Single-Stranded DNA-Binding Proteins Mediate DSB Repair and Effectively Improve CRISPR/Cas9 Genome Editing in Escherichia coli and Pseudomonas
Abstract
:1. Introduction
2. Material and Methods
2.1. Strains, Plasmids and Culture Conditions
2.2. Plasmid Construction
2.3. Donor DNA Construction
2.4. Genome Editing
3. Results
3.1. SSB Mediated the HR Repair of DSBs and Improved the Efficiency of CRISPR/Cas9 in Deleting the E. coli lacZ Gene
3.2. Cas9/SSB Mediated NHEJ to Delete the E. coli lacZ Gene
3.3. SSB Mediated DSB Repair Independently of RecA and RecBCD
3.4. SSB-Mediated HR Promoted the Deletion of the Pseudomonas sp. UW4 wp116 Gene by CRISPR/Cas9
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Grissa, I.; Vergnaud, G.; Pourcel, C. The CRISPRdb database and toolsto display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinf. 2007, 8, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hille, F.; Richter, H.; Wong, S.P.; Bratovič, M.; Ressel, S.; Charpentier, E. The biology of CRISPR-Cas: Backward and forward. Cell 2018, 172, 1239–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; Shmakov, S.A.; Alkhnbashi, O.S.; Brouns, S.J.J.; Charpentier, E.; Cheng, D.; Haft, D.H.; Horvath, P.; et al. Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020, 18, 67–83. [Google Scholar] [CrossRef]
- Bolotin, A.; Quinquis, B.; Sorokin, A.; Ehrlich, S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 2005, 151, 2551–2561. [Google Scholar] [CrossRef] [Green Version]
- Brouns, S.J.J.; Jore, M.M.; Lundgren, M.; Westra, E.R.; Slijkhuis, R.J.H.; Snijders, A.P.L.; Dickman, M.J.; Makarova, K.S.; Koonin, E.V.; van der Oost, J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008, 321, 960–964. [Google Scholar] [CrossRef] [Green Version]
- Kleinstiver, B.P.; Prew, M.S.; Tsai, S.Q.; Topkar, V.V.; Nguyen, N.T.; Zheng, Z.; Gonzales, A.P.; Li, Z.; Peterson, R.T.; Yeh, J.R.; et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 2015, 523, 481–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chyou, T.Y.; Brown, C.M. Prediction and diversity of tracrRNAs from type II CRISPR-Cas systems. RNA Biol. 2019, 16, 423–434. [Google Scholar] [CrossRef]
- Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 2010, 79, 181–211. [Google Scholar] [CrossRef] [Green Version]
- Mladenov, E.; Iliakis, G. Induction and repair of DNA double strand breaks: The increasing spectrum of non-homologous end joining pathways. Mutat. Res. Fund. Mol. Mech. Mutagen. 2011, 711, 61–72. [Google Scholar] [CrossRef]
- Corneo, B.; Wendland, R.L.; Deriano, L.; Cui, X.; Klein, I.A.; Wong, S.; Arnal, S.; Holub, A.J.; Weller, G.R.; Pancake, B.A.; et al. Rag mutations reveal robust alternative end joining. Nature 2007, 449, 483–486. [Google Scholar] [CrossRef]
- Liu, J.; Majumdar, A.; Liu, J.; Thompson, L.H.; Seidman, M.M. Sequence conversion by single strand oligonucleotide donors via non-homologous end joining in mammalian cells. J. Biol. Chem. 2010, 285, 23198–23207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Ren, S.; Yu, S.; Pan, H.; Li, T.; Ge, S.; Zhang, J.; Xia, N. Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. Int. J. Mol. Sci. 2020, 21, 6461. [Google Scholar] [CrossRef] [PubMed]
- Pawelczak, K.S.; Gavande, N.S.; VanderVere-Carozza, P.S.; Turchi, J.J. Modulating DNA repair pathways to improve precision genome engineering. ACS Chem. Biol. 2018, 13, 389–396. [Google Scholar] [CrossRef]
- Pitcher, R.S.; Green, A.J.; Brzostek, A.; Korycka-Machala, M.; Dziadek, J.; Doherty, A.J. NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation. DNA Repair 2007, 6, 1271–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, T.E.; Topper, L.M.; Palmbos, P.L. Non-homologous end-joining: Bacteria join the chromosome breakdance. Trends Biochem. Sci. 2003, 28, 62–66. [Google Scholar] [CrossRef]
- Stephanou, N.C.; Gao, F.; Bongiorno, P.; Ehrt, S.; Schnappinger, D.; Shuman, S.; Glickman, M.S. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. J. Bacteriol. 2007, 189, 5237–5246. [Google Scholar] [CrossRef] [Green Version]
- Paris, Ü.; Mikkel, K.; Tavita, K.; Saumaa, S.; Teras, R.; Kivisaar, M. NHEJ enzymes LigD and Ku participate in stationary-phase mutagenesis in Pseudomonas putida. DNA Repair 2015, 31, 11–18. [Google Scholar] [CrossRef]
- Chayot, R.; Montagne, B.; Mazel, D.; Ricchetti, M. An end-joining repair mechanism in Escherichia coli. Proc. Natl. Acad. Sci. USA 2010, 107, 2141–2146. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Qian, F.; Yang, J.; Liu, Y.; Dong, F.; Xu, C.; Sun, B.; Chen, B.; Xu, X.; Li, Y.; et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat. Commun. 2017, 8, 15179. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.Y.; Yan, H.Q.; Ren, G.X.; Zhao, J.P.; Guo, X.P.; Sun, Y.C. CRISPR Cas12a-assisted recombineering in bacteria. Appl. Environ. Microbiol. 2017, 83, e00947-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.; Choe, D.; Lee, E.; Kim, S.C.; Palsson, B.; Cho, B.K. High-level dCas9 expression induces abnormal cell morphology in Escherichia coli. ACS Synth. Biol. 2018, 7, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Misra, C.S.; Bindal, G.; Sodani, M.; Wadhawan, S.; Kulkarni, S.; Gautam, S.; Mukhopadhyaya, R.; Rath, D. Determination of Cas9/dCas9 associated toxicity in microbes. biorXiv 2019, 848135. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, S.; Chen, W.; Song, L.; Zhang, Y.; Shen, Z.; Yu, F.; Li, M.; Ji, Q. CRISPR-Cas9 and CRISPR-assisted cytidine deaminase enable precise and efficient genome editing in Klebsiella pneumoniae. Appl. Environ. Microb. 2018, 84, e1818–e1834. [Google Scholar] [CrossRef] [Green Version]
- Vento, J.M.; Crook, N.; Beisel, C.L. Barriers to genome editing with CRISPR in bacteria. J. Indus. Microbiol. Biotechnol. 2019, 46, 1327–1341. [Google Scholar] [CrossRef]
- Altenbuchner, J. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 System. Appl. Environ. Microbiol. 2016, 82, 5421–5427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mougiakos, I.; Bosma, E.F.; Weenink, K.; Vossen, E.; Goijvaerts, K.; van der Oost, J.; van Kranenburg, R. Efficient genome editing of a facultative thermophile using mesophilic spCas9. ACS Synth. Biol. 2017, 6, 849–861. [Google Scholar] [CrossRef] [Green Version]
- Su, T.; Liu, F.; Gu, P.; Jin, H.; Chang, Y.; Wang, Q.; Liang, Q.; Qi, Q. A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome. Sci. Rep. 2016, 6, 37895. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Ding, T.; Wang, J.; Wang, X.; Guo, L.; Wang, J.; Zhu, L.; Bi, C.; Zhang, X.; Ma, X.; et al. CRISPR-Cas9-assisted native end-joining editing offers a simple strategy for efficient genetic engineering in Escherichia coli. Appl. Microbiol. Biotechnol. 2019, 103, 8497–8509. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Z.; Gao, X.; Li, J.; Shang, G. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing. Appl. Microbiol. Biotechnol. 2019, 103, 2783–2795. [Google Scholar] [CrossRef]
- Aparicio, T.; de Lorenzo, V.; Martínez-García, E. CRISPR/Cas9-enhanced ssDNA recombineering for Pseudomonas putida. Microb. Biotechnol. 2019, 12, 1076–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, T.; Liu, F.; Chang, Y.; Guo, Q.; Wang, J.; Wang, Q.; Qi, Q. The phage T4 DNA ligase mediates bacterial chromosome DSBs repair as single component non-homologous end joining. Synth. Syst. Biotechnol. 2019, 4, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chen, B.; Duan, C.; Sun, B.; Yang, J.; Yang, S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 2015, 81, 2506–2514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, M.; Ramirez, J.; Xander, C.; Upreti, C.; Bhatt, S. Lambda red-mediated recombineering in the attaching and effacing pathogen Escherichia albertii. Biol. Proced. Online 2016, 18, 3. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Gao, M.; Cheng, X.; Kang, G.; Cao, X.; Huang, H. Engineered butyrate-producing bacteria prevents high fat diet-induced obesity in mice. Microb. Cell Fact. 2020, 19, 94. [Google Scholar] [CrossRef]
- Li, Q.; Sun, B.; Chen, J.; Zhang, Y.; Jiang, Y.; Yang, S. A modified pCas/pTargetF system for CRISPR-Cas9-assisted genome editing in Escherichia coli. Acta Biochim. Biophys. Sin. 2021, 53, 620–627. [Google Scholar] [CrossRef]
- Figueredo, E.F.; Cruz, T.A.D.; Almeida, J.R.; Batista, B.D.; Marcon, J.; Andrade, P.A.M.; Hayashibara, C.A.A.; Rosa, M.S.; Azevedo, J.L.; Quecine, M.C. The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system. Microbiol. Res. 2022, 266, 127218. [Google Scholar] [CrossRef]
- Liu, X.; Tian, J.; Liu, L.; Zhu, T.; Yu, X.; Chu, X.; Yao, B.; Wu, N.; Fan, Y. Identification of an operon involved in fluoride resistance in Enterobacter cloacae FRM. Sci. Rep. 2017, 7, 6786. [Google Scholar] [CrossRef] [Green Version]
- Kur, J.; Olszewski, M.; Filipkowski, P. Single-stranded DNA-binding proteins (SSBs)-sources and applications in molecular biology. Acta Biochim. Pol. 2005, 52, 569–574. [Google Scholar] [CrossRef]
- Sigal, N.; Delius, H.; Kornberg, T.; Gefter, M.L.; Alberts, B. A DNA-unwinding protein isolated from Escherichia coli: Its interaction with DNA and with DNA polymerases. Proc. Natl. Acad. Sci. USA 1972, 69, 3537–3541. [Google Scholar] [CrossRef] [Green Version]
- Meyer, R.R.; Laine, P.S. The single-stranded DNA-binding protein of Escherichia coli. Microbiol. Rev. 1990, 54, 342–380. [Google Scholar] [CrossRef] [PubMed]
- Marceau, A.H. Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair. Methods Mol. Biol. 2012, 922, 1–21. [Google Scholar]
- Shereda, R.D.; Kozlov, A.G.; Lohman, T.M.; Cox, M.M.; Keck, J.L. SSB as an organizer/mobilizer of genome maintenance complexes. Crit. Rev. Biochem. Mol. Biol. 2008, 43, 289–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, R.; Zhang, C.; Tian, F.; Li, H.; Yang, Q.; Song, A.; Qiu, L. Recombination function and recombination kinetics of Escherichia coli single-stranded DNA-binding protein. Sci. Bull. 2016, 61, 1594–1604. [Google Scholar] [CrossRef] [Green Version]
- Blattner, F.R.; Plunkett, G., 3rd; Bloch, C.A.; Perna, N.T.; Burland, V.; Riley, M.; Collado-Vides, J.; Glasner, J.D.; Rode, C.K.; Mayhew, G.F.; et al. The complete genome sequence of Escherichia coli K-12. Science 1997, 277, 1453–1462. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.; Li, J.; Moffatt, B.A.; Glick, B.R. Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can. J. Microbiol. 1998, 44, 833–843. [Google Scholar] [CrossRef]
- Li, J.; Ovakim, D.H.; Charles, T.C.; Glick, B.R. An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr. Microbiol. 2000, 41, 101–105. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989; pp. 16–688. [Google Scholar]
- Iwasaki, K.; Uchiyama, H.; Yagi, O.; Kurabayashi, T.; Ishizuka, K.; Takamura, Y. Transformation of Pseudomonas putida by electroporation. Biosci. Biotechnol. Biochem. 1994, 58, 851–854. [Google Scholar] [CrossRef] [Green Version]
- Newing, T.P.; Brewster, J.L.; Fitschen, L.J.; Bouwer, J.C.; Johnston, N.P.; Yu, H.; Tolun, G. Redβ177 an-nealase structure reveals details of oligomerization and λ Red-mediated homologous DNA recombination. Nat. Commun. 2022, 13, 5649. [Google Scholar] [CrossRef]
- Maresca, M.; Erler, A.; Fu, J.; Friedrich, A.; Zhang, Y.; Stewart, A. Single-stranded heteroduplex interme-diates in λ Red homologous recombination. BMC Mol. Biol. 2010, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Rybalchenko, N.; Golub, E.I.; Bi, B.; Radding, C.M. Strand invasion promoted by recombination protein β of coliphage λ. Proc. Natl. Acad. Sci. USA 2004, 101, 17056–17060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol. Mol. Biol. Rev. 1999, 63, 751–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akoijam, N.; Kalita, D.; Joshi, S.R. Bacteria and their industrial importance. In Industrial Microbiology and Biotechnology; Verma, P., Ed.; Springer: Singapore, 2022; pp. 63–79. [Google Scholar]
- Zhao, D.; Zhu, X.; Zhou, H.; Sun, N.; Wang, T.; Bi, C.; Zhang, X. CRISPR-based metabolic pathway engineering. Metab. Eng. 2021, 63, 148–159. [Google Scholar] [CrossRef] [PubMed]
Strain or Plasmid | Description | Source or Reference |
---|---|---|
E. coli | ||
DH5α | F− endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG ϕ80dlacZΔM15 Δ(lacZYA-argF)U169 hsdR17 (rK− mK+) λ− | TaKaRa |
MG1655 | K-12; F−, λ−, ilvG−, rfb-50, rph-1 | [45] |
MG1655-1 | MG1655 ΔlacZ | This study |
MG1655-2 | MG1655 ΔrecA ΔrecBCD ΔSSB | This study |
Pseudomonas sp. | ||
UW4 | Wild type | [46] |
UW4 ΔacdS | ΔacdS | [47] |
UW4 Δwp116 | Δwp116 | This study |
Plasmids | ||
pCas | repA101(Ts) kan Pcas-cas9 ParaB-Red lacIq Ptrc-sgRNA-pMB1 | [33] |
pCasΔRed | repA101(Ts) kan Pcas-cas9 ParaB lacIq Ptrc-sgRNA-pMB1 | This study |
pCas-SSB | repA101(Ts) kan Pcas-cas9 ParaB-SSB lacIq Ptrc-sgRNA-pMB1 | This study |
pCas-T4L | repA101(Ts) kan Pcas-cas9 ParaB-T4L lacIq Ptrc-sgRNA-pMB1 | This study |
pTargetF | pMB1 aadA sgRNA | [33] |
pTargetF-lacZ | pMB1 aadA sgRNA-lacZ | This study |
pTargetF-wp116 | pMB1 aadA sgRNA-wp116 | This study |
Primer | Sequence (5′-3′) |
---|---|
pC01 | CGCATCCTCACGATAATATCCGGGTAGGCGCAATCACTTT |
pC02 | GATATTATCGTGAGGATGCGTTTTTATAACCTCCTTAGAG |
pC03 | TCGAGCTCTAAGGAGGTTATAAAAAATGGCCAGCAGAGGCGTAAACAAGGT |
pC04 | ACCCGGATATTATCGTGAGGATGCGTCAGAACGGAATGTCATCATCAAAGT |
pC05 | CGCATCCTCACGATAATATCCGGGT |
pC06 | TTTTTATAACCTCCTCCTTAGAGCTCG |
pC07 | TCGAGCTCTAAGGAGGTTATAAAAAATGATTCTTAAAATTCTGAACGAAAT |
pC08 | ACCCGGATATTATCGTGAGGATGCGTCATAGACCAGTTACCTCATGAAAAT |
pC09 | CAATCCGCCGTTTGTTCCCACGGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAA |
pC10 | TGGGAACAAACGGCGGATTGACTAGTATTATACCTAGGACTGAGCTAGCTG |
pC11 | CCGCGGCCTGATCGAACAACGTTTTAGAGCTAGAAATAGCAAGTTAAAATAA |
pC12 | GTTGTTCGATCAGGCCGCGGACTAGTATTATACCTAGGACTGAGCTAGCTG |
pC13 | CGGTAGTGGGATACG |
pC14 | CCTGCCCGGTTATTAAGCTGTTTCCTGTGT |
pC15 | ACACAGGAAACAGCTTAATAACCGGGCAGG |
pC16 | AAAAGCCTAGATAAA |
pC17 | AGCTATTCGCCCATACATCG |
pC18 | CCTGCCCGGTTATTAAGCTGTTTCCTGTGT |
pC19 | GGAAACGTCAGCGTCAAAAATTCTCATGTTTGACAG |
pC20 | CGGAATGATGATCTGCCGTATCTATATCGAGATGCG |
pC21 | CGCATCTCGATATAGATACGGCAGATCATCATTCCG |
pC22 | CTTGGGTCATGCTCTGCATGG |
pC23 | CGGTAGTGGGATACGACGAT |
pC24 | CGGTTGGAATAATAGCGAGA |
pC25 | CCCAGGCTTTACACTTTATGC |
pC26 | CAGATGAAACGCCGAGTT |
pC27 | AGCTATTCGCCCAT |
pC28 | CTTGGGTCATGCTCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, R.; Zhang, Q.; Wu, J.; Shi, Z.; Li, Y.; Gao, Y.; Qi, Y.; Qiu, L. Single-Stranded DNA-Binding Proteins Mediate DSB Repair and Effectively Improve CRISPR/Cas9 Genome Editing in Escherichia coli and Pseudomonas. Microorganisms 2023, 11, 850. https://doi.org/10.3390/microorganisms11040850
Chai R, Zhang Q, Wu J, Shi Z, Li Y, Gao Y, Qi Y, Qiu L. Single-Stranded DNA-Binding Proteins Mediate DSB Repair and Effectively Improve CRISPR/Cas9 Genome Editing in Escherichia coli and Pseudomonas. Microorganisms. 2023; 11(4):850. https://doi.org/10.3390/microorganisms11040850
Chicago/Turabian StyleChai, Ran, Qi Zhang, Jie Wu, Ziwen Shi, Yanan Li, Yuqian Gao, Yuancheng Qi, and Liyou Qiu. 2023. "Single-Stranded DNA-Binding Proteins Mediate DSB Repair and Effectively Improve CRISPR/Cas9 Genome Editing in Escherichia coli and Pseudomonas" Microorganisms 11, no. 4: 850. https://doi.org/10.3390/microorganisms11040850