Mass Spectral Imaging to Map Plant–Microbe Interactions
Abstract
1. Introduction
2. Microbial Biosphere and Instrument Considerations
2.1. Microbial Interactions in the Biosphere
2.2. MSI Instrumentation for Imaging Bacterial–Plant Interactions
Analysis Technique | Lateral/Spatial Resolution | Mass Analyzer | Mass Accuracy | Mass Resolution | Home-Built or Commercial | Field of Study | References | |
---|---|---|---|---|---|---|---|---|
SIMS | SIMS, nanoSIMS, liquid SIMS | 0.12–0.5 µm | ToF and Orbitrap | <0.2–1 ppm | unit mass 240,000 | Commercial, home-built | Plant, biological, bacterial, and plant–microbe interaction research | [35,38,39,40,41,42,43,44,45,46] |
LDI/LDPI | fs-LDI, ns-LDPI, fs-LDPI | 2–100 µm | ToF | 330–340 ppm | 500–30,000 | Home-built | Geological, biological, and bacterial research | [4,33,47,48,49,50] |
MALDI | MALDI, MALDI-FTICR, AP MALDI, MALDI 2 | 0.6–150 µm | ToF, Orbitrap, FT-ICR, QToF | 0.2–2 ppm | 9000–160,000 | Home-built, commercial | Plant, biological, bacterial, and plant–microbe interaction research | [23,51,52,53,54,55,56] |
ESI/DESI | DESI and LAESI | 40–200 µm | Orbitrap, Qtrap, and microToF | ≥5 ppm | 10,000–70,000 | Home-built, commercial | Plant, bacterial, and plant–microbe interaction research | [10,57,58] |
Other | Liquid microjunction surface sampling probe, VUV gas discharge lamp, laser ablation, and solvent capture by aspiration/ESI, and LAAPPI | 70–260 µm | Qtrap, FT-ICR, Q ToF | ≥15 ppm | 10,000–400,000 | Home-built | Plant, biological, bacterial, and plant–microbe interaction research | [24,57,59,60,61] |
2.3. Data Analysis Considerations for MSI
3. Sample Preparation Techniques for Plants and Microbes
4. MSI Ionization Techniques to Investigate Plant–Microbe Interactions
4.1. Secondary Ion Mass Spectrometry
4.2. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry
4.3. Laser Desorption/Ionization Mass Spectrometry and Related Methods
4.4. Electrospray Ionization, Desorption Electrospray Ionization, and Laser Ablation Electrospray Ionization Mass Spectrometry
5. Machine Learning for ToF-SIMS and MALDI Data Analysis
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
AP | Atmospheric Pressure |
CHCA | Cyano Hydroxycinnamic Acid |
CLSM | Confocal Laser Scanning Microscopy |
DESI | Desorption Electrospray Ionization |
DHB | Dihydroxybenzoic Acid |
ESI | Electrospray Ionization |
fs | Femtosecond |
FT-ICR | Fourier Transform Ion Cyclotron Resonance |
GC-MS | Gas Chromatography Mass Spectrometry |
HPLC | High-Pressure Liquid Chromatography |
IR | Infrared |
LAAPPI | Laser Ablation Atmospheric Pressure Photoionization |
LAESI | Laser Ablation Electrospray Ionization |
LAPPI-MS | Laser Ablation Atmospheric Pressure Photoionization Mass Spectrometry |
LDI | Laser Desorption Ionization |
LDPI | Laser Desorption Postionization |
m/z | Mass-to-Charge Ratio |
MAF | Maximum Autocorrelation Factors |
MALDI | Matrix-Assisted Laser Desorption Ionization |
MCR | Multivariate Curve Resolution |
ML | Machine Learning |
MS | Mass Spectrometry |
MSI | Mass Spectrometry Imaging |
NMF | Non-Negative Matrix Factorization |
ns | Nanosecond |
PCA | Principal Component Analysis |
QToF | Quadrupole Time-of-Flight |
SA | Sinapinic Acid |
SALVI | System for Analysis at the Liquid–Vacuum Interface |
SIMS | Secondary Ion Mass Spectrometry |
SNMS | Secondary Neutral Mass Spectrometry |
SOM | Self-Organizing Map |
TEM | Transmission Electron Microscopy |
ToF | Time-of-Flight |
ToF-SIMS | Time-of-Flight Secondary Ion Mass Spectrometry |
t-SNE | t-Distributed Stochastic Neighbor Embedding |
UHV | Ultra-High Vacuum |
UMAP | Uniform Manifold Approximation Projection |
UV | Ultraviolet |
VUV | Vacuum Ultraviolet |
References
- Koppenaal, D.W.; Barinaga, C.J.; Denton, M.B.; Sperline, R.P.; Hieftje, G.M.; Schilling, G.D.; Andrade, F.J.; Barnes, J.H.T. MS detectors. Anal. Chem. 2005, 77, 418a–427a. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Graham, A.W.G.; Ray, S.J.; Enke, C.G.; Felton, J.A.; Carado, A.J.; Barinaga, C.J.; Koppenaal, D.W.; Hieftje, G.M. Resolution and mass range performance in distance-of-flight mass spectrometry with a multichannel focal-plane camera detector. Anal. Chem. 2011, 83, 8552–8559. [Google Scholar] [CrossRef] [PubMed]
- Boughton, B.A.; Thinagaran, D.; Sarabia, D.; Bacic, A.; Roessner, U. Mass spectrometry imaging for plant biology: A review. Phytochem. Rev. 2016, 15, 445–488. [Google Scholar] [CrossRef]
- Wickramasinghe, R.C.; Pasterski, M.J.; Kenig, F.; Ievlev, A.V.; Lorenz, M.; Gross, J.M.; Hanley, L. Femtosecond laser desorption postionization ms vs tof-sims imaging for uncovering biomarkers buried in geological samples. Anal. Chem. 2021, 93, 15949–15957. [Google Scholar] [CrossRef] [PubMed]
- Hanley, L.; Wickramasinghe, R.; Yung, Y.P. Laser desorption combined with laser postionization for mass spectrometry. Annu. Rev. Anal. Chem. 2019, 12, 225–245. [Google Scholar] [CrossRef]
- Buchberger, A.R.; DeLaney, K.; Johnson, J.; Li, L. Mass spectrometry imaging: A review of emerging advancements and future insights. Anal. Chem. 2018, 90, 240–265. [Google Scholar] [CrossRef]
- Gilmore, I.S.; Heiles, S.; Pieterse, C.L. Metabolic imaging at the single-cell scale: Recent advances in mass spectrometry imaging. Annu. Rev. Anal. Chem. 2019, 12, 201–224. [Google Scholar] [CrossRef]
- Zagorac, T. Laser desorption postionization mass spectrometry. Curr. Trends Mass. Spectrom. 2021, 19, 15–19. [Google Scholar]
- Wittig, A.; Arlinghaus, H.F.; Kriegeskotte, C.; Moss, R.L.; Appelman, K.; Schmid, K.W.; Sauerwein, W.A. Laser postionization secondary neutral mass spectrometry in tissue: A powerful tool for elemental and molecular imaging in the development of targeted drugs. Mol. Cancer Ther. 2008, 7, 1763–1771. [Google Scholar] [CrossRef][Green Version]
- Taylor, M.J.; Liyu, A.; Vertes, A.; Anderton, C.R. Ambient single-cell analysis and native tissue imaging using laser-ablation electrospray ionization mass spectrometry with increased spatial resolution. J. Am. Soc. Mass. Spectrom. 2021, 32, 2490–2494. [Google Scholar] [CrossRef]
- Sgobba, E.; Daguerre, Y.; Giampa, M. Unravel the local complexity of biological environments by maldi mass spectrometry imaging. Int. J. Mol. Sci. 2021, 22, 12393. [Google Scholar] [CrossRef]
- Wu, C.; Dill, A.L.; Eberlin, L.S.; Cooks, R.G.; Ifa, D.R. Mass spectrometry imaging under ambient conditions. Mass. Spectrom. Rev. 2013, 32, 218–243. [Google Scholar] [CrossRef]
- Parrot, D.; Papazian, S.; Foil, D.; Tasdemir, D. Imaging the unimaginable: Desorption electrospray ionization–imaging mass spectrometry (desi-ims) in natural product research. Planta Med. 2018, 84, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Gamalero, E.; Bona, E.; Glick, B.R. Current techniques to study beneficial plant-microbe interactions. Microorganisms 2022, 10, 1380. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Anand, G.; Gaur, R.; Yadav, D. Plant-microbiome interactions for sustainable agriculture: A review. Physiol. Mol. Biol. Plants 2021, 27, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Semchenko, M.; Barry, K.E.; de Vries, F.T.; Mommer, L.; Moora, M.; Macia-Vicente, J.G. Deciphering the role of specialist and generalist plant-microbial interactions as drivers of plant-soil feedback. New Phytol. 2022, 234, 1929–1944. [Google Scholar] [CrossRef]
- Rompp, A.; Spengler, B. Mass spectrometry imaging with high resolution in mass and space. Histochem. Cell. Biol. 2013, 139, 759–783. [Google Scholar] [CrossRef]
- Cardinale, M. Scanning a microhabitat: Plant-microbe interactions revealed by confocal laser microscopy. Front. Microbiol. 2014, 5, 94. [Google Scholar] [CrossRef]
- Musat, N.; Musat, F.; Weber, P.K.; Pett-Ridge, J. Tracking microbial interactions with nanosims. Curr. Opin. Biotechnol. 2016, 41, 114–121. [Google Scholar] [CrossRef]
- Ho, Y.N.; Shu, L.J.; Yang, Y.L. Imaging mass spectrometry for metabolites: Technical progress, multimodal imaging, and biological interactions. Wiley Interdiscip. Rev. Syst. Biol. Med. 2017, 9, e1387. [Google Scholar] [CrossRef]
- Acuña, J.J.; Jorquera, M.A. Diversity, interaction, and bioprospecting of plant-associated microbiomes. Diversity 2020, 12, 390. [Google Scholar] [CrossRef]
- Veličković, D.; Anderton, C.R. Mass spectrometry imaging: Towards mapping the elemental and molecular composition of the rhizosphere. Rhizosphere 2017, 3, 254–258. [Google Scholar] [CrossRef]
- Debois, D.; Jourdan, E.; Smargiasso, N.; Thonart, P.; De Pauw, E.; Ongena, M. Spatiotemporal monitoring of the antibiome secreted by bacillus biofilms on plant roots using maldi mass spectrometry imaging. Anal. Chem. 2014, 86, 4431–4438. [Google Scholar] [CrossRef] [PubMed]
- Walton, C.L.; Khalid, M.; Bible, A.N.; Kertesz, V.; Retterer, S.T.; Morrell-Falvey, J.; Cahill, J.F. In situ detection of amino acids from bacterial biofilms and plant root exudates by liquid microjunction surface-sampling probe mass spectrometry. J. Am. Soc. Mass. Spectrom. 2022, 33, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Girin, T.; David, L.C.; Chardin, C.; Sibout, R.; Krapp, A.; Ferrario-Mery, S.; Daniel-Vedele, F. Brachypodium: A promising hub between model species and cereals. J. Exp. Bot. 2014, 65, 5683–5696. [Google Scholar] [CrossRef] [PubMed]
- Mhlongo, M.I.; Piater, L.A.; Madala, N.E.; Labuschagne, N.; Dubery, I.A. The chemistry of plant-microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front. Plant Sci. 2018, 9, 112. [Google Scholar] [CrossRef]
- Brader, G.; Compant, S.; Mitter, B.; Trognitz, F.; Sessitsch, A. Metabolic potential of endophytic bacteria. Curr. Opin. Biotechnol. 2014, 27, 30–37. [Google Scholar] [CrossRef]
- Andreote, F.D.; Gumiere, T.; Durrer, A. Exploring interactions of plant microbiomes. Sci. Agric. 2014, 71, 528–539. [Google Scholar] [CrossRef]
- Forero-Junco, L.M.; Alanin, K.W.S.; Djurhuus, A.M.; Kot, W.; Gobbi, A.; Hansen, L.H. Bacteriophages roam the wheat phyllosphere. Viruses 2022, 14, 244. [Google Scholar] [CrossRef]
- Bashir, I.; War, A.F.; Rafiq, I.; Reshi, Z.A.; Rashid, I.; Shouche, Y.S. Phyllosphere microbiome: Diversity and functions. Microbiol. Res. 2022, 254, 126888. [Google Scholar] [CrossRef]
- Schiltz, S.; Gaillard, I.; Pawlicki-Jullian, N.; Thiombiano, B.; Mesnard, F.; Gontier, E. A review: What is the spermosphere and how can it be studied? J. Appl. Microbiol. 2015, 119, 1467–1481. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Perdian, D.C.; Song, Z.; Yeung, E.S.; Nikolau, B.J. Use of mass spectrometry for imaging metabolites in plants. Plant J. 2012, 70, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.V.; Gelb, L.D.; Barry, G.E.; Subanajouy, P.; Poudel, A.; Hara, M.; Veryovkin, I.V.; Bell, G.I.; Hanley, L. Femtosecond laser desorption ionization mass spectrometry imaging and multivariate analysis of lipids in pancreatic tissue. Biointerphases 2018, 13, 03B416. [Google Scholar] [CrossRef] [PubMed]
- Unger, W.E.S.; Stockmann, J.M.; Senoner, M.; Weimann, T.; Bütefisch, S.; Passiu, C.; Spencer, N.D.; Rossi, A. Introduction to lateral resolution and analysis area measurements in xps. J. Vac. Sci. Technol. A 2020, 38, 053206. [Google Scholar] [CrossRef]
- Zhang, Y.; Komorek, R.; Son, J.; Riechers, S.; Zhu, Z.; Jansson, J.; Jansson, C.; Yu, X.Y. Molecular imaging of plant-microbe interactions on the brachypodium seed surface. Analyst 2021, 146, 5855–5865. [Google Scholar] [CrossRef]
- Haag, A.M. Mass analyzers and mass spectrometers. Adv. Exp. Med. Biol. 2016, 919, 157–169. [Google Scholar] [CrossRef]
- Xian, F.; Hendrickson, C.L.; Marshall, A.G. High resolution mass spectrometry. Anal. Chem. 2012, 84, 708–719. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Hu, Q.; Wang, Z.; Chen, X. Discrimination of thermal treated bovine milk using maldi-tof ms coupled with machine learning. Food Control. 2022, 142, 109224. [Google Scholar] [CrossRef]
- Bandara, C.D.; Schmidt, M.; Davoudpour, Y.; Stryhanyuk, H.; Richnow, H.H.; Musat, N. Microbial identification, high-resolution microscopy and spectrometry of the rhizosphere in its native spatial context. Front. Plant Sci. 2021, 12, 668929. [Google Scholar] [CrossRef]
- Liu, W.; Huang, L.; Komorek, R.; Handakumbura, P.P.; Zhou, Y.; Hu, D.; Engelhard, M.H.; Jiang, H.; Yu, X.Y.; Jansson, C.; et al. Correlative surface imaging reveals chemical signatures for bacterial hotspots on plant roots. Analyst 2020, 145, 393–401. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, Y.; Engelhard, M.; Zhang, Y.; Son, J.; Liu, S.; Zhu, Z.; Yu, X.Y. In situ molecular imaging of adsorbed protein films in water indicating hydrophobicity and hydrophilicity. Sci. Rep. 2020, 10, 3695. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhou, Y.; Yao, J.; Xiong, Y.; Zhu, Z.; Yu, X.Y. Molecular evidence of a toxic effect on a biofilm and its matrix. Analyst 2019, 144, 2498–2503. [Google Scholar] [CrossRef] [PubMed]
- Passarelli, M.K.; Pirkl, A.; Moellers, R.; Grinfeld, D.; Kollmer, F.; Havelund, R.; Newman, C.F.; Marshall, P.S.; Arlinghaus, H.; Alexander, M.R.; et al. The 3D orbisims—Label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat. Methods 2017, 14, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, C.; Kilburn, M.R.; Clode, P.L.; Fuchslueger, L.; Koranda, M.; Cliff, J.B.; Solaiman, Z.M.; Murphy, D.V. Exploring the transfer of recent plant photosynthates to soil microbes: Mycorrhizal pathway vs direct root exudation. New Phytol. 2015, 205, 1537–1551. [Google Scholar] [CrossRef]
- Hua, X.; Marshall, M.J.; Xiong, Y.; Ma, X.; Zhou, Y.; Tucker, A.E.; Zhu, Z.; Liu, S.; Yu, X.-Y. Two-dimensional and three-dimensional dynamic imaging of live biofilms in a microchannel by time-of-flight secondary ion mass spectrometry. Biomicrofluidics 2015, 9, 031101. [Google Scholar] [CrossRef]
- Ding, Y.; Zhou, Y.; Yao, J.; Szymanski, C.; Fredrickson, J.; Shi, L.; Cao, B.; Zhu, Z.; Yu, X.Y. In situ molecular imaging of the biofilm and its matrix. Anal. Chem. 2016, 88, 11244–11252. [Google Scholar] [CrossRef]
- Chen, J.; Hu, Y.; Lu, Q.; Wang, P.; Zhan, H. Determination of proflavine in rat whole blood without sample pretreatment by laser desorption postionization mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 2813–2819. [Google Scholar] [CrossRef]
- Cui, Y.; Veryovkin, I.V.; Majeski, M.W.; Cavazos, D.R.; Hanley, L. High lateral resolution vs molecular preservation in near-ir fs-laser desorption postionization mass spectrometry. Anal. Chem. 2015, 87, 367–371. [Google Scholar] [CrossRef]
- Blaze, M.T.M.; Akhmetov, A.; Aydin, B.; Edirisinghe, P.D.; Uygur, G.; Hanley, L. Quantification of antibiotic in biofilm-inhibiting multilayers by 7.87 ev laser desorption postionization ms imaging. Anal. Chem. 2012, 84, 9410–9415. [Google Scholar] [CrossRef][Green Version]
- Bhardwaj, C.; Moore, J.F.; Cui, Y.; Gasper, G.L.; Bernstein, H.C.; Carlson, R.P.; Hanley, L. Laser desorption vuv postionization ms imaging of a cocultured biofilm. Anal. Bioanal. Chem. 2013, 405, 6969–6977. [Google Scholar] [CrossRef]
- Gomez-Zepeda, D.; Frausto, M.; Najera-Gonzalez, H.R.; Herrera-Estrella, L.; Ordaz-Ortiz, J.J. Mass spectrometry-based quantification and spatial localization of small organic acid exudates in plant roots under phosphorus deficiency and aluminum toxicity. Plant J. 2021, 106, 1791–1806. [Google Scholar] [CrossRef] [PubMed]
- Niehaus, M.; Soltwisch, J.; Belov, M.E.; Dreisewerd, K. Transmission-mode maldi-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat. Methods 2019, 16, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Ellis, S.R.; Soltwisch, J.; Paine, M.R.L.; Dreisewerd, K.; Heeren, R.M.A. Laser post-ionisation combined with a high resolving power orbitrap mass spectrometer for enhanced maldi-ms imaging of lipids. Chem. Commun. 2017, 53, 7246–7249. [Google Scholar] [CrossRef]
- Kompauer, M.; Heiles, S.; Spengler, B. Atmospheric pressure maldi mass spectrometry imaging of tissues and cells at 1.4-mum lateral resolution. Nat. Methods 2017, 14, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Soltwisch, J.; Kettling, H.; Vens-Cappell, S.; Wiegelmann, M.; Müthing, J.; Dreisewerd, K. Mass spectrometry imaging with laser-induced postionization. Science 2015, 348, 211–215. [Google Scholar] [CrossRef]
- Debois, D.; Ongena, M.; Cawoy, H.; De Pauw, E. Maldi-fticr ms imaging as a powerful tool to identify paenibacillus antibiotics involved in the inhibition of plant pathogens. J. Am. Soc. Mass. Spectrom. 2013, 24, 1202–1213. [Google Scholar] [CrossRef] [PubMed]
- Hieta, J.P.; Kopra, J.; Raikkonen, H.; Kauppila, T.J.; Kostiainen, R. Sub-100 mum spatial resolution ambient mass spectrometry imaging of rodent brain with laser ablation atmospheric pressure photoionization (laappi) and laser ablation electrospray ionization (laesi). Anal. Chem. 2020, 92, 13734–13741. [Google Scholar] [CrossRef]
- Araujo, F.; Santos, D.S.; Pagotto, C.C.; de Araujo, W.L.; Eberlin, M.N. Mass spectrometry characterization of endophytic bacterium curtobacterium sp. Strain er1/6 isolated from citrus sinensis. J. Mass. Spectrom. 2018, 53, 91–97. [Google Scholar] [CrossRef]
- Hieta, J.P.; Sipari, N.; Raikkonen, H.; Keinanen, M.; Kostiainen, R. Mass spectrometry imaging of arabidopsis thaliana leaves at the single-cell level by infrared laser ablation atmospheric pressure photoionization (laappi). J. Am. Soc. Mass. Spectrom. 2021, 32, 2895–2903. [Google Scholar] [CrossRef]
- Franchi, E.; Agazzi, G.; Rolli, E.; Borin, S.; Marasco, R.; Chiaberge, S.; Conte, A.; Filtri, P.; Pedron, F.; Rosellini, I.; et al. Exploiting hydrocarbon-degrading indigenous bacteria for bioremediation and phytoremediation of a multicontaminated soil. Chem. Eng. Technol. 2016, 39, 1676–1684. [Google Scholar] [CrossRef]
- Brauer, J.I.; Beech, I.B.; Sunner, J. Mass spectrometric imaging using laser ablation and solvent capture by aspiration (lasca). J. Am. Soc. Mass. Spectrom. 2015, 26, 1538–1547. [Google Scholar] [CrossRef]
- Fisher, G.L.; Bruinen, A.L.; Ogrinc Potočnik, N.; Hammond, J.S.; Bryan, S.R.; Larson, P.E.; Heeren, R.M.A. A new method and mass spectrometer design for tof-sims parallel imaging ms/ms. Anal. Chem. 2016, 88, 6433–6440. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.A.; Deininger, S.O.; Hogendoorn, P.C.W.; Deelder, A.M.; McDonnell, L.A. Imaging mass spectrometry statistical analysis. J. Proteom. 2012, 75, 4962–4989. [Google Scholar] [CrossRef] [PubMed]
- Weiskirchen, R.; Weiskirchen, S.; Kim, P.; Winkler, R. Software solutions for evaluation and visualization of laser ablation inductively coupled plasma mass spectrometry imaging (la-icp-msi) data: A short overview. J. Cheminform. 2019, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Bokhart, M.T.; Nazari, M.; Garrard, K.P.; Muddiman, D.C. Msireader v1.0: Evolving open-source mass spectrometry imaging software for targeted and untargeted analyses. J. Am. Soc. Mass. Spectrom. 2018, 29, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.J.; Castner, D.G. Multivariate analysis of tof-sims data from multicomponent systems: The why, when, and how. Biointerphases 2012, 7, 49. [Google Scholar] [CrossRef]
- Ringner, M. What is principal component analysis? Nat. Biotechnol. 2008, 26, 303–304. [Google Scholar] [CrossRef]
- Zhang, Y.; Komorek, R.; Zhu, Z.; Huang, Q.; Chen, W.; Jansson, J.; Jansson, C.; Yu, X.Y. Mass spectral imaging showing the plant growth-promoting rhizobacteria’s effect on the brachypodium awn. Biointerphases 2022, 17, 031006. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Li, B.; Malitsky, S.; Rogachev, I.; Aharoni, A.; Kaftan, F.; Svatos, A.; Franceschi, P. Sample preparation for mass spectrometry imaging of plant tissues: A review. Front. Plant Sci. 2016, 7, 60. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, Y.; Komorek, R.; Plymale, A.; Yu, R.; Wang, B.; Zhu, Z.; Liu, F.; Yu, X.-Y. Characterization of syntrophic geobacter communities using tof-sims. Biointerphases 2017, 12, 05G601. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yu, X.Y.; Zhu, Z.; Iedema, M.J.; Cowin, J.P. Probing liquid surfaces under vacuum using sem and tof-sims. Lab Chip 2011, 11, 2481–2484. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Plymale, A.; Zhu, Z.; Ma, X.; Liu, F.; Yu, X.Y. In vivo molecular insights into syntrophic geobacter aggregates. Anal. Chem. 2020, 92, 10402–10411. [Google Scholar] [CrossRef]
- Seah, M.P.; Shard, A.G. The matrix effect in secondary ion mass spectrometry. Appl. Surf. Sci. 2018, 439, 605–611. [Google Scholar] [CrossRef]
- Shard, A.G.; Spencer, S.J.; Smith, S.A.; Havelund, R.; Gilmore, I.S. The matrix effect in organic secondary ion mass spectrometry. Int. J. Mass. Spectrom. 2015, 377, 599–609. [Google Scholar] [CrossRef]
- Perry, W.J.; Patterson, N.H.; Prentice, B.M.; Neumann, E.K.; Caprioli, R.M.; Spraggins, J.M. Uncovering matrix effects on lipid analyses in maldi imaging mass spectrometry experiments. J. Mass. Spectrom. 2020, 55, e4491. [Google Scholar] [CrossRef]
- Lanekoff, I.; Stevens, S.L.; Stenzel-Poore, M.P.; Laskin, J. Matrix effects in biological mass spectrometry imaging: Identification and compensation. Analyst 2014, 139, 3528–3532. [Google Scholar] [CrossRef]
- McMillen, J.C.; Fincher, J.A.; Klein, D.R.; Spraggins, J.M.; Caprioli, R.M. Effect of maldi matrices on lipid analyses of biological tissues using maldi-2 postionization mass spectrometry. J. Mass. Spectrom. 2020, 55, e4663. [Google Scholar] [PubMed]
- Tsuchida, S.; Umemura, H.; Murata, S.; Miyabe, A.; Satoh, M.; Matsushita, K.; Nakayama, T.; Nomura, F. Effect of humidity during sample preparation on bacterial identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1176, 122780. [Google Scholar] [CrossRef]
- Kummer, K.M.; Taylor, E.N.; Durmas, N.G.; Tarquinio, K.M.; Ercan, B.; Webster, T.J. Effects of different sterilization techniques and varying anodized TiO2 nanotube dimensions on bacteria growth. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 677–688. [Google Scholar] [CrossRef]
- Mogodiniyai Kasmaei, K.; Spörndly, R.; Udén, P. A sterilization technique with applications to silage research and inoculant evaluation. Grass Forage Sci. 2014, 69, 724–728. [Google Scholar] [CrossRef]
- Chansoria, P.; Narayanan, L.K.; Wood, M.; Alvarado, C.; Lin, A.; Shirwaiker, R.A. Effects of autoclaving, etoh, and uv sterilization on the chemical, mechanical, printability, and biocompatibility characteristics of alginate. ACS Biomater. Sci. Eng. 2020, 6, 5191–5201. [Google Scholar] [CrossRef] [PubMed]
- Odom, R.W. Secondary ion mass spectrometry imaging. Appl. Spectrosc. Rev. 2006, 29, 67–116. [Google Scholar] [CrossRef]
- Bills, D.G. Ion desorption from metal surfaces. Phys. Rev. 1957, 107, 994–995. [Google Scholar] [CrossRef]
- Liebl, H.J.; Herzog, R.F.K. Sputtering ion source for solids. J. Appl. Phys. 1963, 34, 2893–2896. [Google Scholar] [CrossRef]
- Huber, W.K.; Selhofer, H.; Benninghoven, A. An analytical system for secondary ion mass spectrometry in ultra high vacuum. J. Vac. Sci. Technol. 1972, 9, 482–486. [Google Scholar] [CrossRef]
- Fassett, J.D.; Morrison, G.H. Digital image processing in ion microscope analysis: Study of crystal structure effects in secondary ion mass spectrometry. Anal. Chem. 1978, 50, 1861–1866. [Google Scholar] [CrossRef]
- Kingham, D.R. Three dimensional secondary ion mass spectrometry imaging and retrospective depth profiling. Scanning Microsc. 1987, 1, 463–469. [Google Scholar]
- Lorquin, J. Nod factors from sinorhizobium saheli and s. Teranga bv. Sesbaniae are both arabinosylated and fucosylated, a structural feature specific to sesbania rostrata symbionts. Mol. Plant Microbe Interact. 1997, 10, 879–890. [Google Scholar]
- Cliff, J.B.; Gaspar, D.J.; Bottomley, P.J.; Myrold, D.D. Exploration of inorganic c and n assimilation by soil microbes with time-of-flight secondary ion mass spectrometry. Appl. Environ. Microbiol. 2002, 68, 4067–4073. [Google Scholar] [CrossRef]
- Clode, P.L.; Kilburn, M.R.; Jones, D.L.; Stockdale, E.A.; Cliff, J.B., 3rd; Herrmann, A.M.; Murphy, D.V. In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry. Plant Physiol. 2009, 151, 1751–1757. [Google Scholar] [CrossRef]
- Gonzalez, D.J.; Haste, N.M.; Hollands, A.; Fleming, T.C.; Hamby, M.; Pogliano, K.; Nizet, V.; Dorrestein, P.C. Microbial competition between bacillus subtilis and staphylococcus aureus monitored by imaging mass spectrometry. Microbiology 2011, 157, 2485–2492. [Google Scholar] [CrossRef]
- Ahmad, F.; Babalola, O.O.; Tak, H.I. Potential of maldi-tof mass spectrometry as a rapid detection technique in plant pathology: Identification of plant-associated microorganisms. Anal. Bioanal. Chem. 2012, 404, 1247–1255. [Google Scholar] [CrossRef]
- Stoeckli, M. Automated mass spectrometry imaging with a matrix-assisted laser desorption ionization time-of-flight instrument. Am. Soc. Mass. Spectrom. 1998, 10, 67–71. [Google Scholar] [CrossRef]
- Dunham, S.J.; Ellis, J.F.; Li, B.; Sweedler, J.V. Mass spectrometry imaging of complex microbial communities. Acc. Chem. Res. 2017, 50, 96–104. [Google Scholar] [CrossRef]
- Watrous, J.D.; Alexandrov, T.; Dorrestein, P.C. The evolving field of imaging mass spectrometry and its impact on future biological research. J. Mass. Spectrom. 2011, 46, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Watrous, J.D.; Dorrestein, P.C. Imaging mass spectrometry in microbiology. Nat. Rev. Microbiol. 2011, 9, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Noll, R.J.; Li, H.; Makarov, A.; Hardman, M.; Graham Cooks, R. The orbitrap: A new mass spectrometer. J. Mass. Spectrom. 2005, 40, 430–443. [Google Scholar] [CrossRef] [PubMed]
- Honig, R.E.; Woolston, J.R. Laser-induced emission of electrons, ions, and neutral atoms from solid surfaces. Appl. Phys. Lett. 1963, 2, 138–139. [Google Scholar] [CrossRef]
- Ready, J.F. Development of plume of material vaporized by giant-pulse laser. Appl. Phys. Lett. 1963, 3, 11–13. [Google Scholar] [CrossRef]
- Linlor, W.I. Ion energies produced by laser giant pulse. Appl. Phys. Lett. 1963, 3, 210–211. [Google Scholar] [CrossRef]
- Bernal, G.E. Absorbed ion emission from laser-irradiated tungsten. Phys. Lett. 1966, 19, 645–647. [Google Scholar] [CrossRef]
- Bernal, G.E.; Levine, L.P.; Ready, J.F. Time-of-flight spectrometer for laser surface interaction studies. Rev. Sci. Instrum. 1966, 37, 938–941. [Google Scholar] [CrossRef]
- Levine, L.P.; Ready, J.F.; Bernal, G.E. Gas desorption produced by a giant pulse laser. J. Appl. Phys. 1967, 38, 331–336. [Google Scholar] [CrossRef]
- Hillenkamp, F. Laser microprobe mass analysis of organic materials. Nature 1975, 256, 119–120. [Google Scholar] [CrossRef] [PubMed]
- Akhmetov, A.; Moore, J.F.; Gasper, G.L.; Koin, P.J.; Hanley, L. Laser desorption postionization for imaging ms of biological material. J. Mass. Spectrom. 2010, 45, 137–145. [Google Scholar] [CrossRef]
- Pulukkody, A.C.; Yung, Y.P.; Donnarumma, F.; Murray, K.K.; Carlson, R.P.; Hanley, L. Spatially resolved analysis of pseudomonas aeruginosa biofilm proteomes measured by laser ablation sample transfer. PLoS ONE 2021, 16, e0250911. [Google Scholar] [CrossRef]
- Herdering, C.; Wehe, C.A.; Reifschneider, O.; Raj, I.; Ciarimboli, G.; Diebold, K.; Becker, C.; Sperling, M.; Karst, U. Laser ablation based bioimaging with simultaneous elemental and molecular mass spectrometry: Towards spatially resolved speciation analysis. Rapid Commun. Mass. Spectrom. 2013, 27, 2588–2594. [Google Scholar] [CrossRef]
- Ren, L.; Robertson, W.D.; Reimer, R.; Heinze, C.; Schneider, C.; Eggert, D.; Truschow, P.; Hansen, N.O.; Kroetz, P.; Zou, J.; et al. Towards instantaneous cellular level bio diagnosis: Laser extraction and imaging of biological entities with conserved integrity and activity. Nanotechnology 2015, 26, 284001. [Google Scholar] [CrossRef]
- Li, X.; Hang, L.; Wang, T.; Leng, Y.; Zhang, H.; Meng, Y.; Yin, Z.; Hang, W. Nanoscale three-dimensional imaging of drug distributions in single cells via laser desorption post-ionization mass spectrometry. J. Am. Chem. Soc. 2021, 143, 21648–21656. [Google Scholar] [CrossRef]
- Neuland, M.B.; Grimaudo, V.; Mezger, K.; Moreno-García, P.; Riedo, A.; Tulej, M.; Wurz, P. Quantitative measurement of the chemical composition of geological standards with a miniature laser ablation/ionization mass spectrometer designed forin situapplication in space research. Meas. Sci. Technol. 2016, 27, 035904. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Liu, F.; Cai, L.; Pan, J.B.; Li, Z.; Zhang, S.; Chen, H.Y.; Zhang, X.; Mo, Y. Vacuum ultraviolet laser desorption/ionization mass spectrometry imaging of single cells with submicron craters. Anal. Chem. 2018, 90, 10009–10015. [Google Scholar] [CrossRef] [PubMed]
- Donnarumma, F.; Murray, K.K.; Hanley, L. Fundamentals of laser desorption ionization. In Photoionization and Photo-Induced Processes in Mass Spectrometry; Wiley: Hoboken, NJ, USA, 2021; pp. 305–325. [Google Scholar]
- Yung, Y.P.; Wickramasinghe, R.; Vaikkinen, A.; Kauppila, T.J.; Veryovkin, I.V.; Hanley, L. Solid sampling with a diode laser for portable ambient mass spectrometry. Anal. Chem. 2017, 89, 7297–7301. [Google Scholar] [CrossRef] [PubMed]
- Fenn, J.B. Electrospray ionization for mass spectrometry of lare biomolecules. Science 1989, 246, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Nemes, P. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 2007, 79, 8098–8106. [Google Scholar] [CrossRef] [PubMed]
- Gardner, W.; Hook, A.L.; Alexander, M.R.; Ballabio, D.; Cutts, S.M.; Muir, B.W.; Pigram, P.J. Tof-sims and machine learning for single-pixel molecular discrimination of an acrylate polymer microarray. Anal. Chem. 2020, 92, 6587–6597. [Google Scholar] [CrossRef]
- Gardner, W.; Winkler, D.A.; Muir, B.W.; Pigram, P.J. Applications of multivariate analysis and unsupervised machine learning to tof-sims images of organic, bioorganic, and biological systems. Biointerphases 2022, 17, 020802. [Google Scholar] [CrossRef]
- Verbeeck, N.; Caprioli, R.M.; Van de Plas, R. Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry. Mass. Spectrom. Rev. 2020, 39, 245–291. [Google Scholar] [CrossRef]
- Madiona, R.M.T.; Winkler, D.A.; Muir, B.W.; Pigram, P.J. Optimal machine learning models for robust materials classification using tof-sims data. Appl. Surf. Sci. 2019, 487, 773–783. [Google Scholar] [CrossRef]
- Abbasi, K.; Smith, H.; Hoffman, M.; Farghadany, E.; Bruckman, L.S.; Sehirlioglu, A. Dimensional stacking for machine learning in tof-sims analysis of heterostructures. Adv. Mater. Interfaces 2020, 8, 2001648. [Google Scholar] [CrossRef]
- Feucherolles, M.; Nennig, M.; Becker, S.L.; Martiny, D.; Losch, S.; Penny, C.; Cauchie, H.M.; Ragimbeau, C. Combination of maldi-tof mass spectrometry and machine learning for rapid antimicrobial resistance screening: The case of campylobacter spp. Front. Microbiol. 2021, 12, 804484. [Google Scholar] [CrossRef]
- Jeon, K.; Kim, J.M.; Rho, K.; Jung, S.H.; Park, H.S.; Kim, J.S. Performance of a machine learning-based methicillin resistance of staphylococcus aureus identification system using maldi-tof ms and comparison of the accuracy according to sccmec types. Microorganisms 2022, 10, 1903. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parker, G.D.; Hanley, L.; Yu, X.-Y. Mass Spectral Imaging to Map Plant–Microbe Interactions. Microorganisms 2023, 11, 2045. https://doi.org/10.3390/microorganisms11082045
Parker GD, Hanley L, Yu X-Y. Mass Spectral Imaging to Map Plant–Microbe Interactions. Microorganisms. 2023; 11(8):2045. https://doi.org/10.3390/microorganisms11082045
Chicago/Turabian StyleParker, Gabriel D., Luke Hanley, and Xiao-Ying Yu. 2023. "Mass Spectral Imaging to Map Plant–Microbe Interactions" Microorganisms 11, no. 8: 2045. https://doi.org/10.3390/microorganisms11082045
APA StyleParker, G. D., Hanley, L., & Yu, X.-Y. (2023). Mass Spectral Imaging to Map Plant–Microbe Interactions. Microorganisms, 11(8), 2045. https://doi.org/10.3390/microorganisms11082045