Cyanobacterial Algal Bloom Monitoring: Molecular Methods and Technologies for Freshwater Ecosystems
Abstract
:1. Introduction
2. Methods for the Disruption and Lysis of Algal Bloom Cyanobacteria
2.1. Chemical Cell Lysis
2.2. Ultrasonic Cell Lysis
Lysis Method | Lysis Efficiency | Advantages | Limitations | |
---|---|---|---|---|
Chemical | Detergent | 37% [43] | High efficiency, high yield, low DNA degradation | Deposit contaminants that interfere with downstream assays |
Detergent-enzyme cocktail | 100% [43] | |||
Ultrasonic | Bath sonication | 73% [42] | Avoids chemical contaminants, increases purity of extracted biomolecule | Long processing time, incomplete lysis, DNA shearing |
Probe sonication | 80% [56] | |||
Mechanical | Bead beating | 50–99% [42,43] | Avoids chemical contaminants, increases purity of extracted biomolecule | DNA shearing (requires optimal bead beating parameters), inconsistent lysis efficiency depending on cell morphology |
Cryogenic | Freeze-thaw | 19–100% [42,56] | Avoids chemical contaminants, increases purity of extracted biomolecule | Inconsistent lysis efficiency |
Lyophilization | 92–98% [42] | High efficiency, avoids chemical contaminants, increases purity of extracted biomolecule | Long waiting times can limit the use of rapid detection methods |
2.3. Physical Cell Lysis
2.4. Combinatorial Cell Lysis Methodologies
3. Methods and Technologies for Cyanobacterial and Cyanotoxin Monitoring
3.1. Conventional Methods and Techniques
3.2. Molecular Methods and Techniques
3.2.1. Polymerase Chain Reaction (PCR) and DNA Sequencing
3.2.2. Microfluidic and DNA Capture Devices
Method | Sensitivity | Advantages | Limitations |
---|---|---|---|
Enzyme-linked immunosorbent assay (ELISA) | 0.02–0.30 ng/mL [31,76] | Rapid, high sensitivity, the limit of detection within Health Canada guidelines | Low specificity, congener-independent, cross-reaction with cyanotoxin metabolites lead to false positives/overestimation |
Liquid chromatography-mass spectrometry (LC/MS) | 0.000004–0.02 ng/mL [85,86] | High sensitivity, the limit of detection within Health Canada guidelines, congener-specific | Few standards are commercially available, require highly trained personnel, high recurrent cost |
Quantitative polymerase chain reaction (qPCR) targeting mcyE | 3–63 gene copies per reaction [108] | Rapid, allows both qualitative and quantitative analysis, allows assessment of cyanotoxin potential | Environmental contaminants can inhibit amplification, species with sequence variations may go undetected, detection of non-viable cells |
Microfluidic device | 0.16 ng/mL [120,121] | Rapid, portable, and suitable for the field use, requires minimal sample volume | Reduced sensitivity, interference from sample background |
DNA capture targeting mcyE | 1–5 fmol of DNA [126] | Rapid, convenient, potential for field use, requires minimal sample volume | Reduced sensitivity, interference from sample background, limited testing on complex environmental samples. |
4. Future Directions
4.1. Remote Sensing/Satellite Imaging
4.2. Artificial Intelligence and Machine-Learning-Based Prediction Tools
Method | Sensitivity | Advantages | Limitations |
---|---|---|---|
Microscopic enumeration | Not applicable | Simplicity, identification up to the genus and species levels | Time-consuming, requires trained personnel, and accuracy is dependent on the skill of the analyst |
Quantitative polymerase chain reaction (qPCR) targeting 16 s rRNA | 25 gene copies per reaction [98] | Rapid, allows both qualitative and quantitative analysis | Non-specificity of a target gene, environmental contaminants inhibit amplification, detection of unviable cells |
Antibody microarray chip (CYANOCHIP) | 100 cells [122,123] | Rapid, convenient, potential for field use, requires minimal sample volume | Reduced sensitivity, interference from sample background |
Biosensor assay | 50–500 cells/mL [125] | Rapid, convenient, potential for field use, requires minimal sample volume | Reduced sensitivity, interference from sample background |
DNA capture device targeting 16 s rRNA | 1–5 fmol of DNA [126] | Rapid, convenient, potential for field use, requires minimal sample volume | Reduced sensitivity, interference from sample background |
Remote sensing | 1 Cyanobacteria Index (CI) value [132] | Extensive coverage of the geographical area, useful for inland bodies of water | Variability in the correlation between surrogate pigment and toxicity, inaccessible for smaller areas, and differing cyanobacterial composition leads to misinterpretation |
Artificial intelligence (convolutional neural network) | 50 cells [141] | Capable of complex analysis, reducing the need for onsite expertise | Need to integrate multiple algorithms for high reliability, requires extensive and diverse datasets, not applicable across geospatial differences |
5. Conclusions
- Cyanobacterial cells resist disruption methods making quantitative recovery of potential diagnostic molecules difficult. However, optimizing protocol parameters and combining multiple lysis methods can lead to complete disruption
- ELISA-based toxin detection methods (including microfluidic devices) alone cannot resolve or quantify all microcystin congeners. Chromatography–mass spectrometry methods can unambiguously identify microcystins and other cyanotoxins. However, the obtained information is difficult to incorporate into a public health response due to the lack of commercially available standards.
- DNA diagnostic methods (PCR, DNA capture devices) targeting the 16 s rRNA gene, while useful for other bacteria, is of limited value for cyanobacteria due to insufficient specificity. This obstacle can be countered by metabarcoding or targeting a toxin gene such as the Mcy (microcystin synthetase) gene cluster.
- Bloom monitoring may be aided by novel technologies, particularly in quickly establishing spatiotemporal characteristics of specific events. These technologies can augment traditional characterization methods in producing a public health response. However, while ongoing, standardization of common tools for this ancillary information still needs to be completed.
- Newer/modern technologies, including satellite imaging, biosensors, and machine learning/artificial intelligence methods, can be integrated with the conventional/standard molecular methods to overcome the problems associated with cyanobacterial detection in recreational water ecosystems, including the Great Lakes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bekker, A.; Holland, H.D.; Wang, P.-L.; Rumble, D.; Stein, H.J.; Hannah, J.L.; Coetzee, L.L.; Beukes, N.J. Dating the Rise of Atmospheric Oxygen. Nature 2004, 427, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Baracaldo, P.; Cardona, T. On the Origin of Oxygenic Photosynthesis and Cyanobacteria. New Phytol. 2020, 225, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, R.P.; Madamwar, D.; Incharoensakdi, A. Bloom Dynamics of Cyanobacteria and Their Toxins: Environmental Health Impacts and Mitigation Strategies. Front. Microbiol. 2015, 6, 1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial Blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Hoiczyk, E.; Hansel, A. Cyanobacterial Cell Walls: News from an Unusual Prokaryotic Envelope. J. Bacteriol. 2000, 182, 1191–1199. [Google Scholar] [CrossRef] [Green Version]
- Bothe, H.; Schmitz, O.; Yates, M.G.; Newton, W.E. Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria. Microbiol. Mol. Biol. Rev. MMBR 2010, 74, 529–551. [Google Scholar] [CrossRef] [Green Version]
- Paerl, H. The Cyanobacterial Nitrogen Fixation Paradox in Natural Waters. F1000Research 2017, 6, 244. [Google Scholar] [CrossRef] [Green Version]
- Van Dolah, F.M. Marine Algal Toxins: Origins, Health Effects, and Their Increased Occurrence. Environ. Health Perspect. 2000, 108 (Suppl. S1), 133–141. [Google Scholar] [CrossRef] [Green Version]
- Hisbergues, M.; Christiansen, G.; Rouhiainen, L.; Sivonen, K.; Börner, T. PCR-Based Identification of Microcystin-Producing Genotypes of Different Cyanobacterial Genera. Arch. Microbiol. 2003, 180, 402–410. [Google Scholar] [CrossRef]
- Plaas, H.E.; Paerl, H.W. Toxic Cyanobacteria: A Growing Threat to Water and Air Quality. Environ. Sci. Technol. 2021, 55, 44–64. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Díaz, R.J.; Levin, L.A.; Turner, R.E.; Gilbert, D.; Zhang, J. Dynamics and Distribution of Natural and Human-Caused Hypoxia. Biogeosciences 2010, 7, 585–619. [Google Scholar] [CrossRef] [Green Version]
- Paerl, H.W. Controlling Harmful Cyanobacterial Blooms in a Climatically More Extreme World: Management Options and Research Needs. J. Plankton Res. 2017, 39, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Izaguirre, G.; Taylor, W.D. A Guide to Geosmin- and MIB-Producing Cyanobacteria in the United States. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2004, 49, 19–24. [Google Scholar] [CrossRef]
- Jüttner, F.; Watson, S.B. Biochemical and Ecological Control of Geosmin and 2-Methylisoborneol in Source Waters. Appl. Environ. Microbiol. 2007, 73, 4395–4406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Song, G.; Li, Y.; Yu, G.; Hou, X.; Gan, Z.; Li, R. The Diversity, Origin, and Evolutionary Analysis of Geosmin Synthase Gene in Cyanobacteria. Sci. Total Environ. 2019, 689, 789–796. [Google Scholar] [CrossRef]
- Watson, S.B.; Ridal, J.; Boyer, G.L. Taste and Odour and Cyanobacterial Toxins: Impairment, Prediction, and Management in the Great Lakes. Can. J. Fish. Aquat. Sci. 2008, 65, 1779–1796. [Google Scholar] [CrossRef]
- Miller, T.R.; Beversdorf, L.J.; Weirich, C.A.; Bartlett, S.L. Cyanobacterial Toxins of the Laurentian Great Lakes, Their Toxicological Effects, and Numerical Limits in Drinking Water. Mar. Drugs 2017, 15, 160. [Google Scholar] [CrossRef] [Green Version]
- Svirčev, Z.; Lalić, D.; Savić, G.B.; Tokodi, N.; Backović, D.D.; Chen, L.; Meriluoto, J.; Codd, G.A. Global Geographical and Historical Overview of Cyanotoxin Distribution and Cyanobacterial Poisonings. Arch. Toxicol. 2019, 93, 2429–2481. [Google Scholar] [CrossRef]
- Ferrão-Filho, A.d.S.; Kozlowsky-Suzuki, B. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals. Mar. Drugs 2011, 9, 2729–2772. [Google Scholar] [CrossRef]
- Shi, L.; Du, X.; Liu, H.; Chen, X.; Ma, Y.; Wang, R.; Tian, Z.; Zhang, S.; Guo, H.; Zhang, H. Update on the Adverse Effects of Microcystins on the Liver. Environ. Res. 2021, 195, 110890. [Google Scholar] [CrossRef]
- Steffen, M.M.; Belisle, B.S.; Watson, S.B.; Boyer, G.L.; Wilhelm, S.W. Status, Causes and Controls of Cyanobacterial Blooms in Lake Erie. J. Gt. Lakes Res. 2014, 40, 215–225. [Google Scholar] [CrossRef]
- Makarewicz, J.C.; Boyer, G.L.; Lewis, T.W.; Guenther, W.; Atkinson, J.; Arnold, M. Spatial and Temporal Distribution of the Cyanotoxin Microcystin-LR in the Lake Ontario Ecosystem: Coastal Embayments, Rivers, Nearshore and Offshore, and Upland Lakes. J. Gt. Lakes Res. 2009, 35, 83–89. [Google Scholar] [CrossRef]
- Almuhtaram, H.; Cui, Y.; Zamyadi, A.; Hofmann, R. Cyanotoxins and Cyanobacteria Cell Accumulations in Drinking Water Treatment Plants with a Low Risk of Bloom Formation at the Source. Toxins 2018, 10, 430. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, S.L.; Brunner, S.L.; Klump, J.V.; Houghton, E.M.; Miller, T.R. Spatial Analysis of Toxic or Otherwise Bioactive Cyanobacterial Peptides in Green Bay, Lake Michigan. J. Gt. Lakes Res. 2018, 44, 924–933. [Google Scholar] [CrossRef]
- Sterner, R.W.; Reinl, K.L.; Lafrancois, B.M.; Brovold, S.; Miller, T.R. A First Assessment of Cyanobacterial Blooms in Oligotrophic Lake Superior. Limnol. Oceanogr. 2020, 65, 2984–2998. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency; Environment and Climate Change Canada 2022 Progress Report of the Parties. Pursuant to the 2012 Canada-United States Great Lakes Water Quality Agreement. Cat. No.: En161-25E-PDF. EPA 905R22003. Available online: https://binational.net/wp-content/uploads/2022/07/2022-Progress-Report-of-the-Parties.pdf (accessed on 13 March 2023).
- United States Environmental Protection Agency Determination of Cyanotoxins in Drinking and Ambient Freshwaters. Available online: https://www.epa.gov/cyanohabs/determination-cyanotoxins-drinking-and-ambient-freshwaters (accessed on 18 February 2023).
- Health Canada Guidelines for Canadian Recreational Water Quality—Cyanobacteria and Their Toxins. Available online: https://www.canada.ca/en/health-canada/services/publications/healthy-living/guidance-canadian-recreational-water-quality-cyanobacteria-toxins.html (accessed on 18 February 2023).
- Shoemaker, J.A.; Tettenhorst, D.R.; de la Cruz, A. Method 544. Determination of Microcystins and Nodularins in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) 2015. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=306953&simpleSearch=1&searchAll=544 (accessed on 18 February 2023).
- Shoemaker, J.A.; Tettenhorst, D.R.; de la Cruz, A. Single Laboratory Validated Method for Determination of Microcystins and Nodularin in Ambient Freshwaters by Solid Phase Extraction and Liquid Chromatography/ Tandem Mass Spectrometry (LC/MS/MS) 2017. Available online: https://www.epa.gov/sites/default/files/2017-11/documents/microcystin_method_for_ambient_water_nov_2017.pdf (accessed on 18 February 2023).
- Zaffiro, A.; Rosenblum, L.; Wendelken, S.C. Method 546: Determination of Total Microcystins and Nodularins in Drinking Water and Ambient Water by Adda Enzyme-Linked Immunosorbent Assay 2016. Available online: https://www.epa.gov/sites/default/files/2016-09/documents/method-546-determination-total-microcystins-nodularins-drinking-water-ambient-water-adda-enzyme-linked-immunosorbent-assay.pdf (accessed on 18 February 2023).
- Marcuello, C. Present and Future Opportunities in the Use of Atomic Force Microscopy to Address the Physico-Chemical Properties of Aquatic Ecosystems at the Nanoscale Level. Int. Aquat. Res. 2022, 14, 231–240. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, J.; Fu, J.; Shi, J.; Jiang, G. Biomonitoring: An Appealing Tool for Assessment of Metal Pollution in the Aquatic Ecosystem. Anal. Chim. Acta 2008, 606, 135–150. [Google Scholar] [CrossRef]
- Ceballos-Laita, L.; Marcuello, C.; Lostao, A.; Calvo-Begueria, L.; Velazquez-Campoy, A.; Bes, M.T.; Fillat, M.F.; Peleato, M.-L. Microcystin-LR Binds Iron, and Iron Promotes Self-Assembly. Environ. Sci. Technol. 2017, 51, 4841–4850. [Google Scholar] [CrossRef]
- Pillet, F.; Dague, E.; Ilić, J.P.; Ružić, I.; Rols, M.-P.; DeNardis, N.I. Changes in Nanomechanical Properties and Adhesion Dynamics of Algal Cells during Their Growth. Bioelectrochem. Amst. Neth. 2019, 127, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Respondek, Z.; Jerz, D.; Świsłowski, P.; Rajfur, M. Active Biomonitoring of Heavy Metal Concentrations in Aquatic Environment Using Mosses and Algae. Water 2022, 14, 3335. [Google Scholar] [CrossRef]
- Jin, C.; Mesquita, M.M.F.; Deglint, J.L.; Emelko, M.B.; Wong, A. Quantification of Cyanobacterial Cells via a Novel Imaging-Driven Technique with an Integrated Fluorescence Signature. Sci. Rep. 2018, 8, 9055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billi, D.; Grilli Caiola, M.; Paolozzi, L.; Ghelardini, P. A Method for DNA Extraction from the Desert Cyanobacterium Chroococcidiopsis and Its Application to Identification of FtsZ. Appl. Environ. Microbiol. 1998, 64, 4053–4056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiore, M.F.; Moon, D.H.; Tsai, S.M.; Lee, H.; Trevors, J.T. Miniprep DNA Isolation from Unicellular and Filamentous Cyanobacteria. J. Microbiol. Methods 2000, 39, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-Y.; Lin, G.-M.; Xing, W.-Y.; Zhang, C.-C. Diversity of Growth Patterns Probed in Live Cyanobacterial Cells Using a Fluorescent Analog of a Peptidoglycan Precursor. Front. Microbiol. 2018, 9, 791. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Aryasomayajula, A.; Selvaganapathy, P.R. A Review on Macroscale and Microscale Cell Lysis Methods. Micromachines 2017, 8, 83. [Google Scholar] [CrossRef]
- Kim, I.S.; Nguyen, G.H.; Kim, S.; Lee, J.; Yu, H.-W. Evaluation of Methods for Cyanobacterial Cell Lysis and Toxin (Microcystin-LR) Extraction Using Chromatographic and Mass Spectrometric Analyses. Environ. Eng. Res. 2009, 14, 250–254. [Google Scholar] [CrossRef]
- Mehta, K.K.; Evitt, N.H.; Swartz, J.R. Chemical Lysis of Cyanobacteria. J. Biol. Eng. 2015, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, B.; Agrawal, A.; Ledwani, L.; Vaiphei, S.T.; Jain, S. An Efficient Method for DNA Extraction from Cyanobacteria Isolated from Hypersaline and Marine Environments. J. Phycol. 2019, 55, 733–737. [Google Scholar] [CrossRef]
- Kim Tiam, S.; Comte, K.; Dalle, C.; Duval, C.; Pancrace, C.; Gugger, M.; Marie, B.; Yéprémian, C.; Bernard, C. Development of a New Extraction Method Based on High-Intensity Ultra-Sonication to Study RNA Regulation of the Filamentous Cyanobacteria Planktothrix. PLoS ONE 2019, 14, e0222029. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.P.; Rastogi, R.P.; Häder, D.-P.; Sinha, R.P. An Improved Method for Genomic DNA Extraction from Cyanobacteria. World J. Microbiol. Biotechnol. 2011, 27, 1225–1230. [Google Scholar] [CrossRef]
- Xiao, Z.; Yang, G.; Yan, D.; Li, S.; Chen, Z.; Li, W.; Wu, Y.; Chen, H. Effects of Diverse Materials-Based Methods on DNA Extraction for Clostridium Difficle from Stool Samples. Mater. Express 2019, 9, 509–516. [Google Scholar] [CrossRef]
- Emaus, M.N.; Anderson, J.L. Simultaneous Cell Lysis and DNA Extraction from Whole Blood Using Magnetic Ionic Liquids. Anal. Bioanal. Chem. 2020, 412, 8039–8049. [Google Scholar] [CrossRef]
- Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR Inhibitors—Occurrence, Properties and Removal. J. Appl. Microbiol. 2012, 113, 1014–1026. [Google Scholar] [CrossRef]
- Koshy, L.; Anju, A.L.; Harikrishnan, S.; Kutty, V.R.; Jissa, V.T.; Kurikesu, I.; Jayachandran, P.; Jayakumaran Nair, A.; Gangaprasad, A.; Nair, G.M.; et al. Evaluating Genomic DNA Extraction Methods from Human Whole Blood Using Endpoint and Real-Time PCR Assays. Mol. Biol. Rep. 2017, 44, 97–108. [Google Scholar] [CrossRef]
- Brown, R.B.; Audet, J. Current Techniques for Single-Cell Lysis. J. R. Soc. Interface 2008, 5, S131–S138. [Google Scholar] [CrossRef] [Green Version]
- Pandur, Ž.; Dular, M.; Kostanjšek, R.; Stopar, D. Bacterial Cell Wall Material Properties Determine E. Coli Resistance to Sonolysis. Ultrason. Sonochem. 2022, 83, 105919. [Google Scholar] [CrossRef]
- Wu, X.; Zarka, A.; Boussiba, S. A Simplified Protocol for Preparing DNA from Filamentous Cyanobacteria. Plant Mol. Biol. Rep. 2000, 18, 385–392. [Google Scholar] [CrossRef]
- Rajasekhar, P.; Fan, L.; Nguyen, T.; Roddick, F.A. A Review of the Use of Sonication to Control Cyanobacterial Blooms. Water Res. 2012, 46, 4319–4329. [Google Scholar] [CrossRef]
- Gaget, V.; Keulen, A.; Lau, M.; Monis, P.; Brookes, J.D. DNA Extraction from Benthic Cyanobacteria: Comparative Assessment and Optimization. J. Appl. Microbiol. 2017, 122, 294–304. [Google Scholar] [CrossRef]
- Greenstein, K.E.; Zamyadi, A.; Wert, E.C. Comparative Assessment of Physical and Chemical Cyanobacteria Cell Lysis Methods for Total Microcystin-LR Analysis. Toxins 2021, 13, 596. [Google Scholar] [CrossRef]
- Danaeifar, M. New Horizons in Developing Cell Lysis Methods: A Review. Biotechnol. Bioeng. 2022, 119, 3007–3021. [Google Scholar] [CrossRef] [PubMed]
- Dahlgren, K.K.; Gates, C.; Lee, T.; Cameron, J.C. Proximity-Based Proteomics Reveals the Thylakoid Lumen Proteome in the Cyanobacterium Synechococcus Sp. PCC 7002. Photosynth. Res. 2021, 147, 177–195. [Google Scholar] [CrossRef] [PubMed]
- Shinde, S.; Singapuri, S.; Jiang, Z.; Long, B.; Wilcox, D.; Klatt, C.; Jones, J.A.; Yuan, J.S.; Wang, X. Thermodynamics Contributes to High Limonene Productivity in Cyanobacteria. Metab. Eng. Commun. 2022, 14, e00193. [Google Scholar] [CrossRef] [PubMed]
- De Porcellinis, A.; Frigaard, N.-U.; Sakuragi, Y. Determination of the Glycogen Content in Cyanobacteria. J. Vis. Exp. JoVE 2017, 125, 56068. [Google Scholar] [CrossRef]
- Hood, R.D.; Higgins, S.A.; Flamholz, A.; Nichols, R.J.; Savage, D.F. The Stringent Response Regulates Adaptation to Darkness in the Cyanobacterium Synechococcus Elongatus. Proc. Natl. Acad. Sci. USA 2016, 113, E4867–E4876. [Google Scholar] [CrossRef] [Green Version]
- Bürgmann, H.; Pesaro, M.; Widmer, F.; Zeyer, J. A Strategy for Optimizing Quality and Quantity of DNA Extracted from Soil. J. Microbiol. Methods 2001, 45, 7–20. [Google Scholar] [CrossRef]
- Scharf, S.; Bartels, A.; Kondakci, M.; Pfeffer, K.; Henrich, B.; Haas, R. Introduction of a Bead Beating Step Improves Fungal DNA Extraction from Selected Patient Specimens. Int. J. Med. Microbiol. 2020, 310, 151443. [Google Scholar] [CrossRef]
- D’Hondt, E.; Martín-Juárez, J.; Bolado, S.; Kasperoviciene, J.; Koreiviene, J.; Sulcius, S.; Elst, K.; Bastiaens, L. 6—Cell Disruption Technologies. In Microalgae-Based Biofuels and Bioproducts; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2017; pp. 133–154. ISBN 978-0-08-101023-5. [Google Scholar]
- Morin, N.; Vallaeys, T.; Hendrickx, L.; Natalie, L.; Wilmotte, A. An Efficient DNA Isolation Protocol for Filamentous Cyanobacteria of the Genus Arthrospira. J. Microbiol. Methods 2010, 80, 148–154. [Google Scholar] [CrossRef]
- Wu, X.; Hou, L.; Lin, X.; Xie, Z. Chapter 12—Application of Novel Nanomaterials for Chemo- and Biosensing of Algal Toxins in Shellfish and Water. In Novel Nanomaterials for Biomedical, Environmental and Energy Applications; Wang, X., Chen, X., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 353–414. ISBN 978-0-12-814497-8. [Google Scholar]
- Verschoor, M.J.; Powe, C.R.; McQuay, E.; Schiff, S.L.; Venkiteswaran, J.J.; Li, J.; Molot, L.A. Internal Iron Loading and Warm Temperatures Are Preconditions for Cyanobacterial Dominance in Embayments along Georgian Bay, Great Lakes. Can. J. Fish. Aquat. Sci. 2017, 74, 1439–1453. [Google Scholar] [CrossRef] [Green Version]
- McKay, R.M.; Frenken, T.; Diep, N.; Cody, W.R.; Crevecoeur, S.; Dove, A.; Drouillard, K.G.; Ortiz, X.; Wintermute, J.; Zastepa, A. Bloom Announcement: An Early Autumn Cyanobacterial Bloom Co-Dominated by Aphanizomenon Flos-Aquae and Planktothrix Agardhii in an Agriculturally-Influenced Great Lakes Tributary (Thames River, Ontario, Canada). Data Brief 2020, 30, 105585. [Google Scholar] [CrossRef]
- Bukowska, A.; Bielczyńska, A.; Karnkowska, A.; Chróst, R.J.; Jasser, I. Molecular (PCR-DGGE) versus Morphological Approach: Analysis of Taxonomic Composition of Potentially Toxic Cyanobacteria in Freshwater Lakes. Aquat. Biosyst. 2014, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Almuhtaram, H.; Kibuye, F.A.; Ajjampur, S.; Glover, C.M.; Hofmann, R.; Gaget, V.; Owen, C.; Wert, E.C.; Zamyadi, A. State of Knowledge on Early Warning Tools for Cyanobacteria Detection. Ecol. Indic. 2021, 133, 108442. [Google Scholar] [CrossRef]
- Chen, K.; Allen, J.; Lu, J. Community Structures of Phytoplankton with Emphasis on Toxic Cyanobacteria in an Ohio Inland Lake during Bloom Season. J. Water Resour. Prot. 2017, 9, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Vadrucci, M.R.; Roselli, L.; Castelluccia, D.; Di Festa, T.; Donadei, D.; Florio, M.; Longo, E.; D’Arpa, S.; Maci, F.; Ranieri, S.; et al. PhytoNumb3rs: An Easy-to-Use Computer Toolkit for Counting Microalgae by the Utermöhl Method. Ecol. Inform. 2018, 46, 147–155. [Google Scholar] [CrossRef]
- Doktycz, M.J.; Sullivan, C.J.; Hoyt, P.R.; Pelletier, D.A.; Wu, S.; Allison, D.P. AFM Imaging of Bacteria in Liquid Media Immobilized on Gelatin Coated Mica Surfaces. Ultramicroscopy 2003, 97, 209–216. [Google Scholar] [CrossRef]
- Guan, D.; Barraud, C.; Charlaix, E.; Tong, P. Noncontact Viscoelastic Measurement of Polymer Thin Films in a Liquid Medium Using Long-Needle Atomic Force Microscopy. Langmuir 2017, 33, 1385–1390. [Google Scholar] [CrossRef]
- Qian, S.S.; Chaffin, J.D.; DuFour, M.R.; Sherman, J.J.; Golnick, P.C.; Collier, C.D.; Nummer, S.A.; Margida, M.G. Quantifying and Reducing Uncertainty in Estimated Microcystin Concentrations from the ELISA Method. Environ. Sci. Technol. 2015, 49, 14221–14229. [Google Scholar] [CrossRef]
- Fischer, W.J.; Garthwaite, I.; Miles, C.O.; Ross, K.M.; Aggen, J.B.; Chamberlin, A.R.; Towers, N.R.; Dietrich, D.R. Congener-Independent Immunoassay for Microcystins and Nodularins. Environ. Sci. Technol. 2001, 35, 4849–4856. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Struewing, I.; Wymer, L.; Tettenhorst, D.R.; Shoemaker, J.; Allen, J. Use of QPCR and RT-QPCR for Monitoring Variations of Microcystin Producers and as an Early Warning System to Predict Toxin Production in an Ohio Inland Lake. Water Res. 2020, 170, 115262. [Google Scholar] [CrossRef]
- Health Canada Guidelines for Canadian Drinking Water Quality: Guideline Technical Document—Cyanobacterial Toxins. Available online: https://www.canada.ca/en/health-canada/services/publications/healthy-living/guidelines-canadian-drinking-water-quality-guideline-technical-document-cyanobacterial-toxins-document.html (accessed on 18 February 2023).
- Douglas Greene, S.B.; LeFevre, G.H.; Markfort, C.D. Improving the Spatial and Temporal Monitoring of Cyanotoxins in Iowa Lakes Using a Multiscale and Multi-Modal Monitoring Approach. Sci. Total Environ. 2021, 760, 143327. [Google Scholar] [CrossRef]
- Mountfort, D.O.; Holland, P.; Sprosen, J. Method for Detecting Classes of Microcystins by Combination of Protein Phosphatase Inhibition Assay and ELISA: Comparison with LC-MS. Toxicon 2005, 45, 199–206. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Stanford, B.D.; Adams, C.; Rosenfeldt, E.J.; Wert, E.C. Varied Influence of Microcystin Structural Difference on ELISA Cross-Reactivity and Chlorination Efficiency of Congener Mixtures. Water Res. 2017, 126, 515–523. [Google Scholar] [CrossRef]
- Aranda-Rodriguez, R.; Jin, Z. Evaluation of Field Test Kits to Detect Microcystins: 2010 Study; Health Canada: Ottawa, Canada, 2011. [Google Scholar]
- Birbeck, J.A.; Westrick, J.A.; O’Neill, G.M.; Spies, B.; Szlag, D.C. Comparative Analysis of Microcystin Prevalence in Michigan Lakes by Online Concentration LC/MS/MS and ELISA. Toxins 2019, 11, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coskun, O. Separation Techniques: Chromatography. North. Clin. Istanb. 2016, 3, 156–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores, C.; Caixach, J. An Integrated Strategy for Rapid and Accurate Determination of Free and Cell-Bound Microcystins and Related Peptides in Natural Blooms by Liquid Chromatography–Electrospray-High Resolution Mass Spectrometry and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight/Time-of-Flight Mass Spectrometry Using Both Positive and Negative Ionization Modes. J. Chromatogr. A 2015, 1407, 76–89. [Google Scholar] [CrossRef]
- Filatova, D.; Núñez, O.; Farré, M. Ultra-Trace Analysis of Cyanotoxins by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Toxins 2020, 12, 247. [Google Scholar] [CrossRef] [Green Version]
- Greer, B.; McNamee, S.E.; Boots, B.; Cimarelli, L.; Guillebault, D.; Helmi, K.; Marcheggiani, S.; Panaiotov, S.; Breitenbach, U.; Akçaalan, R.; et al. A Validated UPLC-MS/MS Method for the Surveillance of Ten Aquatic Biotoxins in European Brackish and Freshwater Systems. Harmful Algae 2016, 55, 31–40. [Google Scholar] [CrossRef]
- Lawrence, J.F.; Niedzwiadek, B.; Menard, C.; Lau, B.P.Y.; Lewis, D.; Kuper-Goodman, T.; Carbone, S.; Holmes, C. Comparison of Liquid Chromatography/Mass Spectrometry, ELISA, and Phosphatase Assay for the Determination of Microcystins in Blue-Green Algae Products. J. AOAC Int. 2001, 84, 1035–1044. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Rautela, A.; Kesari, V.; Szlag, D.; Westrick, J.; Kumar, S. Recent Developments in the Methods of Quantitative Analysis of Microcystins. J. Biochem. Mol. Toxicol. 2020, 34, e22582. [Google Scholar] [CrossRef]
- Gaget, V.; Lau, M.; Sendall, B.; Froscio, S.; Humpage, A.R. Cyanotoxins: Which Detection Technique for an Optimum Risk Assessment? Water Res. 2017, 118, 227–238. [Google Scholar] [CrossRef]
- Kralik, P.; Ricchi, M. A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything. Front. Microbiol. 2017, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Pinto, F.; Pacheco, C.C.; Ferreira, D.; Moradas-Ferreira, P.; Tamagnini, P. Selection of Suitable Reference Genes for RT-QPCR Analyses in Cyanobacteria. PLoS ONE 2012, 7, e34983. [Google Scholar] [CrossRef]
- Barón-Sola, Á.; Campo, F.F.d.; Sanz-Alférez, S. Dynamics of Cylindrospermopsin Production and Toxin Gene Expression in Aphanizomenon Ovalisporum. Adv. Microbiol. 2016, 6, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Chiu, Y.-T.; Chen, Y.-H.; Wang, T.-S.; Yen, H.-K.; Lin, T.-F. A QPCR-Based Tool to Diagnose the Presence of Harmful Cyanobacteria and Cyanotoxins in Drinking Water Sources. Int. J. Environ. Res. Public. Health 2017, 14, 547. [Google Scholar] [CrossRef] [Green Version]
- Oh, K.-H.; Jeong, D.-H.; Shin, S.-H.; Cho, Y.-C. Simultaneous Quantification of Cyanobacteria and Microcystis Spp. Using Real-Time PCR. J. Microbiol. Biotechnol. 2012, 22, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Te, S.H.; Chen, E.Y.; Gin, K.Y.-H. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis. Appl. Environ. Microbiol. 2015, 81, 5203–5211. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Li, J.; Chang, T.; He, H.; Zhao, Y.; Yang, X.; Zhao, Y.; Xu, Y. Stable Reference Gene Selection for RT-QPCR Analysis in Synechococcus Elongatus PCC 7942 under Abiotic Stresses. BioMed Res. Int. 2019, 2019, e7630601. [Google Scholar] [CrossRef] [Green Version]
- Rinta-Kanto, J.M.; Ouellette, A.J.A.; Boyer, G.L.; Twiss, M.R.; Bridgeman, T.B.; Wilhelm, S.W. Quantification of Toxic Microcystis Spp. during the 2003 and 2004 Blooms in Western Lake Erie Using Quantitative Real-Time PCR. Environ. Sci. Technol. 2005, 39, 4198–4205. [Google Scholar] [CrossRef]
- Khomutovska, N.; Sandzewicz, M.; Łach, Ł.; Suska-Malawska, M.; Chmielewska, M.; Mazur-Marzec, H.; Cegłowska, M.; Niyatbekov, T.; Wood, S.A.; Puddick, J.; et al. Limited Microcystin, Anatoxin and Cylindrospermopsin Production by Cyanobacteria from Microbial Mats in Cold Deserts. Toxins 2020, 12, 244. [Google Scholar] [CrossRef] [Green Version]
- Zupančič, M.; Kogovšek, P.; Šter, T.; Rekar, Š.R.; Cerasino, L.; Baebler, Š.; Klemenčič, A.K.; Eleršek, T. Potentially Toxic Planktic and Benthic Cyanobacteria in Slovenian Freshwater Bodies: Detection by Quantitative PCR. Toxins 2021, 13, 133. [Google Scholar] [CrossRef]
- Li, X.; Huo, S.; Zhang, J.; Ma, C.; Xiao, Z.; Zhang, H.; Xi, B.; Xia, X. Metabarcoding Reveals a More Complex Cyanobacterial Community than Morphological Identification. Ecol. Indic. 2019, 107, 105653. [Google Scholar] [CrossRef]
- Casero, M.C.; Velázquez, D.; Medina-Cobo, M.; Quesada, A.; Cirés, S. Unmasking the Identity of Toxigenic Cyanobacteria Driving a Multi-Toxin Bloom by High-Throughput Sequencing of Cyanotoxins Genes and 16S RRNA Metabarcoding. Sci. Total Environ. 2019, 665, 367–378. [Google Scholar] [CrossRef] [PubMed]
- MacKeigan, P.W.; Garner, R.E.; Monchamp, M.-È.; Walsh, D.A.; Onana, V.E.; Kraemer, S.A.; Pick, F.R.; Beisner, B.E.; Agbeti, M.D.; da Costa, N.B.; et al. Comparing Microscopy and DNA Metabarcoding Techniques for Identifying Cyanobacteria Assemblages across Hundreds of Lakes. Harmful Algae 2022, 113, 102187. [Google Scholar] [CrossRef] [PubMed]
- Jungblut, A.-D.; Neilan, B.A. Molecular Identification and Evolution of the Cyclic Peptide Hepatotoxins, Microcystin and Nodularin, Synthetase Genes in Three Orders of Cyanobacteria. Arch. Microbiol. 2006, 185, 107–114. [Google Scholar] [CrossRef]
- Tillett, D.; Parker, D.L.; Neilan, B.A. Detection of Toxigenicity by a Probe for the Microcystin Synthetase A Gene (McyA) of the Cyanobacterial Genus Microcystis: Comparison of Toxicities with 16S RRNA and Phycocyanin Operon (Phycocyanin Intergenic Spacer) Phylogenies. Appl. Environ. Microbiol. 2001, 67, 2810–2818. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, K.; Noda, N.; Tsuneda, S.; Saito, T.; Itayama, T.; Inamori, Y. Highly Sensitive Real-Time PCR Assay for Quantification of Toxic Cyanobacteria Based on Microcystin Synthetase A Gene. J. Biosci. Bioeng. 2006, 102, 90–96. [Google Scholar] [CrossRef]
- Ngwa, F.; Madramootoo, C.; Jabaji, S. Monitoring Toxigenic Microcystis Strains in the Missisquoi Bay, Quebec, by PCR Targeting Multiple Toxic Gene Loci. Environ. Toxicol. 2014, 29, 440–451. [Google Scholar] [CrossRef]
- Ngwa, F.F.; Madramootoo, C.A.; Jabaji, S. Development and Application of a Multiplex QPCR Technique to Detect Multiple Microcystin-Producing Cyanobacterial Genera in a Canadian Freshwater Lake. J. Appl. Phycol. 2014, 26, 1675–1687. [Google Scholar] [CrossRef]
- Gupta, R.S. Impact of Genomics on Clarifying the Evolutionary Relationships amongst Mycobacteria: Identification of Molecular Signatures Specific for the Tuberculosis-Complex of Bacteria with Potential Applications for Novel Diagnostics and Therapeutics. High-Throughput 2018, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.S.; Mathews, D.W. Signature Proteins for the Major Clades of Cyanobacteria. BMC Evol. Biol. 2010, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Rinta-Kanto, J.M.; Konopko, E.A.; DeBruyn, J.M.; Bourbonniere, R.A.; Boyer, G.L.; Wilhelm, S.W. Lake Erie Microcystis: Relationship between Microcystin Production, Dynamics of Genotypes and Environmental Parameters in a Large Lake. Harmful Algae 2009, 8, 665–673. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, C.; Struewing, I.; Li, X.; Allen, J.; Lu, J. Cyanotoxin-Encoding Genes as Powerful Predictors of Cyanotoxin Production during Harmful Cyanobacterial Blooms in an Inland Freshwater Lake: Evaluating a Novel Early-Warning System. Sci. Total Environ. 2022, 830, 154568. [Google Scholar] [CrossRef]
- Crevecoeur, S.; Edge, T.A.; Watson, L.C.; Watson, S.B.; Greer, C.W.; Ciborowski, J.J.H.; Diep, N.; Dove, A.; Drouillard, K.G.; Frenken, T.; et al. Spatio-Temporal Connectivity of the Aquatic Microbiome Associated with Cyanobacterial Blooms along a Great Lake Riverine-Lacustrine Continuum. Front. Microbiol. 2023, 14. [Google Scholar] [CrossRef]
- Eiler, A.; Gonzalez-Rey, C.; Allen, S.; Bertilsson, S. Growth Response of Vibrio Cholerae and Other Vibrio Spp. to Cyanobacterial Dissolved Organic Matter and Temperature in Brackish Water. FEMS Microbiol. Ecol. 2007, 60, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Gaget, V.; Hobson, P.; Keulen, A.; Newton, K.; Monis, P.; Humpage, A.R.; Weyrich, L.S.; Brookes, J.D. Toolbox for the Sampling and Monitoring of Benthic Cyanobacteria. Water Res. 2020, 169, 115222. [Google Scholar] [CrossRef]
- Dorevitch, S.; Shrestha, A.; DeFlorio-Barker, S.; Breitenbach, C.; Heimler, I. Monitoring Urban Beaches with QPCR vs. Culture Measures of Fecal Indicator Bacteria: Implications for Public Notification. Environ. Health 2017, 16, 45. [Google Scholar] [CrossRef] [Green Version]
- Saleem, F.; Edge, T.A.; Schellhorn, H.E. Validation of QPCR Method for Enterococci Quantification at Toronto Beaches: Application for Rapid Recreational Water Monitoring. J. Gt. Lakes Res. 2022, 48, 707–716. [Google Scholar] [CrossRef]
- Knob, R.; Hanson, R.L.; Tateoka, O.B.; Wood, R.L.; Guerrero-Arguero, I.; Robison, R.A.; Pitt, W.G.; Woolley, A.T. Sequence-Specific Sepsis-Related DNA Capture and Fluorescent Labeling in Monoliths Prepared by Single-Step Photopolymerization in Microfluidic Devices. J. Chromatogr. A 2018, 1562, 12–18. [Google Scholar] [CrossRef]
- Wei, Y.-J.; Zhao, Y.-N.; Zhang, X.; Wei, X.; Chen, M.-L.; Chen, X.-W. Biochemical Analysis Based on Optical Detection Integrated Microfluidic Chip. TrAC Trends Anal. Chem. 2023, 158, 116865. [Google Scholar] [CrossRef]
- Jiao, H. Handheld Microfluidic Device for Cyanobacteria Toxin Detection and Monitoring|Phase I; United States Environmental Protection Agency: Washington, DC, USA, 2013. Available online: https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract_id/10003/report/F (accessed on 16 February 2023).
- Jiao, H. Handheld Microfluidic Device for Cyanobacteria Toxin Detection and Monitoring | Phase II; United States Environmental Protection Agency: Washington, DC, USA, 2017. Available online: https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract_id/10416 (accessed on 16 February 2023).
- Blanco, Y.; Quesada, A.; Gallardo-Carreño, I.; Aguirre, J.; Parro, V. CYANOCHIP: An Antibody Microarray for High-Taxonomical-Resolution Cyanobacterial Monitoring. Environ. Sci. Technol. 2015, 49, 1611–1620. [Google Scholar] [CrossRef]
- Blanco, Y.; Moreno-Paz, M.; Parro, V. Experimental Protocol for Detecting Cyanobacteria in Liquid and Solid Samples with an Antibody Microarray Chip. J. Vis. Exp. JoVE 2017, 120, 54994. [Google Scholar] [CrossRef]
- Ölcer, Z.; Esen, E.; Ersoy, A.; Budak, S.; Sever Kaya, D.; Yağmur Gök, M.; Barut, S.; Üstek, D.; Uludag, Y. Microfluidics and Nanoparticles Based Amperometric Biosensor for the Detection of Cyanobacteria (Planktothrix Agardhii NIVA-CYA 116) DNA. Biosens. Bioelectron. 2015, 70, 426–432. [Google Scholar] [CrossRef]
- Johnson, B.N.; Mutharasan, R. A Cantilever Biosensor-Based Assay for Toxin-Producing Cyanobacteria Microcystis Aeruginosa Using 16S RRNA. Environ. Sci. Technol. 2013, 47, 12333–12341. [Google Scholar] [CrossRef] [PubMed]
- Rantala, A.; Rizzi, E.; Castiglioni, B.; De Bellis, G.; Sivonen, K. Identification of Hepatotoxin-Producing Cyanobacteria by DNA-Chip. Environ. Microbiol. 2008, 10, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Sipari, H.; Rantala-Ylinen, A.; Jokela, J.; Oksanen, I.; Sivonen, K. Development of a Chip Assay and Quantitative PCR for Detecting Microcystin Synthetase E Gene Expression. Appl. Environ. Microbiol. 2010, 76, 3797–3805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Mao, S.; Li, W.; Lin, J.-M. Microfluidic Devices in the Fast-Growing Domain of Single-Cell Analysis. Chem.—Eur. J. 2018, 24, 15398–15420. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Qin, B.; Zhou, B. Remote Sensing of Cyanobacterial Blooms in Inland Waters: Present Knowledge and Future Challenges. Sci. Bull. 2019, 64, 1540–1556. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Stumpf, R.P.; Schaeffer, B.A.; Werdell, P.J.; Loftin, K.A.; Meredith, A. Measurement of Cyanobacterial Bloom Magnitude Using Satellite Remote Sensing. Sci. Rep. 2019, 9, 18310. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Stumpf, R.P.; Schaeffer, B.; Werdell, P.J.; Loftin, K.A.; Meredith, A. Evaluation of a Satellite-Based Cyanobacteria Bloom Detection Algorithm Using Field-Measured Microcystin Data. Sci. Total Environ. 2021, 774, 145462. [Google Scholar] [CrossRef]
- Coffer, M.M.; Schaeffer, B.A.; Darling, J.A.; Urquhart, E.A.; Salls, W.B. Quantifying National and Regional Cyanobacterial Occurrence in US Lakes Using Satellite Remote Sensing. Ecol. Indic. 2020, 111, 105976. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Davis, T.W.; Wynne, T.T.; Graham, J.L.; Loftin, K.A.; Johengen, T.H.; Gossiaux, D.; Palladino, D.; Burtner, A. Challenges for Mapping Cyanotoxin Patterns from Remote Sensing of Cyanobacteria. Harmful Algae 2016, 54, 160–173. [Google Scholar] [CrossRef]
- Beck, R.; Xu, M.; Zhan, S.; Liu, H.; Johansen, R.A.; Tong, S.; Yang, B.; Shu, S.; Wu, Q.; Wang, S.; et al. Comparison of Satellite Reflectance Algorithms for Estimating Phycocyanin Values and Cyanobacterial Total Biovolume in a Temperate Reservoir Using Coincident Hyperspectral Aircraft Imagery and Dense Coincident Surface Observations. Remote Sens. 2017, 9, 538. [Google Scholar] [CrossRef] [Green Version]
- United States Environmental Protection Agency Cyanobacteria Assessment Network (CyAN). Available online: https://www.epa.gov/water-research/cyanobacteria-assessment-network-cyan (accessed on 24 February 2023).
- Environment and Climate Change Canada EOLakeWatch: Satellite Earth Observations for Lake Monitoring. Available online: https://www.canada.ca/en/environment-climate-change/services/water-overview/satellite-earth-observations-lake-monitoring.html (accessed on 26 February 2023).
- Environment and Climate Change Canada Remote Sensing of Algal Blooms. Available online: https://www.canada.ca/en/environment-climate-change/services/water-overview/satellite-earth-observations-lake-monitoring/remote-sensing-algal-blooms.html (accessed on 26 February 2023).
- Binding, C.E.; Zastepa, A.; Zeng, C. The Impact of Phytoplankton Community Composition on Optical Properties and Satellite Observations of the 2017 Western Lake Erie Algal Bloom. J. Gt. Lakes Res. 2019, 45, 573–586. [Google Scholar] [CrossRef]
- Cao, H.; Recknagel, F.; Bartkow, M. Spatially-Explicit Forecasting of Cyanobacteria Assemblages in Freshwater Lakes by Multi-Objective Hybrid Evolutionary Algorithms. Ecol. Model. 2016, 342, 97–112. [Google Scholar] [CrossRef]
- Chen, Q.; Guan, T.; Yun, L.; Li, R.; Recknagel, F. Online Forecasting Chlorophyll a Concentrations by an Auto-Regressive Integrated Moving Average Model: Feasibilities and Potentials. Harmful Algae 2015, 43, 58–65. [Google Scholar] [CrossRef]
- Baek, S.-S.; Pyo, J.; Pachepsky, Y.; Park, Y.; Ligaray, M.; Ahn, C.-Y.; Kim, Y.-H.; Ahn Chun, J.; Hwa Cho, K. Identification and Enumeration of Cyanobacteria Species Using a Deep Neural Network. Ecol. Indic. 2020, 115, 106395. [Google Scholar] [CrossRef]
- Gaur, A.; Pant, G.; Jalal, A.S. Computer-Aided Cyanobacterial Harmful Algae Blooms (CyanoHABs) Studies Based on Fused Artificial Intelligence (AI) Models. Algal Res. 2022, 67, 102842. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, J.; Yang, X.; Zhang, Y.; Zhang, L.; Ren, H.; Wu, B.; Ye, L. A Review of the Application of Machine Learning in Water Quality Evaluation. Eco-Environ. Health 2022, 1, 107–116. [Google Scholar] [CrossRef]
- Xu, T.; Coco, G.; Neale, M. A Predictive Model of Recreational Water Quality Based on Adaptive Synthetic Sampling Algorithms and Machine Learning. Water Res. 2020, 177, 115788. [Google Scholar] [CrossRef]
- Lowe, M.; Qin, R.; Mao, X. A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring. Water 2022, 14, 1384. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, F.; Jiang, J.L.; Atrache, R.; Paschos, A.; Edge, T.A.; Schellhorn, H.E. Cyanobacterial Algal Bloom Monitoring: Molecular Methods and Technologies for Freshwater Ecosystems. Microorganisms 2023, 11, 851. https://doi.org/10.3390/microorganisms11040851
Saleem F, Jiang JL, Atrache R, Paschos A, Edge TA, Schellhorn HE. Cyanobacterial Algal Bloom Monitoring: Molecular Methods and Technologies for Freshwater Ecosystems. Microorganisms. 2023; 11(4):851. https://doi.org/10.3390/microorganisms11040851
Chicago/Turabian StyleSaleem, Faizan, Jennifer L. Jiang, Rachelle Atrache, Athanasios Paschos, Thomas A. Edge, and Herb E. Schellhorn. 2023. "Cyanobacterial Algal Bloom Monitoring: Molecular Methods and Technologies for Freshwater Ecosystems" Microorganisms 11, no. 4: 851. https://doi.org/10.3390/microorganisms11040851
APA StyleSaleem, F., Jiang, J. L., Atrache, R., Paschos, A., Edge, T. A., & Schellhorn, H. E. (2023). Cyanobacterial Algal Bloom Monitoring: Molecular Methods and Technologies for Freshwater Ecosystems. Microorganisms, 11(4), 851. https://doi.org/10.3390/microorganisms11040851