Use of Selected Lactic Acid Bacteria and Carob Flour for the Production of a High-Fibre and “Clean Label” Plant-Based Yogurt-like Product
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredients and Microbial Strains
2.2. Biotechnological Protocol for YL Production
2.3. YL Characterization
2.3.1. Biochemical and Microbiological Characterization
2.3.2. Technological Characterization
2.3.3. Functional Characterization
2.4. Shelf-Life Monitoring
2.5. Selection and Characterization of a Rice–Carob YL
2.5.1. Nutritional Characterization and Starch Hydrolysis Index
2.5.2. Sensory Analyses
2.6. Statistical Analysis
3. Results
3.1. YL Characterization
3.1.1. Fermentation, Biochemical, and Functional Characterization
3.1.2. Technological Characterization
3.2. Shelf-Life Monitoring and Starter Survival
3.3. Characterization of YL-T6B10
3.3.1. Nutritional Characterization and Predicted Glycemic Index
3.3.2. Sensory Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brassesco, M.E.; Brandão, T.R.; Silva, C.L.; Pintado, M. Carob bean (Ceratonia siliqua L.): A new perspective for functional food. Trends Food Sci. Technol. 2021, 114, 310–322. [Google Scholar] [CrossRef]
- Gioxari, A.; Amerikanou, C.; Nestoridi, I.; Gourgari, E.; Pratsinis, H.; Kalogeropoulos, N.; Andrikopoulos, N.K.; Kaliora, A.C. Carob: A sustainable opportunity for metabolic health. Foods 2022, 11, 2154. [Google Scholar] [CrossRef] [PubMed]
- Nasar-Abbas, S.M.; Huma, Z.; Vu, T.; Khan, M.K.; Esbenshade, H.; Jayasena, V. Carob Kibble: A bioactive-rich food ingredient. Compr. Rev. Food Sci. Food Saf. 2016, 15, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loullis, A.; Pinakoulaki, E. Carob as cocoa substitute: A review on composition, health benefits and food applications. Eur. Food Res. Technol. 2018, 244, 959–977. [Google Scholar] [CrossRef]
- Prajapati, V.D.; Jani, G.K.; Moradiya, N.G.; Randeria, N.P.; Nagar, B.J.; Naikwadi, N.N.; Variya, B.C. Galactomannan: A versatile biodegradable seed polysaccharide. Int. J. Biol. Macromol. 2013, 60, 83–92. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Romano, A.; Moreno-Rojas, J.M. Carob pulp: A nutritional and functional by-product worldwide spread in the formulation of different food products and beverages. A Review. Processes 2021, 9, 1146. [Google Scholar] [CrossRef]
- Craig, W.J.; Fresán, U. International analysis of the nutritional content and a review of health benefits of non-dairy plant-based beverages. Nutrients 2021, 13, 842. [Google Scholar] [CrossRef]
- Vitali, M.; Gandía, M.; Garcia-Llatas, G.; Tamayo-Ramos, J.A.; Cilla, A.; Gamero, A. Exploring the Potential of Rice, Tiger Nut and Carob for the Development of Fermented Beverages in Spain: A Comprehensive Review on the Production Methodologies Worldwide. Beverages 2023, 9, 47. [Google Scholar] [CrossRef]
- Fructuoso, I.; Romão, B.; Han, H.; Raposo, A.; Ariza-Montes, A.; Araya-Castillo, L.; Zandonadi, R.P. An overview on nutritional aspects of plant-based beverages used as substitutes for cow’s milk. Nutrients 2021, 13, 2650. [Google Scholar] [CrossRef]
- Lorusso, A.; Coda, R.; Montemurro, M.; Rizzello, C.G. Use of selected lactic acid bacteria and quinoa flour for manufacturing novel yogurt-like beverages. Foods 2018, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Nionelli, L.; Coda, R.; Curiel, J.A.; Kaisa, P.; Marco, G.; Rizzello, C.G. Manufacture and characterization of a yogurt-like beverage made with oat flakes fermented by selected lactic acid bacteria. Int. J. Food Microbiol. 2014, 185, 17–26. [Google Scholar]
- Montemurro, M.; Pontonio, E.; Rizzello, C.G. Design of a “clean-label” gluten-free bread to meet consumers demand. Foods 2021, 10, 462. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, M.; Verni, M.; Rizzello, C.G.; Pontonio, E. Design of a Plant-Based Yogurt-Like Product Fortified with Hemp Flour: Formulation and Characterization. Foods 2023, 12, 485. [Google Scholar] [CrossRef] [PubMed]
- Coda, R.; Rizzello, C.G.; Nigro, F.; De Angelis, M.; Arnault, P.; Gobbetti, M. Long-term fungal inhibitory activity of water-soluble extracts of Phaseolus vulgaris cv. Pinto and sourdough lactic acid bacteria during bread storage. Appl. Environ. Microbiol. 2008, 74, 7391–7398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabbrocini, G.; Bertona, M.; Picazo, Ó.; Pareja-Galeano, H.; Monfrecola, G.; Emanuele, E. Supplementation with Lactobacillus rhamnosus SP1 normalises skin expression of genes implicated in insulin signalling and improves adult acne. Beneficial Microb. 2016, 7, 625–630. [Google Scholar] [CrossRef] [Green Version]
- Galli, V.; Venturi, M.; Coda, R.; Maina, N.H.; Granchi, L. Isolation and characterization of indigenous Weissella confusa for in situ bacterial exopolysaccharides (EPS) production in chickpea sourdough. Food Res. Int. 2020, 138, 109785. [Google Scholar] [CrossRef]
- De Angelis, M.; Siragusa, S.; Berloco, M.; Caputo, L.; Settanni, L.; Alfonsi, G.; Amerio, M.; Grandi, A.; Ragni, A.; Gobbetti, M. Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding. Res. Microbiol. 2006, 157, 792–801. [Google Scholar] [CrossRef]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; Van’t Riet, K.J.A.E.M. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef] [Green Version]
- Weiss, W.; Vogelmeier, C.; Görg, A. Electrophoretic characterization of wheat grain allergens from different cultivars involved in bakers’ asthma. Electrophoresis 1993, 14, 805–816. [Google Scholar] [CrossRef]
- Verni, M.; Dingeo, C.; Rizzello, C.G.; Pontonio, E. Lactic acid bacteria fermentation and endopeptidase treatment improve the functional and nutritional features of Arthrospira platensis. Front. Microbiol. 2021, 12, 744437. [Google Scholar] [CrossRef]
- Kovalenko, I.V.; Briggs, J.L. Textural characterization of soy-based yogurt by the vane method. J. Text. Stud. 2002, 33, 105–118. [Google Scholar] [CrossRef]
- Yu, L.; Perret, J.; Harris, M.; Wilson, J.; Haley, S. Antioxidant properties of bran extracts from “Akron” wheat grown at different locations. J. Agric. Food Chem. 2003, 51, 1566–1570. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, M.; Damiano, N.; Rizzello, C.G.; Cassone, A.; Di Cagno, R.; Gobbetti, M. Sourdough fermentation as a tool for the manufacture of low-glycemic index white wheat bread enriched in dietary fibre. Eur. Food Res. Technol. 2009, 229, 593–601. [Google Scholar] [CrossRef]
- Capriles, V.D.; Arêas, J.A. Effects of prebiotic inulin-type fructans on structure, quality, sensory acceptance and glycemic response of gluten-free breads. Food Funct. 2013, 4, 104–110. [Google Scholar] [CrossRef]
- Elia, M. A procedure for sensory evaluation of bread: Protocol developed by a trained panel. J. Sens. Stud. 2011, 26, 269–277. [Google Scholar] [CrossRef]
- Ridder, M. Value of the Plant-Based Beverage Market Worldwide from 2017 to 2023. 2022. Available online: https://www.statista.com/statistics/948450/plant-based-beverages-market-value-worldwide/ (accessed on 15 May 2023).
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef]
- Ardö, Y. Flavour formation by amino acid catabolism. Biotechnol. Adv. 2006, 24, 238–242. [Google Scholar] [CrossRef]
- Arora, K.; Ameur, H.; Polo, A.; Di Cagno, R.; Rizzello, C.G.; Gobbetti, M. Thirty years of knowledge on sourdough fermentation: A systematic review. Trends Food Sci. Technol. 2021, n108, 71–83. [Google Scholar] [CrossRef]
- Peyer, L.C.; Zannini, E.; Arendt, E.K. Lactic acid bacteria as sensory biomodulators for fermented cereal-based beverages. Trends Food Sci. Technol. 2016, 54, 17–25. [Google Scholar] [CrossRef]
- Vinicius De Melo Pereira, G.; De Carvalho Neto, D.P.; Junqueira, A.C.D.O.; Karp, S.G.; Letti, L.A.; Magalhães Júnior, A.I.; Soccol, C.R. A review of selection criteria for starter culture development in the food fermentation industry. Food Rev. Int. 2020, 36, 135–167. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA-Opinion of the Scientific Committee. EFSA J. 2007, 5, 587. [Google Scholar] [CrossRef]
- Ayyash, M.M.; Abdalla, A.K.; AlKalbani, N.S.; Baig, M.A.; Turner, M.S.; Liu, S.Q.; Shah, N.P. Invited review: Characterization of new probiotics from dairy and nondairy products—Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. J. Dairy Sci. 2021, 104, 8363–8379. [Google Scholar] [CrossRef] [PubMed]
- Vos, P.; Garrity, G.; Jones, D.; Krieg, N.R.; Ludwig, W.; Rainey, F.A.; Whitman, W.B. (Eds.) Bergey’s Manual of Systematic Bacteriology: Volume 3: The Firmicutes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 3. [Google Scholar]
- Gänzle, M.G. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Kothari, D.; Das, D.; Patel, S.; Goyal, A. Dextran and Food Application. In Polysaccharides: Bioactivity and Biotechnology; Springer: Cham, Switzerland, 2015; pp. 735–752. [Google Scholar]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Jeske, S.; Zannini, E.; Arendt, E.K. Past, present and future: The strength of plant-based dairy substitutes based on gluten-free raw materials. Food Res. Int. 2018, 110, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Bernat, N.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Vegetable milks and their fermented derivative products. Int. J. Food Stud. 2014, 3, 1. [Google Scholar] [CrossRef]
pH | TTA | Lactic Acid (g/L) | Acetic Acid (mg/L) | Glucose (g/L) | Fructose (g/L) | Maltose (g/L) | Sucrose (g/L) | TFAA (mg/L) | WHC (%) | Viscosity (mPa × s) | |
---|---|---|---|---|---|---|---|---|---|---|---|
t0 | |||||||||||
Ct | 4.50 ± 0.01 Ab | 3.4 ± 0.3 BA | 1.08 ± 0.01 Ca | n.d. | 1.65 ± 0.01 Aa | 2.16 ± 0.04 Aa | 0.51 ± 0.03 | 16.99 ± 0.30 Aa | 159 ± 6 Aa | 84.44 ± 0.10 Aa | 14,540 ± 36 Aa |
CA16 | 5.50 ± 0.02 Aa | 2.4 ± 0.2 Db | 0.09 ± 0.00 Cb | n.d. | 1.65 ± 0.05 Ba | 2.15 ± 0.04 Aa | 0.50 ± 0.03 | 17.02 ± 0.33 Aa | 160 ± 4 Aa | 84.22 ± 0.12 Aa | 14,530 ± 27 Aa |
20193 | 5.50 ± 0.03 Aa | 2.4 ± 0.0 Cb | 0.09 ± 0.01 Db | n.d. | 1.65 ± 0.03 Aa | 2.16 ± 0.03 Ba | 0.52 ± 0.02 | 16.99 ± 0.29 Aa | 163 ± 7 Aa | 84.14 ± 0.10 Ba | 14,535 ± 56 Aa |
SP1 | 5.50 ± 0.04 Aa | 2.4 ± 0.1 Db | 0.09 ± 0.00 Cb | n.d. | 1.65 ± 0.03 Ba | 2.14 ± 0.04 Ba | 0.50 a ± 0.03 | 16.92 ± 0.35 Aa | 159 ± 6 Aa | 84.40 ± 0.10 Ba | 14,540 ± 47 Aa |
T6B10 | 5.50 ± 0.02 Aa | 2.4 ± 0.2 Cb | 0.09 ± 0.01 Db | n.d. | 1.65 ± 0.05 Aa | 2.15 ± 0.03 Ca | 0.50 ± 0.01 | 16.95 ± 0.34 Aa | 158 ± 8 Ba | 84.30 ± 0.10 Ba | 14,542 ± 29 Aa |
AM7 | 5.60 ± 0.03 Aa | 2.2 ± 0.0 Db | 0.09 ± 0.01 Cb | n.d. | 1.65 ± 0.01 Ba | 2.15 ± 0.07 Aa | 0.52 ± 0.03 | 16.89 ± 0.34 Aa | 160 ± 7 Aa | 84.22 ± 0.11 Aa | 14,534 ± 46 Aa |
P9 | 5.60 ± 0.03 Aa | 2.2 ± 0.1 Db | 0.09 ± 0.00 Db | n.d. | 1.65 ± 0.06 Aa | 2.16 ± 0.04 Ba | 0.52 ± 0.02 | 16.91 ± 0.31 Aa | 160 ± 6 Aa | 84.49 ± 0.12 Aa | 14,538 ± 19 Aa |
tf | |||||||||||
Ct | 4.50 ± 0.04 Ac | 3.4 ± 0.1 Bb | 1.09 ± 0.03 Cb | n.d. | 1.66 ± 0.02 Aa | 2.14 ± 0.01 Ac | 0.52 ± 0.03 | 16.86 ± 0.33 Aa | 159 ± 6 Aa | 82.26 ± 0.15 Bc | 8180 ± 11 Bc |
CA16 | 4.91 ± 0.03 Ba | 3.0 ± 0.3 Cb | 0.65 ± 0.01 Bc | 12.6 ± 0.6 Bc | 1.01 ± 0.04 Cb | 2.41 ± 0.03 Ab | 0.45 ± 0.05 | 17.04 ± 0.32 Aa | 76 ± 4 Cc | 85.82 ± 0.28 Ab | 12,760 ± 72 Ba |
20193 | 4.56 ± 0.06 Bc | 4.0 ± 0.1 Ba | 1.05 ± 0.08 Cb | 76.9 ± 2.1 Ca | 0.43 ± 0.01 Bd | 2.79 ± 0.07 Aa | 0.46 ± 0.04 | 16.06 ± 0.04 Bb | 113 ± 3 Bb | 93.88 ± 0.19 Aa | 9920 ± 66 Bb |
SP1 | 4.71 ± 0.02 Bb | 3.6 ± 0.2 Cb | 1.22 ± 0.04 Bb | 39.0 ± 1.7 Bb | 0.47 ± 0.02 Cd | 2.53 ± 0.02 Ab | 0.50 ± 0.03 | 16.02 ± 0.06 Bb | 159 ± 8 Aa | 90.59 ± 0.10 Aa | 9720 ± 58 Bb |
T6B10 | 4.33 ± 0.10 Bc | 4.4 ± 0.2 Ba | 1.46 ± 0.06 Ca | 30.1 ± 2.0 Bb | 0.54 ± 0.07 Cd | 2.83 ± 0.06 Aa | 0.56 ± 0.02 | 15.85 ± 0.09 Bb | 112 ± 4 Cb | 91.20 ± 0.18 Aa | 9770 ± 45 Bb |
AM7 | 4.68 ± 0.06 Bb | 3.4 ± 0.0 Cb | 1.26 ± 0.02 Bb | 36.6 ± 1.1 Cb | 0.80 ± 0.02 Cc | 2.44 ± 0.18 Ab | 0.50 ± 0.02 | 16.47 ± 0.26 Aa | 123 ± 6 BCb | 84.41 ± 0.28 Ab | 9800 ± 63 Bb |
P9 | 4.87 ± 0.05 Ba | 3.0 ± 0.1 Cb | 0.79 ± 0.05 Cc | 81.7 ± 3.7 Ba | 0.45 ± 0.03 Bd | 2.57 ± 0.05 Ab | 0.55 ± 0.01 | 16.84 ± 0.32 Aa | 156 ± 7 Aa | 84.16 ± 0.38 Ab | 12,020 ± 159 Ba |
t15 | |||||||||||
Ct | 4.32 ± 0.06 Ba | 4.0 ± 0.2 Ab | 1.39 ± 0.04 Bcd | 44.4 ± 2.9 Be | 1.53 ± 0.03 Ba | 2.10 ± 0.02 Aa | n.d. | 16.50 ± 0.43 Aa | 128 ± 4 Bb | 80.81 ± 0.45 Cb | 3250 ± 27 Cd |
CA16 | 4.39 ± 0.03 Ca | 4.4 ± 0.6 Bb | 1.71 ± 0.02 Ab | 131.5 ± 10.3 Ad | 0.61 ± 0.05 Db | 1.01 ± 0.06 Bc | n.d. | 15.09 ± 0.62 Ba | 91 ± 3 Bc | 80.60 ± 0.20 Cb | 5810 ± 59 Ca |
20193 | 4.33 ± 0.07 Ca | 4.5 ± 0.3 Bb | 1.52 ± 0.09 Ac | 315.3 ± 11.2 Bb | 0.25 ± 0.01 Cd | 2.65 ± 0.13 Aa | n.d. | 13.03 ± 0.08 Cc | 113 ± 1 Bab | 79.16 ± 0.13 Cb | 5970 ± 67 Ca |
SP1 | 4.42 ± 0.05 Ca | 4.2 ± 0.1 Bb | 1.63 ± 0.06 Ac | 260.0 ± 7.9 Ac | 0.56 ± 0.06 Cb | 2.60 ± 0.10 Aa | n.d. | 14.32 ± 0.75 Cb | 144 ± 8 Aa | 83.15 ± 0.28 Ca | 5220 ± 133 Cb |
T6B10 | 3.94 ± 0.03 Cb | 5.9 ± 0.8 Aa | 1.89 ± 0.01 Bb | 362.7 ± 16.8 Aa | 0.64 ± 0.07 Cb | 2.23 ± 0.09 Cb | n.d. | 13.57 ± 0.32 Cb | 159 ± 6 Ba | 80.26 ± 0.17 Cb | 4970 ± 120 Cc |
AM7 | 3.97 ± 0.01 Cb | 5.9 ± 0.6 Ba | 2.16 ± 0.08 Aa | 138.1 ± 9.4 bd | 0.50 ± 0.08 Db | 2.09 ± 0.08 Abb | n.d. | 15.62 ± 0.39 Ba | 97 ± 12 Cc | 78.92 ± 0.41 Bb | 3710 ± 89 Cc |
P9 | 4.32 ± 0.0 Ca | 4.4 ± 0.1 Bb | 1.40 ± 0.07 Bc | 353.7 ± 5.6 Aa | 0.40 ± 0.02 Bc | 2.67 ± 0.04 Aa | n.d. | 16.00 ± 0.57 Aba | 156 ± 7 Aa | 79.70 ± 0.25 Bb | 3070 ± 206 Cd |
t30 | |||||||||||
Ct | 4.15 ± 0.02 Ca | 4.3 ± 0.1 Ac | 1.56 ± 0.06 Ab | 57.0 ± 2.8 Ad | 1.51 ± 0.02 Bc | 2.18 ± 0.05 Ab | n.d. | 16.21 ± 0.39 Aa | 126 ± 7 Bc | 75.25 ± 0.05 Db | 2840 ± 83 Cc |
CA16 | 4.04 ± 0.07 Da | 5.6 ± 0.3 Ab | 1.78 ± 0.10 Ab | 164.5 ± 8.9 Ac | 2.37 ± 0.23 Ab | 0.92 ± 0.07 Bd | n.d. | 15.05 ± 0.45 Bab | 66 ± 5 Cd | 78.02 ± 0.15 Da | 3970 ± 28 Da |
20193 | 4.15 ± 0.01 Da | 5.8 ± 0.2 Ab | 1.62 ± 0.02 Ab | 381.3 ± 24.3 Aa | 0.57 ± 0.09 Bd | 2.72 ± 0.14 Aa | n.d. | 13.04 ± 0.20 CBc | 160 ± 9 Ab | 73.71 ± 0.24 Dc | 3450 ± 56 Db |
SP1 | 4.19 ± 0.05 Da | 5.0 ± 0.5 Ab | 1.7 ± 0.07 Ab | 269.0 ± 10.2 Ab | 3.05 ± 0.17 Aa | 2.39 ± 0.21 Abb | n.d. | 14.07 ± 0.41 Cb | 115 ± 2 Bc | 74.90 ± 0.23 Db | 3340 ± 44 Db |
T6B10 | 3.75 ± 0.05 Db | 6.6 ± 0.4 Aa | 2.32 ± 0.11 Aa | 383.7 ± 18.8 Aa | 1.17 ± 0.12 Bc | 2.51 ± 0.02 Bd | n.d. | 13.05 ± 0.14 Cc | 231 ± 6 Aa | 74.55 ± 0.26 Dbc | 3540 ± 71 Db |
AM7 | 3.76 ± 0.03 Db | 6.8 ± 0.3 Aa | 2.35 ± 0.13 Aa | 168.2 ± 6.3 Ac | 2.60 ± 0.18 Ab | 1.95 ± 0.02 Bc | n.d. | 15.17 ± 0.53 Bab | 70 f ± 11 Cd | 74.03 ± 0.23 Cc | 2490 ± 39 Dd |
P9 | 4.15 ± 0.08 Ca | 5.7 ± 0.1 Ab | 1.71 ± 0.08 Ab | 396.3 ± 20.7 Aa | 0.61 ± 0.07 Bd | 2.22 ± 0.13 Bb | n.d. | 15.79 ± 0.21 Ba | 149 ± 3 Ab | 73.25 ± 0.17 Cd | 2750 ± 79 Cc |
LAB (Log CFU/mL) | Enterobacteriaceae (Log CFU/mL) | Yeasts (Log CFU/mL) | Molds (Log CFU/mL) | |
---|---|---|---|---|
t0 | ||||
Ct | 0.59 ± 0.03 Cc | 2.53 ± 0.07 Aa | 2.02 ± 0.02 Ca | 2.28 ± 0.02 Aa |
CA16 | 7.34 ± 0.27 Ba | 2.62 ± 0.06 Aa | 1.90 ± 0.02 Ba | 2.02 ± 0.09 Aa |
20193 | 7.63 ± 0.31 Ba | 2.53 ± 0.07 Aa | 2.10 ± 0.06 Ba | 2.00 ± 0.09 Aa |
SP1 | 7.19 ± 0.16 Cb | 2.71 ± 0.07 Aa | 2.10 ± 0.04 Aba | 2.24 ± 0.01 Aa |
T6B10 | 7.19 ± 0.23 Cab | 2.52 ± 0.09 Aa | 2.05 ± 0.07 Ba | 2.10 ± 0.03 Aa |
AM7 | 7.23 ± 0.32 Cab | 2.33 ± 0.05 Aa | 1.98 ± 0.08 Ba | 2.05 ± 0.05 Aa |
P9 | 7.33 ± 0.18 Cb | 2.61 ± 0.04 Aa | 2.04 ± 0.07 Ba | 2.22 ± 0.05 Aa |
tf | ||||
Ct | 2.60 ± 0.13 B | 1.72 ± 0.03 Bc | 3.00 ± 0.13 Ba | 2.10 ± 0.01 Aa |
CA16 | 9.00 ± 0.52 A | 2.52 ± 0.07 Aa | 1.70 ± 0.05 Bc | <10 UFC/mL |
20193 | 9.51 ± 0.47 Aa | 1.83 ± 0.02 Bb | 2.00 ± 0.04 Bb | <10 UFC/mL |
SP1 | 9.62 ± 0.29 Aa | 1.84 ± 0.02 Bb | 2.00 ± 0.02 Bb | <10 UFC/mL |
T6B10 | 9.73 ± 0.32 Aa | 1.52 ± 0.07 Bc | 2.10 ± 0.01 Bb | <10 UFC/mL |
AM7 | 9.52 ± 0.63 Aa | 2.01 ± 0.06 Bb | 2.00 ± 0.06 Bb | <10 UFC/mL |
P9 | 9.33 ± 0.38 Aa | 2.32 ± 0.11 Bab | 2.20 ± 0.05 Bb | <10 UFC/mL |
t15 | ||||
Ct | 3.70 ± 0.31 Ab | 1.02 ± 0.01 Cc | 3.30 ± 0.14 Ba | <10 UFC/mL |
CA16 | 9.20 ± 0.45 Aa | 1.20 ± 0.02 Bb | 2.30 ± 0.08 Ab | <10 UFC/mL |
20193 | 9.48 ± 0.53 Aa | 1.20 ± 0.01 Cb | 2.40 ± 0.06 Bb | <10 UFC/mL |
SP1 | 9.51 ± 0.61 Aa | 1.82 ± 0.03 Ba | 2.35 ± 0.15 Ab | <10 UFC/mL |
T6B10 | 9.62 ± 0.39 Aa | 1.10 ± 0.06 Cb | 2.40 ± 0.04 Ab | <10 UFC/mL |
AM7 | 9.40 ± 0.71 Aa | 1.00 ± 0.06 Cc | 2.30 ± 0.10 Ab | <10 UFC/mL |
P9 | 9.21 ± 0.37 Aa | 1.82 ± 0.08 Ca | 2.50 ± 0.06 Ab | <10 UFC/mL |
t30 | ||||
Ct | 3.60 ± 0.09 Ac | <10 UFC/mL | 4.50 ± 0.21 Aa | <10 UFC/mL |
CA16 | 7.90 ± 0.15 Bb | <10 UFC/mL | 2.85 ± 0.15 Ab | <10 UFC/mL |
20193 | 8.34 ± 0.33 Ba | <10 UFC/mL | 2.60 ± 0.17 Ab | <10 UFC/mL |
SP1 | 8.12 ± 0.47 Ba | <10 UFC/mL | 2.50 ± 0.18 Ab | <10 UFC/mL |
T6B10 | 8.33 ± 0.61 Ba | <10 UFC/mL | 2.50 ± 0.19 Ab | <10 UFC/mL |
AM7 | 8.20 ± 0.52 Ba | <10 UFC/mL | 2.38 ± 0.12 Ab | <10 UFC/mL |
P9 | 8.11 ± 0.55 Ba | <10 UFC/mL | 2.54 ± 0.13 Ab | <10 UFC/mL |
A | Vmax | λ | |
---|---|---|---|
CA16 | 0.590 ± 0.027 d | 0.122 ± 0.008 c | 4.363 ± 0.127 a |
DSM20193 | 0.915 ± 0.031 b | 0.381 ± 0.016 a | 3.360 ± 0.155 c |
SP1 | 0.788 ± 0.054 c | 0.113 ± 0.007 c | 3.540 ± 0.194 c |
T6B10 | 1.152 ± 0.019 a | 0.196 ± 0.008 b | 3.690 ± 0.089 c |
AM7 | 0.952 ± 0.048 b | 0.182 ± 0.009 b | 3.916 ± 0.104 b |
P9 | 0.598 ± 0.012 d | 0.103 ± 0.002 d | 4.272 ± 0.242 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demarinis, C.; Montemurro, M.; Torreggiani, A.; Pontonio, E.; Verni, M.; Rizzello, C.G. Use of Selected Lactic Acid Bacteria and Carob Flour for the Production of a High-Fibre and “Clean Label” Plant-Based Yogurt-like Product. Microorganisms 2023, 11, 1607. https://doi.org/10.3390/microorganisms11061607
Demarinis C, Montemurro M, Torreggiani A, Pontonio E, Verni M, Rizzello CG. Use of Selected Lactic Acid Bacteria and Carob Flour for the Production of a High-Fibre and “Clean Label” Plant-Based Yogurt-like Product. Microorganisms. 2023; 11(6):1607. https://doi.org/10.3390/microorganisms11061607
Chicago/Turabian StyleDemarinis, Chiara, Marco Montemurro, Andrea Torreggiani, Erica Pontonio, Michela Verni, and Carlo Giuseppe Rizzello. 2023. "Use of Selected Lactic Acid Bacteria and Carob Flour for the Production of a High-Fibre and “Clean Label” Plant-Based Yogurt-like Product" Microorganisms 11, no. 6: 1607. https://doi.org/10.3390/microorganisms11061607
APA StyleDemarinis, C., Montemurro, M., Torreggiani, A., Pontonio, E., Verni, M., & Rizzello, C. G. (2023). Use of Selected Lactic Acid Bacteria and Carob Flour for the Production of a High-Fibre and “Clean Label” Plant-Based Yogurt-like Product. Microorganisms, 11(6), 1607. https://doi.org/10.3390/microorganisms11061607