Molecular Detection of Cyclospora cayetanensis in Two Main Types of Farm Soil Using Real-Time PCR Assays and Method Modification for Commercial Potting Mix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cyclospora cayetanensis Oocysts used and Types of Soil Analyzed
2.2. Protocol for Seeding, Flotation Method, and DNA Extraction in Sandy Clay and Silt Loam Soils
2.3. Protocol Modifications for Processing (Seeding, Flotation Method, and DNA Extraction) in Commercial Potting Mix
2.4. Quantitative Real-Time PCR for Farm Soil and Commercial Potting Mix Samples
2.4.1. Quantitative Real-Time PCR for Farm Soil and Commercial Potting Mix Samples Using 18S rRNA as Target
2.4.2. Quantitative Real-Time PCR for Farm Soil and Commercial Potting Mix Samples Using Cox3 (MIt1C qPCR) as Target
2.5. Sequencing of Selected Samples
2.6. Statistical Analysis
3. Results
3.1. Detection of C. cayetanensis DNA in Silt Loam and Sandy Clay Loam Soil Samples Seeded with Different Numbers of C. cayetanensis Oocysts
3.1.1. Detection of C. cayetanensis DNA in Silt Loam and Sandy Clay Loam Soil Samples using 18S rRNA qPCR
3.1.2. Detection of C. cayetanensis DNA in Silt Loam and Sandy Clay Loam Soil Samples Seeded with 10 C. cayetanensis Oocysts (Lowest-Seeded Level) Using Mit1C qPCR
3.2. Method Modification and Detection Levels of C. cayetanensis DNA in Commercial Potting Mix Samples Seeded with Different Numbers of C. cayetanensis Oocysts
3.2.1. Method Modification and Detection Levels of C. cayetanensis DNA in Commercial Potting Mix Using 18S rRNA qPCR
3.2.2. Method Modification and Detection Levels of C. cayetanensis DNA in Commercial Potting Mix Using Mit1C qPCR
3.3. Sequencing of qPCR Amplicons from Samples of Soil Seeded with C. cayetanensis Oocysts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ortega, Y.R.; Sanchez, R. Update on Cyclospora cayetanensis, a food-borne and waterborne parasite. Clin. Microbiol. Rev. 2010, 23, 218–234. [Google Scholar] [CrossRef] [Green Version]
- Chacin-Bonilla, L. Cyclospora cayetanensis. In Global Water Pathogens Project; Fayer, R., Jakubowski, W., Eds. Part 3 Protists; Rose, J.B., Jiménez-Cisneros, B., Eds.; Michigan State University: East Lansing, MI, USA, 2017; Available online: http://www.waterpathogens.org/book/cyclospora-cayetanensis (accessed on 27 July 2019).
- Almeria, S.; Cinar, H.N.; Dubey, J.P. Cyclospora cayetanensis and Cyclosporiasis: An Update. Microorganisms 2019, 7, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Available online: https://www.cdc.gov/parasites/cyclosporiasis/outbreaks/index.html (accessed on 21 March 2023).
- Almeria, S.; da Silva, A.J.; Blessington, T.; Cloyd, T.C.; Cinar, H.N.; Durigan, M.; Murphy, H.R. Evaluation of the U.S. Food and Drug Administration validated method for detection of Cyclospora cayetanensis in high-risk fresh produce matrices and a method modification for a prepared dish. Food Microbiol. 2018, 76, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.V.; Paton, C.A.; Mtambo, M.M.; Girdwood, R.W.A. Sporulation of Cyclospora sp. oocysts. Appl. Environ. Microbiol. 1997, 63, 1631–1632. [Google Scholar] [CrossRef] [Green Version]
- Sathyanarayanan, L.; Ortega, Y. Effects of temperature and different food matrices on Cyclospora cayetanensis oocyst sporulation. J. Parasitol. 2006, 92, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Shipley, A.; Arida, J.; Almeria, S. Comparative evaluation of an easy laboratory method for the concentration of oocysts and commercial DNA isolation kits for the molecular detection of Cyclospora cayetanensis in silt loam soil samples. Microorganisms 2022, 10, 1431. [Google Scholar] [CrossRef] [PubMed]
- Escotte-Binet, S.; Da Silva, A.M.; Cancès, B.; Aubert, D.; Dubey, J.; La Carbona, S.; Villena, I.; Poulle, M.L. A rapid and sensitive method to detect Toxoplasma gondii oocysts in soil samples. Vet. Parasitol. 2019, 274, 108904. [Google Scholar] [CrossRef] [PubMed]
- Chacín-Bonilla, L. Transmission of Cyclospora cayetanensis infection: A review focusing on soil-borne cyclosporiasis. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 215–216. [Google Scholar] [CrossRef]
- Chacín-Bonilla, L.; Barrios, F.; Sanchez, Y. Epidemiology of Cyclospora cayetanensis infection in San Carlos Island, Venezuela: Strong association between socio-economic status and infection. Trans. R. Soc. Trop. Med. Hyg. 2007, 101, 1018–1024. [Google Scholar] [CrossRef]
- Bern, C.; Arrowood, M.J.; Eberhard, M.; Maguire, J.H. Cyclospora in Guatemala: Further considerations. J. Clin. Microbiol. 2002, 40, 731–732. [Google Scholar] [CrossRef] [Green Version]
- Koumans, E.H.; Katz, D.J.; Malecki, J.M.; Kumar, S.; Wahlquist, S.P.; Arrowood, M.J.; Hightower, A.W.; Herwaldt, B.L. An outbreak of cyclosporiasis in Florida in 1995: A harbinger of multistate outbreaks in 1996 and 1997. Am. J. Trop. Med. Hyg. 1998, 59, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Chacin-Bonilla, L.; Sanchez, Y.; Cardenas, R. Factors associated with Cyclospora infection in a Venezuelan community: Extreme poverty and soil transmission relate to cyclosporiasis. Trans. R. Soc. Trop. Med. Hyg. 2023, 117, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Totton, S.C.; O’Connor, A.M.; Naganathan, T.; Martinez, B.A.F.; Vriezen, E.R.; Torrence, M.E.; Sargeant, J.M. A scoping review of the detection, epidemiology and control of Cyclospora cayetanensis with an emphasis on produce, water and soil. Epidemiol. Infect. 2021, 149, E49. [Google Scholar] [CrossRef] [PubMed]
- Lakay, F.M.; Botha, A.; Prior, B.A. Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils. J. Appl. Microbiol. 2007, 102, 265–273. [Google Scholar] [CrossRef]
- Sagar, K.; Singh, S.P.; Goutam, K.K.; Konwar, B.K. Assessment of five soil DNA extraction methods and a rapid laboratory-developed method for quality soil DNA extraction for 16S rDNA-based amplification and library construction. J. Microbiol. Methods 2014, 97, 68–73. [Google Scholar] [CrossRef]
- Sidstedt, M.; Jansson, L.; Nilsson, E.; Noppa, L.; Forsman, M.; Rådström, P.; Hedman, J. Humic substances cause fluorescence inhibition in real-time polymerase chain reaction. J. Anal. Biochem. 2015, 487, 30–3717. [Google Scholar] [CrossRef] [Green Version]
- Assurian, A.; Murphy, H.; Shipley, A.; Cinar, H.N.; Da Silva, A.; Almeria, S. Assessment of commercial DNA cleanup kits for elimination of Real-Time PCR inhibitors in the detection of Cyclospora cayetanensis in cilantro. J. Food Prot. 2020, 83, 1863–1870. [Google Scholar] [CrossRef]
- Nunes, C.M.; Sinhorini, I.L.; Ogassawara, S. Influence of soil texture in the recovery of Toxocara canis eggs by a flotation method. Vet. Parasitol. 1994, 53, 269–274. [Google Scholar] [CrossRef]
- Zilberman, A.; Zimmels, Y.; Starosvetsky, J.; Zuckerman, U.; Armon, R. A Two-phase separation method for recovery of Cryptosporidium oocysts from soil samples. Water Air Soil Pollut. 2009, 203, 325–334. [Google Scholar] [CrossRef]
- Lélu, M.; Gilot-Fromont, E.; Aubert, D.; Richaume, A.; Afonso, E.; Dupuis, E.; Gotteland, C.; Marnef, F.; Poulle, M.L.; Dumètre, A.; et al. Development of a sensitive method for Toxoplasma gondii oocyst isolation in soil. Vet. Parasitol. 2011, 183, 59–67. [Google Scholar] [CrossRef]
- Steinbaum, L.; Kwong, L.H.; Ercumen, A.; Negash, M.S.; Lovely, A.J.; Njenga, S.M.; Boehm, A.B.; Pickering, A.J.; Nelson, K.L. Detecting and enumerating soil-transmitted helminth eggs in soil: New method development and results from field testing in Kenya and Bangladesh. PLoS Negl. Trop. Dis. 2017, 11, e0005522. [Google Scholar] [CrossRef] [Green Version]
- Maganira, J.D.; Mwang’onde, B.J.; Kidima, W.; Mwita, C.J.; Nkwengulila, G.; Höglund, J. Validation of droplet digital Polymerase Chain Reaction for the detection and absolute quantification of Taenia solium eggs in spiked soil samples. Acta Trop. 2019, 200, 105175. [Google Scholar] [CrossRef] [PubMed]
- Crops Suitable for Sandy Soil. Crops Suitable for Sandy Soil—A Full Guide|Agri Farming. Available online: https://www.agrifarming.in/crops-suitable-for-sandy-soil-a-full-guide (accessed on 21 March 2023).
- Murphy, H.R.; Lee, S.; da Silva, A.J. Evaluation of an improved U.S. Food and Drug Administration method for the detection of Cyclospora cayetanensis in produce using real-time PCR. J. Food Prot. 2017, 80, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- BAM Chapter 19b: Molecular Detection of Cyclospora cayetanensis in Fresh Produce Using Real-Time PCR. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-19b-molecular-detection-cyclospora-cayetanensis-fresh-produce-using-real-time-pcr (accessed on 21 March 2023).
- Balan, K.V.; Mammel, M.; Lipman, D.; Babu, U.; Harrison, L.M.; Almeria, S.; Durigan, M.; Leonard, S.R.; Jang, H.; Gebru, S.; et al. Development and single laboratory evaluation of a refined and specific real-time PCR detection method, using mitochondrial primers (Mit1C), for the detection of Cyclospora cayetanensis in produce. J. Food Prot. 2023, 86, 100037. [Google Scholar] [CrossRef]
- Giangaspero, A.; Marangi, M.; Koehler, A.V.; Papini, R.; Normanno, G.; Lacasella, V.; Lonigro, A.; Gasser, R.B. Molecular detection of Cyclospora in water, soil, vegetables and humans in southern Italy signals a need for improved monitoring by health authorities. Int. J. Food. Microbiol. 2015, 211, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Onstad, N.H.; Beever, J.E.; Miller, M.R.; Green, M.L.; Witola, W.H.; Davidson, P.C. Cyclospora cayetanensis Presence in the Environment—A Case Study in the Chicago Metropolitan Area. Environments 2019, 6, 80. [Google Scholar] [CrossRef] [Green Version]
- Resendiz-Nava, C.N.; Orozco-Mosqueda, G.E.; Mercado-Silva, E.M.; Flores-Robles, S.; Silva-Rojas, H.V.; Nava, G.M. A Molecular Tool for Rapid Detection and Traceability of Cyclospora cayetanensis in Fresh Berries and Berry Farm Soils. Foods 2020, 9, 261. [Google Scholar] [CrossRef] [Green Version]
No. Oocysts Seeded | Silty Loam (OH) | Sandy Clay Loam (GA) | |||||
---|---|---|---|---|---|---|---|
Sample Number | 18S rRNA | IAC | 18S rRNA | IAC | |||
No. Positive Replicates | Mean Cq Value | Mean Cq Value | No. Positive Replicates | Mean Cq Value | Mean Cq Value | ||
0 | 1 | 0 | Und | 26.7 ± 0.2 | 0 | Und | 25.4 ± 0.1 |
2 | 0 | Und | 26.5 ± 0.2 | 0 | Und | 25.8 ± 0.1 | |
3 | 0 | Und | 26.4 ± 0.2 | 0 | Und | 24.8 ± 0.3 | |
4 | 0 | Und | 26.8 ± 0.2 | 0 | Und | 25.4 ± 0.1 | |
5 | 0 | Und | 25.8 ± 0.1 | 0 | Und | 25.2 ± 0.2 | |
Average | NA | 26.4 ± 0.4 | NA | 25.3 ± 0.4 | |||
10 | 1 | 0 | Und | 26.8 ± 0.3 | 0 | Und | 25.1 ± 0.1 |
2 | 1 | 37.6 | 26.9 ± 0.3 | 0 | Und | 25.4 ± 0.1 | |
3 | 3 | 36.4 ± 0.7 | 26.8 ± 0.3 | 0 | Und | 25.2 ± 0.2 | |
4 | 0 | Und | 26.4 ± 0.1 | 0 | Und | 24.8 ± 0.1 | |
5 | 1 | 36.2 | 26.5 ± 0.1 | 0 | Und | 24.8 ± 0.1 | |
6 | 1 | 37.04 | 26.5 ± 0.1 | 0 | Und | 25.4 ± 0.1 | |
7 | 3 | 37.0 ± 1.0 | 26.4 ± 0.1 | 0 | Und | 25.8 ± 0.1 | |
8 | 1 | 37.5 | 26.1 ± 0.1 | 0 | Und | 26.0 ± 0.3 | |
9 | 2 | 36.7 ± 0.7 | 26.5 ± 0.1 | 2 | 36.3 ± 0.7 | 27.2 ± 2.1 | |
10 | 1 | 36.3 | 26.6 ± 0.1 | 2 | 37.5 ± 0.3 | 25.2 ± 0.2 | |
Average | 36.8 ± 0.5 | 26.2 ± 0.3 | 36.9 ± 0.5 | 25.5 ± 0.7 | |||
20 | 1 | 2 | 37.4 ± 0.4 | 26.5 ± 0.2 | 0 | Und | 27.0 ± 0.7 |
2 | 1 | 36.9 | 27.0 ± 0.2 | 2 | 37.2 ± 0.5 | 24.7 ± 0.3 | |
3 | 1 | 36.9 | 26.7 ± 0.3 | 0 | Und | 26.9 ± 0.3 | |
4 | 1 | 37.7 | 28.2 ± 0.5 | 1 | 37.1 | 26.5 ± 0.1 | |
5 | 2 | 37.3 ± 0.1 | 26.7 ± 0.3 | 0 | Und | 26.8 ± 1.0 | |
6 | 2 | 37.6 ± 0.1 | 26.5 ± 0.6 | 1 | 37.5 | 26.4 ± 0.0 | |
7 | 1 | 36.8 | 27.1 ± 0.3 | 0 | Und | 26.3 ± 0.3 | |
8 | 1 | 37.0 | 27.2 ± 0.3 | 1 | 36.5 | 25.9 ± 0.2 | |
9 | 2 | 36.6 ± 0.5 | 28.0 ± 0.3 | 0 | Und | 25.8 ± 0.1 | |
10 | 1 | 36.4 | 26.5 ± 0.2 | 2 | 37.3 ± 0.0 | 25.8 ± 0.1 | |
Average | 37.2 ± 0.5 | 27.1 ± 0.1 | 37.1 ± 0.1 | 26.5 ± 0.6 | |||
100 | 1 | 3 | 34.8 ± 1.0 | 24.6 ± 0.1 | 2 | 35.6 ± 0.6 | 25.1 ± 0.1 |
2 | 3 | 35.0 ± 1.5 | 24.8 ± 0.1 | 3 | 36.1 ± 0.8 | 25.1 ± 0.05 | |
3 | 3 | 36.4 ± 0.1 | 24.5 ± 0.1 | 3 | 36.4 ± 0.2 | 25.0 ± 0.1 | |
4 | 3 | 35.6 ± 1.2 | 24.4 ± 0.1 | 2 | 36.2 ± 0.6 | 24.9 ± 0.2 | |
5 | 3 | 35.1 ± 0.6 | 24.3 ± 0.2 | 0 | Und | 24.9 ± 0.2 | |
Average | 35.4 ± 0.6 | 24.5 ± 0.2 | 36.1 ± 0.6 | 25.0 ± 0.1 |
No. Oocysts Inoculated | No. Samples Analyzed | No. Samples Positive | % Positive Samples | Mean Cq ± Standard Deviation | |
---|---|---|---|---|---|
Silt loam 18S rRNA | 0 | 5 | 0 | 0 | NA |
10 | 10 | 8 | 80 | 36.8 ± 0.5 | |
20 | 10 | 10 | 100 | 37.2 ± 0.5 | |
100 | 5 | 5 | 100 | 35.4 ± 0.6 | |
Silt loam Mit1C | 0 | 1 | 0 | 0 | NA |
10 | 10 | 10 | 100 | 34.5 ± 1.8 | |
Sandy clay loam 18S rRNA | 0 | 5 | 0 | 0 | NA |
10 | 10 | 2 | 20 | 36.9 ± 0.5 | |
20 | 10 | 5 | 50 | 37.1 ± 0.1 | |
100 | 5 | 4 | 80 | 36.1 ± 0.6 | |
Sandy clay loam Mit1C | 0 | 1 | 0 | 0 | NA |
10 | 10 | 6 | 60 | 33.3 ± 2.6 |
Commercial Potting Mix (5 g) | No. Oocysts Inoculated | No. Samples Analyzed | No. Samples Positive | % Positive Samples | Mean Cq ± Standard Deviation |
---|---|---|---|---|---|
18S rRNA | 50 | 10 | 10 | 100 | 36.4 ± 0.9 |
20 | 10 | 2 | 20 | 37.2 ± 0.3 | |
Mit1C | 20 | 10 | 3 | 30 | 35.2 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arida, J.; Shipley, A.; Almeria, S. Molecular Detection of Cyclospora cayetanensis in Two Main Types of Farm Soil Using Real-Time PCR Assays and Method Modification for Commercial Potting Mix. Microorganisms 2023, 11, 1506. https://doi.org/10.3390/microorganisms11061506
Arida J, Shipley A, Almeria S. Molecular Detection of Cyclospora cayetanensis in Two Main Types of Farm Soil Using Real-Time PCR Assays and Method Modification for Commercial Potting Mix. Microorganisms. 2023; 11(6):1506. https://doi.org/10.3390/microorganisms11061506
Chicago/Turabian StyleArida, Joseph, Alicia Shipley, and Sonia Almeria. 2023. "Molecular Detection of Cyclospora cayetanensis in Two Main Types of Farm Soil Using Real-Time PCR Assays and Method Modification for Commercial Potting Mix" Microorganisms 11, no. 6: 1506. https://doi.org/10.3390/microorganisms11061506
APA StyleArida, J., Shipley, A., & Almeria, S. (2023). Molecular Detection of Cyclospora cayetanensis in Two Main Types of Farm Soil Using Real-Time PCR Assays and Method Modification for Commercial Potting Mix. Microorganisms, 11(6), 1506. https://doi.org/10.3390/microorganisms11061506