β-Lactamase Genes without Limits
Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonomo, R.A.; Burd, E.M.; Conly, J.; Limbago, B.M.; Poirel, L.; Segre, J.A.; Westblade, L.F. Carbapenemase-Producing Organisms: A Global Scourge. Clin. Infect. Dis. 2018, 66, 1290–1297. [Google Scholar] [CrossRef]
- Ramirez, M.S.; Bonomo, R.A.; Tolmasky, M.E. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules 2020, 10, 720. [Google Scholar] [CrossRef]
- Bonnin, R.A.; Jousset, A.B.; Emeraud, C.; Oueslati, S.; Dortet, L.; Naas, T. Genetic Diversity, Biochemical Properties, and Detection Methods of Minor Carbapenemases in Enterobacterales. Front. Med. 2021, 7, 616490. [Google Scholar] [CrossRef] [PubMed]
- Naas, T.; Oueslati, S.; Bonnin, R.A.; Dabos, M.L.; Zavala, A.; Dortet, L.; Retailleau, P.; Iorga, B.I. Beta-Lactamase Database (BLDB) Structure and Function. J. Enzym. Inhib. Med. Chem. 2017, 32, 917–919. [Google Scholar] [CrossRef] [PubMed]
- Jousset, A.B.; Oueslati, S.; Emeraud, C.; Bonnin, R.A.; Dortet, L.; Iorga, B.I.; Naas, T. KPC-39-Mediated Resistance to Ceftazidime-Avibactam in a Klebsiella pneumoniae ST307 Clinical Isolate. Antimicrob. Agents Chemother. 2021, 65, e0116021. [Google Scholar] [CrossRef] [PubMed]
- Dabos, L.; Raczynska, J.E.; Bogaerts, P.; Zavala, A.; Girlich, D.; Bonnin, R.A.; Dortet, L.; Peyrat, A.; Retailleau, P.; Iorga, B.I.; et al. Structural and Biochemical Features of OXA-517: A Carbapenem and Expanded-Spectrum Cephalosporin Hydrolyzing OXA-48 Variant. Antimicrob. Agents Chemother. 2023, 17, e0109522. [Google Scholar] [CrossRef] [PubMed]
- Piccirilli, A.; Cherubini, S.; Azzini, A.; Tacconelli, E.; Lo Cascio, G.; Maccacaro, L.; Bazaj, A.; Naso, L.; Amicosante, G.; LTCF-Veneto Working Group; et al. Whole-Genome Sequencing (WGS) of Carbapenem-Resistant K. pneumoniae Isolated in Long-Term Care Facilities in the Northern Italian Region. Microorganisms 2021, 9, 1985. [Google Scholar] [CrossRef] [PubMed]
- Javaudin, F.; Bémer, P.; Batard, E.; Montassier, E. Impact of Phage Therapy on Multidrug-Resistant Escherichia coli Intestinal Carriage in a Murine Model. Microorganisms 2021, 9, 2580. [Google Scholar] [CrossRef] [PubMed]
- Stein, C.; Lange, I.; Rödel, J.; Pletz, M.; Kipp, F. Targeted Molecular Detection of Nosocomial Carbapenemase-Producing Gram-Negative Bacteria—On Near- and Distant-Patient Surfaces. Microorganisms 2021, 9, 1190. [Google Scholar] [CrossRef] [PubMed]
- Madzgalla, S.; Duering, H.; Hey, J.; Neubauer, S.; Feller, K.; Ehricht, R.; Pletz, M.; Makarewicz, O. Assessment of Phenotype Relevant Amino Acid Residues in TEM-β-Lactamases by Mathematical Modelling and Experimental Approval. Microorganisms 2021, 9, 1726. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.D.; Peirano, G.; Kock, M.M.; Strydom, K.-A.; Matsumura, Y. The Global Ascendency of OXA-48-Type Carbapenemases. Clin. Microbiol. Rev. 2019, 33, e00102-19. [Google Scholar] [CrossRef] [PubMed]
- Dabos, L.; Oueslati, S.; Bernabeu, S.; Bonnin, R.; Dortet, L.; Naas, T. To Be or Not to Be an OXA-48 Carbapenemase. Microorganisms 2022, 10, 258. [Google Scholar] [CrossRef] [PubMed]
- Emeraud, C.; Biez, L.; Girlich, D.; Jousset, A.B.; Naas, T.; Bonnin, R.A.; Dortet, L. Screening of OXA-244 producers, a difficult-to-detect and emerging OXA-48 variant? J. Antimicrob. Chemother. 2020, 75, 2120–2123. [Google Scholar] [CrossRef] [PubMed]
- Frenk, S.; Rakovitsky, N.; Kon, H.; Rov, R.; Abramov, S.; Lurie-Weinberger, M.; Schwartz, D.; Pinco, E.; Lellouche, J.; Carmeli, Y. OXA-900, a Novel OXA Sub-Family Carbapenemase Identified in Citrobacter freundii, Evades Detection by Commercial Molecular Diagnostics Tests. Microorganisms 2021, 9, 1898. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.; Carvalho, J.; Martínez-Álvarez, S.; Sadi, M.; Capita, R.; Alonso-Calleja, C.; Rabbi, F.; Dapkevicius, M.; Igrejas, G.; Torres, C.; et al. Characterization of ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Clinical Samples in a Northern Portuguese Hospital: Predominance of CTX-M-15 and High Genetic Diversity. Microorganisms 2021, 9, 1914. [Google Scholar] [CrossRef] [PubMed]
- Karami, N.; KK, S.; Yazdanshenas, S.; Lin, Y.; Jaén-Luchoro, D.; Ekedahl, E.; Parameshwaran, S.; Lindblom, A.; Åhrén, C.; Westerlund, F. Identity of blaCTX-M Carrying Plasmids in Sequential ESBL-E. coli Isolates from Patients with Recurrent Urinary Tract Infections. Microorganisms 2021, 9, 1138. [Google Scholar] [CrossRef] [PubMed]
- Gaviria, L.; Montsant, L.; Azuaje, C.; González-Díaz, A.; Horcajada, J.; Limón, E.; Viñas, M.; Espinal, P.; Fusté, E. A Descriptive Analysis of Urinary ESBL-Producing-Escherichia coli in Cerdanya Hospital. Microorganisms 2022, 10, 488. [Google Scholar] [CrossRef] [PubMed]
- De Witte, C.; Vereecke, N.; Theuns, S.; De Ruyck, C.; Vercammen, F.; Bouts, T.; Boyen, F.; Nauwynck, H.; Haesebrouck, F. Presence of Broad-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Zoo Mammals. Microorganisms 2021, 9, 834. [Google Scholar] [CrossRef] [PubMed]
- Abboud, Z.; Galuppo, L.; Tolone, M.; Vitale, M.; Puleio, R.; Osman, M.; Loria, G.; Hamze, M. Molecular Characterization of Antimicrobial Resistance and Virulence Genes of Bacterial Pathogens from Bovine and Caprine Mastitis in Northern Lebanon. Microorganisms 2021, 9, 1148. [Google Scholar] [CrossRef] [PubMed]
- Carey, A.; Capik, S.; Giebel, S.; Nickodem, C.; Piñeiro, J.; Scott, H.; Vinasco, J.; Norman, K. Prevalence and Profiles of Antibiotic Resistance Genes mph(A) and qnrB in Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Isolated from Dairy Calf Feces. Microorganisms 2022, 10, 411. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naas, T.; Dabos, L.; Bonnin, R.A. β-Lactamase Genes without Limits. Microorganisms 2023, 11, 1200. https://doi.org/10.3390/microorganisms11051200
Naas T, Dabos L, Bonnin RA. β-Lactamase Genes without Limits. Microorganisms. 2023; 11(5):1200. https://doi.org/10.3390/microorganisms11051200
Chicago/Turabian StyleNaas, Thierry, Laura Dabos, and Rémy A. Bonnin. 2023. "β-Lactamase Genes without Limits" Microorganisms 11, no. 5: 1200. https://doi.org/10.3390/microorganisms11051200
APA StyleNaas, T., Dabos, L., & Bonnin, R. A. (2023). β-Lactamase Genes without Limits. Microorganisms, 11(5), 1200. https://doi.org/10.3390/microorganisms11051200