2.5. Microbial Strains

We utilized P. aeruginosa strain DSM-9644, C. difficile (ATCC 43593) endospores, and a
strain of methicillin-resistant Staphylococcus aureus (MRSA) known as MA43300, which was
sourced from Danville Community Hospital in Danville, Virginia.

2.6. Growth of Microbial Strains

P. aeruginosa and MRSA strains were cultured in 5 mL of Tryptic Soy Broth (TSB) and
were grown to the mid-exponential phase at 37 ◦C with continuous aeration at 60 rpm.
After the growth phase, we confirmed the purity and identity of the cells in the cultures by
streaking the bacterial cultures onto Tryptic Soy Agar (TSA) from BD (Sparks, MD, USA)
and incubating them at 37 ◦C for 48 h. During this period, we examined the colonies for
species-specific characteristics, such as pigmentation and surface texture. Cultured cells
were harvested through centrifugation at 5000× g for 20 min. Afterward, the supernatant
medium was removed, and the cells were resuspended in 5 mL of sterile phosphate-
buffered saline (PBS) by vortexing for 60 s. These suspensions were subjected to another
round of centrifugation at 5000× g for 20 min, and the supernatant wash was discarded.
Subsequently, the washed cells were resuspended in 5 mL of sterile PBS by vortexing for
an additional 60 s. To determine the density of colony-forming units (CFU) per milliliter
in each of the washed suspensions, we plated 0.10 mL of serial dilutions in PBS onto
TSA plates.

C. difficile (ATCC 43593) was cultured on modified brain heart infusion agar plates
containing 5 g/L yeast extract, 1 g/L cysteine, and 1 g/L sodium taurocholate (BHIA/YE/
CYS/T), and incubated inside an anaerobic chamber (BactronEZ, Sheldon Manufacturing,
OR, U.S.) at 37 ◦C for 7 days as previously described [49]. Then, all plates were sealed
with Parafilm™ (Pechiney, IL, USA) and incubated under ambient conditions for another
7 days. Each agar plate was flooded with 5 mL of 0.01 M phosphate-buffered saline (PBS)
with 0.1% (vol/vol) Tween-80, and the colony mass was scraped from the agar plates using
sterile cotton swabs. The cell suspension was washed 5 times with ice-cold sterile deionized
(DI) water, followed by centrifugation at 7000× g for 5 min at 4 ◦C. Vegetative cells of
C. difficile were removed by gradient centrifugation in 50% (w/v) sucrose solution [50],
then the endospore suspension was washed three times with sterile ice-cold water. The
concentration of endospores was enumerated on BHIA/YE/CYS/T plates, and the purity
of prepared endospores was confirmed under a microscope after endospore staining [51].
The stock culture of C. difficile endospores at 108 colony-forming units (CFU)/mL was
stored at 4 ◦C for routine tests and at −80 ◦C for long-term storage.

2.7. Measurement of Cell Number and Surface Killing
2.7.1. P. aeruginosa and MRSA

The bacterial cell numbers in the PBS suspensions were measured from the CFU
per milliliter of the suspension by spreading 0.1 mL of each solution onto TSA plates in
triplicate. Survival on the Ag2O coating was determined by depositing a 10 µL droplet of
bacterial cell suspension onto each of three separate Ag2O coated and uncoated samples at
each time-point displayed in the Figures. After predefined time periods, each glass coupon
was transferred to an individual sterile 50 mL centrifuge tube containing 5 mL of sterile
PBS. Subsequently, the tubes were vortexed for 10 s and sonicated for one minute to release
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bacteria. A volume of 0.1 mL of the suspension was then spread-plated, which represents
1/50 of the surviving colonies; a series dilution was also plated. Colonies were counted 48 h
after incubation at 37 ◦C. To enable the logarithmic transformation in Equation (1), cases
where no colonies were observed for the 1/50 dilution were rounded up to one colony. One
colony on the plate is the detection limit displayed in the figures.

2.7.2. C. difficile Endospores

Prior to testing the antimicrobial properties, samples were rinsed in 75% ethanol
for 10 min and air-dried in 100-mm Petri dishes with lids on under a biosafety cabinet
at room temperature (20–25 ◦C). Twenty microliters of C. difficile endospore suspension
were inoculated onto the center of each sample and spread to within 3 mm of the edge
of each carrier by sterile pipette tips. Triplicate inoculated samples were incubated aer-
obically at room temperature for up to 60 min. After the predefined incubation times,
each sample was immediately transferred to a 50-mL conical tube with 20 mL Dey/Engley
neutralization broth. All samples were sonicated at 40 kHz for 5 min and vortexed for 30 s,
and the surviving C. difficile endospores from each sample were enumerated on anaerobic
BHIA/YE/T/CYS plates.

2.8. Coating Robustness

The United States Environmental Protection Agency (EPA) has published a proto-
col [52] for assessing the effectiveness of antibacterial coatings. A sponge (Brite (3M, Saint
Paul, MN, USA) Non-Scratch Scrub Sponge, model C05068) used for abrasion was auto-
claved, then left to completely dry overnight in a laminar flow hood. Subsequently, the
sponge was immersed in 20 mL of 1:6 Lysol in DI water solution for ten minutes, and
then the partially wet sponge was affixed to a Gardco model D10 V abrasion tester. The
abrasion tester translates the sponge parallel to the active surface of the sample under a
load of 0.454 kg, with a period of 2.2 s and a displacement of 0.3 m. Each cycle consists
of moving the sponge back and forth over the sample eight times, followed by a 30-min
waiting period. Ten such cycles were conducted, totaling 80 passes. Owing to evaporation,
the nature of the sponge changed, so cycles 6–10 used a fresh sponge that was also wetted
with Lysol solution. Finally, the abraded samples were dipped in sterile deionized water
for >10 min and then rinsed 3× with sterile deionized water to remove the remaining
Lysol solution.

3. Results and Discussion
3.1. Coated Glass Is Transparent and Contains Exposed Silver Oxide

Glass slides were coated at room temperature with the antimicrobial layer of glass
containing Ag2O. We synthesized silver oxide microparticles (Figure S1) and confirmed
their cubic crystalline structure using XRD. The coated glass was uniformly 80% transparent,
as shown by both the transmission spectrum and a photograph of a colored cell phone
screen containing a coated glass screen protector (Figure 1). The silver oxide particles
protruded beyond the main glass matrix (Figure 2) and, therefore, were suitably positioned
for releasing silver ions. SEM images are not sensitive to a thin layer of glass over the
particles, so XPS measurements were performed to determine whether the Ag2O was
exposed. The presence of 6.9 atomic % silver in the XPS spectrum indicated that Ag2O was
at or within a few nanometers of the coating surface (Figure 3).
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3.2. The Ag2O Coating Has Strong Antimicrobial Activity

The Ag2O coating exhibited strong antimicrobial activity for MRSA, P. aeruginosa, and
C. difficile endospores (Figure 4 and Table 1). The data was plotted as log survival, which is
a comparison between the initial titer applied to the solid and the titer recovered from a
sample at a designated time:
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log survival = mean
[

log10

(
sample titer

units

)]
− mean

[
log10

(
input titer

units

)]
(1)

The coating achieved >99.9% killing for both MRSA and P. aeruginosa in 40 min, and
the half-lives were in the range of 2–4 min (see Table 1). These results meet the standard
EPA guideline of 99.9% killing in 60 min and are in agreement with the results for earlier
Ag2O coatings [17], but the current coatings are superior because they are more robust and
are prepared at room temperature.

Our antimicrobial coatings were tested on spore-only suspensions of C. difficile. It is
much more difficult to kill spores of C. difficile than MRSA or P. aeruginosa because spores
are relatively impermeable, have protective multilayers, and reduced metabolism [53]. The
coating showed an outstanding sporicidal response against C. difficile by killing 98.55% in
one hour. The data for C. difficile, shown in Figure 4, exhibits a linear decline of log survival
over the entire 60 min time frame, which is characteristic of killing a homogeneous popula-
tion (cf. data for other organisms in Figure 4) and is consistent with the killing of spores,
not the killing of easy-to-kill vegetative cells in a mixture of spores and vegetative cells.

The half-life for C. difficile on the coating was about 10 min, which is excellent for
spores. Prior publications on both copper and copper-rich alloys (opaque solids) reported
that hours were required to kill C. difficile [54] or that copper was ineffective [55]. When a
germinant was added to the test droplet, the killing of 2.5 logs (99.8% kill) after 3 h was
reported. The authors describe this as killing “germinating” cells [55]. In contrast, no
germinant was added to the test suspension in the current work.

One can envisage a scenario where C. difficile spores in a hospital escape disinfection due
to human error and then, even months later, infect another patient. The advantage of a coat-
ing is that it can continue to kill C. difficile over the long term without human intervention.

Table 1. Statistics summarizing the antimicrobial activity of the Ag2O coating.

Organism Killing, 60 min Reduction, 60 min Half-Life (min.) 1

MRSA cells >99.9% >99.9% 3.3–3.8
P. aeruginosa cells >99.9% >99.9% 2.6–3.3
C. difficile spores 98.55% 98.55% 8.8–11.8

1 range indicates a 95% confidence interval. Statistics are for three independent experiments. Equations for killing,
reduction, and half-life are in Supplementary Information.
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Figure 4. Antimicrobial activity of the Ag2O coating towards MRSA and P. aeruginosa cells and
C. difficile endospores. Data is presented for uncoated glass and coated glass at the same exposure
time. Survival is defined in Equation (1). Each point represents the average of three independent
measurements, and the error bar is the standard deviation of the three points. For MRSA, the 20 min
point and 60 min point are the average 5 data points. Two outliers were discarded from the MRSA
data due to a large residual from the mean. For both MRSA and P. aeruginosa, survival dropped below
the detection limit within one hour. There are more survivors for C. difficile endospores, but it is a
much more difficult organism to kill.

3.3. Antimicrobial Activity Depends on the Silver Loading

A control experiment showed that when no silver was added, there was no antimi-
crobial activity (Figure S2), which is consistent with Ag2O being the active ingredient. To
determine the dose–response of Ag2O in the coating, a series of coatings with equal or
lower density than elsewhere in this manuscript was also tested. The three loadings were
0.36 gm−2 (33%), 0.73 gm−2 (66%), and 1.10 gm−2 (100%). The log survival data shows
that the rate of killing depended on the loading, which is strong additional support that
Ag2O is the active ingredient. The results also indicate that the loading is not saturated
in this regime, so it is likely that faster killing could be achieved for greater loading. Our
hypothesis was that additional Ag2O should decrease the half-life. We tested this by fitting
all the data used to obtain Figure 5 with a model where log Survival depends on time (min),
t, the loading (gm−2), l, and an interaction term, tL, with constant coefficients, A, B, C,
and D:

log Survival = A − Bt − Cl − Dtl. (2)

The only significant coefficient was for the tl interaction term (p = 2 × 10−8), demon-
strating that increasing the loading decreased the half-life. The fitted half-life in minutes is
t1/2 = 5.3/l, where l is the loading in units of gm−2.
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same as in Figure 4. The “Ag2O Coating” label is for the coating used elsewhere in this manuscript,
and Ag2O-33% and Ag2O-66% indicate coating loadings that have 33% and 66% of that loading,
respectively. Data as a function of loading is shown in Figure S3. An increase in loading led to a
decrease in the half-life of MRSA.

3.4. Antimicrobial Activity Is Retained after Abrasion

In practice, antimicrobial coatings are used in environments where they are subject to
abrasion. To account for this, the US EPA has published a protocol for testing antimicrobial
coatings where they are subject to abrasion [52]. We used the same abrasion cycle and
exposure to Lysol disinfectant in a modified version of their protocol and then tested its
ability to kill MRSA. The results (Figure 6) show a resistance to abrasion: a 4-log-reduction
in 60 min was achieved after abrasion, which is similar to the results prior to abrasion
(Figures 4 and 5). The ability of the coating to kill bacteria after light abrasion is not
surprising, considering that the coating is mainly composed of glass. We designed a thin
coating so that all the particles would protrude. Future work could use a thicker coating
such that initially submerged particles could be exposed after abrasion removes the outer
layer of glass and, from that time, provide fresh antimicrobial activity for the worn coating.
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4. Conclusions

Our objective was to fabricate a transparent antimicrobial coating at room temperature,
which we achieved by spin-coating a suspension of Ag2O microparticles in a sodium silicate
solution. The coating was highly effective; it killed >99.9% of P. aeruginosa, >99.9% MRSA
cells in 40 min, and 98.55% of C. difficile spores in 60 min. The results for C. difficile spores
are particularly notable because they are more difficult to kill. Being primarily glass,
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the coating is also robust to abrasion and transparent. The combination of transparency,
room temperature fabrication, and excellent antimicrobial properties may be useful for
combatting the transmission of infectious diseases.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/microorganisms12010083/s1, Figure S1: Equations used for calculations,
further characterization of materials, and data for control coatings. XRD pattern and SEM image
of the silver oxide particles. Figure S2: Survival of MRSA cells on a silicate coating with no Ag2O.
Figure S3: Effect of Ag2O loading on antimicrobial activity.
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