Defined Pig Microbiota with a Potential Protective Effect against Infection with Salmonella Typhimurium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain Isolation
2.2. Culture Identifications
2.3. Characterization of In Vitro Potentially Probiotic Properties
2.4. Adherence to the Porcine IPEC-J2 Cell Line
2.5. Preparation of Defined Pig Microbiota (DPM) and Its Stability
2.6. Statistics
2.7. Ethical Approval
3. Results
3.1. Bacterial Isolation and Identification
3.2. Characterization of In Vitro Potentially Probiotic Properties
3.3. Auto-Aggregation and Adherence to the Porcine IPEC-J2 Cell Line
3.4. Defined Pig Microbiota and Its Stability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thursby, E.; Juge, N. Introduction to the Human Gut Microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut Biogeography of the Bacterial Microbiota. Nat. Rev. Microbiol. 2016, 14, 20–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beller, L.; Deboutte, W.; Falony, G.; Vieira-Silva, S.; Tito, R.Y.; Valles-Colomer, M.; Rymenans, L.; Jansen, D.; Van Espen, L.; Papadaki, M.I.; et al. Successional Stages in Infant Gut Microbiota Maturation. mBio 2021, 12, e0185721. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.; Nayfach, S.; Boland, M.; Strozzi, F.; Beracochea, M.; Shi, Z.J.; Pollard, K.S.; Sakharova, E.; Parks, D.H.; Hugenholtz, P.; et al. A Unified Catalog of 204,938 Reference Genomes from the Human Gut Microbiome. Nat. Biotechnol. 2021, 39, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, A.J.; McCoy, K.D. Standardised Animal Models of Host Microbial Mutualism. Mucosal Immunol. 2015, 8, 476–486. [Google Scholar] [CrossRef] [Green Version]
- Derrien, M.; Alvarez, A.-S.; de Vos, W.M. The Gut Microbiota in the First Decade of Life. Trends Microbiol. 2019, 27, 997–1010. [Google Scholar] [CrossRef] [Green Version]
- Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut Microbiota in Health and Disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef] [Green Version]
- Swain Ewald, H.A.; Ewald, P.W. Natural Selection, The Microbiome, and Public Health. Yale J. Biol. Med. 2018, 91, 445–455. [Google Scholar]
- Krautkramer, K.A.; Fan, J.; Bäckhed, F. Gut Microbial Metabolites as Multi-Kingdom Intermediates. Nat. Rev. Microbiol. 2021, 19, 77–94. [Google Scholar] [CrossRef]
- Metwaly, A.; Reitmeier, S.; Haller, D. Microbiome Risk Profiles as Biomarkers for Inflammatory and Metabolic Disorders. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 383–397. [Google Scholar] [CrossRef]
- Ducarmon, Q.R.; Zwittink, R.D.; Hornung, B.V.H.; van Schaik, W.; Young, V.B.; Kuijper, E.J. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol. Mol. Biol. Rev. 2019, 83, e00007-19. [Google Scholar] [CrossRef] [PubMed]
- Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of Pathogens and Pathobionts by the Gut Microbiota. Nat. Immunol. 2013, 14, 685–690. [Google Scholar] [CrossRef]
- Zeng, M.Y.; Inohara, N.; Nuñez, G. Mechanisms of Inflammation-Driven Bacterial Dysbiosis in the Gut. Mucosal Immunol. 2017, 10, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Faber, F.; Thiennimitr, P.; Spiga, L.; Byndloss, M.X.; Litvak, Y.; Lawhon, S.; Andrews-Polymenis, H.L.; Winter, S.E.; Bäumler, A.J. Respiration of Microbiota-Derived 1,2-Propanediol Drives Salmonella Expansion during Colitis. PLoS Pathog. 2017, 13, e1006129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, L.; Vyas, R.; Cordova, C.D.; Lindsay, H.; Schmidt, T.S.B.; Brugiroux, S.; Periaswamy, B.; Bauer, R.; Sturm, A.; Schreiber, F.; et al. Microbiota-Derived Hydrogen Fuels Salmonella Typhimurium Invasion of the Gut Ecosystem. Cell Host Microbe 2013, 14, 641–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Kingsley, R.A.; Santos, R.L.; Andrews-Polymenis, H.; Raffatellu, M.; Figueiredo, J.; Nunes, J.; Tsolis, R.M.; Adams, L.G.; Bäumler, A.J. Molecular Pathogenesis of Salmonella enterica Serotype Typhimurium-Induced Diarrhea. Infect. Immun. 2003, 71, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Campos, J.; Mourão, J.; Peixe, L.; Antunes, P. Non-Typhoidal Salmonella in the Pig Production Chain: A Comprehensive Analysis of Its Impact on Human Health. Pathogens 2019, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Crump, J.A.; Sjölund-Karlsson, M.; Gordon, M.A.; Parry, C.M. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin. Microbiol. Rev. 2015, 28, 901–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, S.C.; Best, E.; Nourse, C. Non-Typhoidal Salmonella Infections in Children: Review of Literature and Recommendations for Management. J. Paediatr. Child Health 2017, 53, 936–941. [Google Scholar] [CrossRef]
- Nair, S.; Farzan, A.; O’Sullivan, T.L.; Friendship, R.M. Time Course of Salmonella Shedding and Antibody Response in Naturally Infected Pigs during Grower-Finisher Stage. Can. J. Vet. Res. 2018, 82, 139–145. [Google Scholar]
- Fedorka-Cray, P.J.; Gray, J.T.; Wray, C. Salmonella Infections in Pigs. In Salmonella in Domestic Animals; CABI International: Wallingford, UK, 2000; pp. 191–207. [Google Scholar]
- Farzan, A.; Friendship, R.M. A Clinical Field Trial to Evaluate the Efficacy of Vaccination in Controlling Salmonella Infection and the Association of Salmonella-Shedding and Weight Gain in Pigs. Can. J. Vet. Res. 2010, 74, 258–263. [Google Scholar]
- Naberhaus, S.A.; Krull, A.C.; Arruda, B.L.; Arruda, P.; Sahin, O.; Schwartz, K.J.; Burrough, E.R.; Magstadt, D.R.; Matias Ferreyra, F.; Gatto, I.R.H.; et al. Pathogenicity and Competitive Fitness of Salmonella enterica Serovar 4,[5],12:i:- Compared to Salmonella Typhimurium and Salmonella Derby in Swine. Front Vet Sci. 2019, 6, 502. [Google Scholar] [CrossRef] [Green Version]
- Velasquez, C.G.; Macklin, K.S.; Kumar, S.; Bailey, M.; Ebner, P.E.; Oliver, H.F.; Martin-Gonzalez, F.S.; Singh, M. Prevalence and Antimicrobial Resistance Patterns of Salmonella Isolated from Poultry Farms in Southeastern United States. Poult. Sci. 2018, 97, 2144–2152. [Google Scholar] [CrossRef]
- Millet, S.; Maertens, L. The European Ban on Antibiotic Growth Promoters in Animal Feed: From Challenges to Opportunities. Vet. J. 2011, 187, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Castanon, J.I.R. History of the Use of Antibiotic as Growth Promoters in European Poultry Feeds. Poult. Sci. 2007, 86, 2466–2471. [Google Scholar] [CrossRef]
- Brugiroux, S.; Beutler, M.; Pfann, C.; Garzetti, D.; Ruscheweyh, H.-J.; Ring, D.; Diehl, M.; Herp, S.; Lötscher, Y.; Hussain, S.; et al. Genome-Guided Design of a Defined Mouse Microbiota That Confers Colonization Resistance against Salmonella enterica Serovar Typhimurium. Nat. Microbiol. 2016, 2, 16215. [Google Scholar] [CrossRef]
- Stecher, B. Establishing Causality in Salmonella-Microbiota-Host Interaction: The Use of Gnotobiotic Mouse Models and Synthetic Microbial Communities. Int. J. Med. Microbiol. 2021, 311, 151484. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Ko, G. Antiviral Effect of Vitamin A on Norovirus Infection via Modulation of the Gut Microbiome. Sci. Rep. 2016, 6, 25835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.H.; Balakrishnan, K.; Thiagarajah, K.; Mohd Ismail, N.I.; Yin, O.S. Beneficial Properties of Probiotics. Trop Life Sci. Res. 2016, 27, 73–90. [Google Scholar] [CrossRef]
- Hojsak, I.; Szajewska, H.; Canani, R.B.; Guarino, A.; Indrio, F.; Kolacek, S.; Orel, R.; Shamir, R.; Vandenplas, Y.; van Goudoever, J.B.; et al. Probiotics for the Prevention of Nosocomial Diarrhea in Children. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 3–9. [Google Scholar] [CrossRef]
- Guo, Q.; Goldenberg, J.Z.; Humphrey, C.; El Dib, R.; Johnston, B.C. Probiotics for the Prevention of Pediatric Antibiotic-Associated Diarrhea. Cochrane Database Syst. Rev. 2019, 4, CD004827. [Google Scholar] [CrossRef]
- Szajewska, H.; Guarino, A.; Hojsak, I.; Indrio, F.; Kolacek, S.; Shamir, R.; Vandenplas, Y.; Weizman, Z. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition Use of Probiotics for Management of Acute Gastroenteritis: A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.M.; Pilmann Laursen, R.; Bruun, S.; Larnkjaer, A.; Mølgaard, C.; Michaelsen, K.F.; Høst, A. Probiotics in Late Infancy Reduce the Incidence of Eczema: A Randomized Controlled Trial. Pediatr. Allergy Immunol. 2019, 30, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Oak, S.J.; Jha, R. The Effects of Probiotics in Lactose Intolerance: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Roy Sarkar, S.; Mitra Mazumder, P.; Banerjee, S. Probiotics Protect against Gut Dysbiosis Associated Decline in Learning and Memory. J. Neuroimmunol. 2020, 348, 577390. [Google Scholar] [CrossRef] [PubMed]
- Kligler, B.; Cohrssen, A. Probiotics. Am. Fam. Physician. 2008, 78, 1073–1078. [Google Scholar]
- Bhogoju, S.; Nahashon, S. Recent Advances in Probiotic Application in Animal Health and Nutrition: A Review. Collect. FAO Agric. 2022, 12, 304. [Google Scholar] [CrossRef]
- Ishibashi, N.; Yamazaki, S. Probiotics and Safety. Am. J. Clin. Nutr. 2001, 73, 465S–470S. [Google Scholar] [CrossRef] [Green Version]
- Kailasapathy, K.; Chin, J. Survival and Therapeutic Potential of Probiotic Organisms with Reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol. Cell Biol. 2000, 78, 80–88. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Zoumpopoulou, G.; Foligné, B.; Alexandraki, V.; Kazou, M.; Pot, B.; Tsakalidou, E. Discovering Probiotic Microorganisms: In Vitro, in Vivo, Genetic and Omics Approaches. Front. Microbiol. 2015, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.; Gordon, N.; Langley, G.; Higgins, W. Estimates for Worldwide Laboratory Animal Use in 2005. Altern. Lab. Anim. 2008, 36, 327–342. [Google Scholar] [CrossRef] [Green Version]
- Eppig, J.T.; Blake, J.A.; Bult, C.J.; Kadin, J.A.; Richardson, J.E. Mouse Genome Database Group The Mouse Genome Database (MGD): Facilitating Mouse as a Model for Human Biology and Disease. Nucleic Acids Res. 2015, 43, D726–D736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, L.; Feng, Q.; Liang, S.; Sonne, S.B.; Xia, Z.; Qiu, X.; Li, X.; Long, H.; Zhang, J.; Zhang, D.; et al. A Catalog of the Mouse Gut Metagenome. Nat. Biotechnol. 2015, 33, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Eberl, C.; Ring, D.; Münch, P.C.; Beutler, M.; Basic, M.; Slack, E.C.; Schwarzer, M.; Srutkova, D.; Lange, A.; Frick, J.S.; et al. Reproducible Colonization of Germ-Free Mice With the Oligo-Mouse-Microbiota in Different Animal Facilities. Front. Microbiol. 2019, 10, 2999. [Google Scholar] [CrossRef]
- Xiao, L.; Estellé, J.; Kiilerich, P.; Ramayo-Caldas, Y.; Xia, Z.; Feng, Q.; Liang, S.; Pedersen, A.Ø.; Kjeldsen, N.J.; Liu, C.; et al. A Reference Gene Catalogue of the Pig Gut Microbiome. Nat Microbiol 2016, 1, 16161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunney, J.K.; Van Goor, A.; Walker, K.E.; Hailstock, T.; Franklin, J.; Dai, C. Importance of the Pig as a Human Biomedical Model. Sci. Transl. Med. 2021, 13, eabd5758. [Google Scholar] [CrossRef] [PubMed]
- Vlková, E.; Salmonová, H.; Bunešová, V.; Geigerová, M.; Rada, V.; Musilová, Š. A New Medium Containing Mupirocin, Acetic Acid, and Norfloxacin for the Selective Cultivation of Bifidobacteria. Anaerobe 2015, 34, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Modrackova, N.; Stovicek, A.; Burtscher, J.; Bolechova, P.; Killer, J.; Domig, K.J.; Neuzil-Bunesova, V. The Bifidobacterial Distribution in the Microbiome of Captive Primates Reflects Parvorder and Feed Specialization of the Host. Sci. Rep. 2021, 11, 15273. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S Ribosomal DNA Amplification for Phylogenetic Study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.J.; Kim, H.-Y.; Yun, Y.-J.; Kim, B.-J.; Kook, Y.-H. Differentiation of Bifidobacterium Species Using Partial RNA Polymerase {beta}-Subunit (RpoB) Gene Sequences. Int. J. Syst. Evol. Microbiol. 2010, 60, 2697–2704. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. In Nucleic Acids Symposium; 41 Edn 95–98; Information Retrieval Ltd.: London, UK, 1999. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- McClelland, M.; Sanderson, K.E.; Spieth, J.; Clifton, S.W.; Latreille, P.; Courtney, L.; Porwollik, S.; Ali, J.; Dante, M.; Du, F.; et al. Complete Genome Sequence of Salmonella enterica Serovar Typhimurium LT2. Nature 2001, 413, 852–856. [Google Scholar] [CrossRef] [Green Version]
- Trebichavský, I.; Dlabac, V.; Reháková, Z.; Zahradnícková, M.; Splíchal, I. Cellular Changes and Cytokine Expression in the Ilea of Gnotobiotic Piglets Resulting from Peroral Salmonella Typhimurium Challenge. Infect. Immun. 1997, 65, 5244–5249. [Google Scholar] [CrossRef] [Green Version]
- Vlková, E.; Grmanová, M.; Rada, V.; Homutová, I.; Dubná, S. Selection of Probiotic Bifidobacteria for Lambs. Czech J. Anim. Sci. 2009, 54, 552–565. [Google Scholar] [CrossRef] [Green Version]
- Del Re, B.; Sgorbati, B.; Miglioli, M.; Palenzona, D. Adhesion, Autoaggregation and Hydrophobicity of 13 Strains of Bifidobacterium Longum. Lett. Appl. Microbiol. 2000, 31, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Saarela, M.; Hallamaa, K.; Mattila-Sandholm, T.; Mättö, J. The Effect of Lactose Derivatives Lactulose, Lactitol and Lactobionic Acid on the Functional and Technological Properties of Potentially Probiotic Lactobacillus Strains. Int. Dairy J. 2003, 13, 291–302. [Google Scholar] [CrossRef]
- Matuschek, E.; Brown, D.F.J.; Kahlmeter, G. Development of the EUCAST Disk Diffusion Antimicrobial Susceptibility Testing Method and Its Implementation in Routine Microbiology Laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollensteiner, J.; Wemheuer, F.; Harting, R.; Kolarzyk, A.M.; Diaz Valerio, S.M.; Poehlein, A.; Brzuszkiewicz, E.B.; Nesemann, K.; Braus-Stromeyer, S.A.; Braus, G.H.; et al. Bacillus Thuringiensis and Bacillus Weihenstephanensis Inhibit the Growth of Phytopathogenic Verticillium Species. Front. Microbiol. 2016, 7, 2171. [Google Scholar] [CrossRef] [Green Version]
- Kushner, D.J. An Evaluation of the Egg-Yolk Reaction as a Test for Lecithinase Activity. J. Bacteriol. 1957, 73, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Krausova, G.; Hyrslova, I.; Hynstova, I. In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and Auto-Aggregation of Newly Isolated Potential Probiotic Strains. Fermentation 2019, 5, 100. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Lao, L.; Ji, C.; Lu, Q.; Guo, Y.; Pan, D.; Wu, Z. Anti-Inflammation and Adhesion Enhancement Properties of the Multifunctional LPxTG-Motif Surface Protein Derived from the Lactobacillus Reuteri DSM 8533. Mol. Immunol. 2022, 146, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Sorbara, M.T.; Pamer, E.G. Microbiome-Based Therapeutics. Nat. Rev. Microbiol. 2022, 20, 365–380. [Google Scholar] [CrossRef]
- Splichalova, A.; Slavikova, V.; Splichalova, Z.; Splichal, I. Preterm Life in Sterile Conditions: A Study on Preterm, Germ-Free Piglets. Front. Immunol. 2018, 9, 220. [Google Scholar] [CrossRef] [Green Version]
- Splichalova, A.; Trebichavsky, I.; Rada, V.; Vlkova, E.; Sonnenborn, U.; Splichal, I. Interference of Bifidobacterium Choerinum or Escherichia Coli Nissle 1917 with Salmonella Typhimurium in Gnotobiotic Piglets Correlates with Cytokine Patterns in Blood and Intestine. Clin. Exp. Immunol. 2011, 163, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Splichalova, A.; Pechar, R.; Killer, J.; Splichalova, Z.; Bunesova, V.N.; Vlkova, E.; Salmonova, H.S.; Splichal, I. Colonization of Germ-Free Piglets with Mucinolytic and Non-Mucinolytic Bifidobacterium Boum Strains Isolated from the Intestine of Wild Boar and Their Interference with Salmonella Typhimurium. Microorganisms 2020, 8, 2002. [Google Scholar] [CrossRef]
- Splichal, I.; Donovan, S.M.; Jenistova, V.; Splichalova, I.; Salmonova, H.; Vlkova, E.; Neuzil Bunesova, V.; Sinkora, M.; Killer, J.; Skrivanova, E.; et al. High Mobility Group Box 1 and TLR4 Signaling Pathway in Gnotobiotic Piglets Colonized/Infected with L. Amylovorus, L. Mucosae, E. coli Nissle 1917 and S. typhimurium. Int. J. Mol. Sci. 2019, 20, 6294. [Google Scholar] [CrossRef] [Green Version]
- Splichalova, A.; Donovan, S.M.; Tlaskalova-Hogenova, H.; Stranak, Z.; Splichalova, Z.; Splichal, I. Monoassociation of Preterm Germ-Free Piglets with Bifidobacterium Animalis Subsp. Lactis BB-12 and Its Impact on Infection with Salmonella Typhimurium. Biomedicines 2021, 9, 183. [Google Scholar] [CrossRef]
- Splichalova, A.; Jenistova, V.; Splichalova, Z.; Splichal, I. Colonization of Preterm Gnotobiotic Piglets with Probiotic Lactobacillus Rhamnosus GG and Its Interference with Salmonella Typhimurium. Clin. Exp. Immunol. 2019, 195, 381–394. [Google Scholar] [CrossRef]
- Dominici, L.; Moretti, M.; Villarini, M.; Vannini, S.; Cenci, G.; Zampino, C.; Traina, G. In Vivo Antigenotoxic Properties of a Commercial Probiotic Supplement Containing Bifidobacteria. Int. J. Probiotics Prebiotics 2011, 6, 4. [Google Scholar]
- Roselli, M.; Pieper, R.; Rogel-Gaillard, C.; de Vries, H.; Bailey, M.; Smidt, H.; Lauridsen, C. Immunomodulating Effects of Probiotics for Microbiota Modulation, Gut Health and Disease Resistance in Pigs. Anim. Feed Sci. Technol. 2017, 233, 104–119. [Google Scholar] [CrossRef] [Green Version]
- Laycock, G.; Sait, L.; Inman, C.; Lewis, M.; Smidt, H.; van Diemen, P.; Jorgensen, F.; Stevens, M.; Bailey, M. A Defined Intestinal Colonization Microbiota for Gnotobiotic Pigs. Vet. Immunol. Immunopathol. 2012, 149, 216–224. [Google Scholar] [CrossRef]
- McCracken, V.J.; Lorenz, R.G. The Gastrointestinal Ecosystem: A Precarious Alliance among Epithelium, Immunity and Microbiota. Cell. Microbiol. 2001, 3, 1–11. [Google Scholar] [CrossRef]
- Zmora, N.; Zilberman-Schapira, G.; Suez, J.; Mor, U.; Dori-Bachash, M.; Bashiardes, S.; Kotler, E.; Zur, M.; Regev-Lehavi, D.; Brik, R.B.-Z.; et al. Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell 2018, 174, 1388–1405.e21. [Google Scholar] [CrossRef] [Green Version]
- Barba-Vidal, E.; Martín-Orúe, S.M.; Castillejos, L. Practical Aspects of the Use of Probiotics in Pig Production: A Review. Livest. Sci. 2019, 223, 84–96. [Google Scholar] [CrossRef]
- Simon, O. Micro-Organisms as Feed Additives—Probiotics. Adv. Pork Prod. 2005, 16, 161–167. [Google Scholar]
- Markowiak, P.; Śliżewska, K. The Role of Probiotics, Prebiotics and Synbiotics in Animal Nutrition. Gut Pathog. 2018, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Pechar, R.; Killer, J.; Mekadim, C.; Geigerová, M.; Rada, V. Classification of Culturable Bifidobacterial Population from Colonic Samples of Wild Pigs (Sus Scrofa) Based on Three Molecular Genetic Methods. Curr. Microbiol. 2017, 74, 1324–1331. [Google Scholar] [CrossRef]
- Yang, J.; Qian, K.; Wang, C.; Wu, Y. Roles of Probiotic Lactobacilli Inclusion in Helping Piglets Establish Healthy Intestinal Inter-Environment for Pathogen Defense. Probiotics Antimicrob. Proteins 2018, 10, 243–250. [Google Scholar] [CrossRef]
- Anadón, A.; Ares, I.; Martínez-Larrañaga, M.R.; Martínez, M.A. Prebiotics and Probiotics in Feed and Animal Health. In Nutraceuticals in Veterinary Medicine; Gupta, R.C., Srivastava, A., Lall, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 261–285. ISBN 9783030046248. [Google Scholar]
- Wylensek, D.; Hitch, T.C.A.; Riedel, T.; Afrizal, A.; Kumar, N.; Wortmann, E.; Liu, T.; Devendran, S.; Lesker, T.R.; Hernández, S.B.; et al. A Collection of Bacterial Isolates from the Pig Intestine Reveals Functional and Taxonomic Diversity. Nat. Commun. 2020, 11, 6389. [Google Scholar] [CrossRef]
- Yamano, T.; Iino, H.; Takada, M.; Blum, S.; Rochat, F.; Fukushima, Y. Improvement of the Human Intestinal Flora by Ingestion of the Probiotic Strain Lactobacillus Johnsonii La1. Br. J. Nutr. 2006, 95, 303–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejero-Sariñena, S.; Barlow, J.; Costabile, A.; Gibson, G.R.; Rowland, I. In Vitro Evaluation of the Antimicrobial Activity of a Range of Probiotics against Pathogens: Evidence for the Effects of Organic Acids. Anaerobe 2012, 18, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Kanmani, P.; Satish Kumar, R.; Yuvaraj, N.; Paari, K.A.; Pattukumar, V.; Arul, V. Probiotics and Its Functionally Valuable Products-a Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 641–658. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xiang, Q.; Zhang, Q.; Huang, Y.; Su, Z. Overview on the Recent Study of Antimicrobial Peptides: Origins, Functions, Relative Mechanisms and Application. Peptides 2012, 37, 207–215. [Google Scholar] [CrossRef]
- Simons, A.; Alhanout, K.; Duval, R.E. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 2020, 8, 639. [Google Scholar] [CrossRef]
- Makras, L.; Triantafyllou, V.; Fayol-Messaoudi, D.; Adriany, T.; Zoumpopoulou, G.; Tsakalidou, E.; Servin, A.; De Vuyst, L. Kinetic Analysis of the Antibacterial Activity of Probiotic Lactobacilli towards Salmonella enterica Serovar Typhimurium Reveals a Role for Lactic Acid and Other Inhibitory Compounds. Res. Microbiol. 2006, 157, 241–247. [Google Scholar] [CrossRef]
- Shi, S.; Qi, Z.; Sheng, T.; Tu, J.; Shao, Y.; Qi, K. Antagonistic Trait of Lactobacillus Reuteri S5 against Salmonella Enteritidis and Assessment of Its Potential Probiotic Characteristics. Microb. Pathog. 2019, 137, 103773. [Google Scholar] [CrossRef]
- Ozogul, F.; Yazgan, H.; Ozogul, Y. Lactic Acid Bacteria: Lactobacillus Acidophilus. In Encyclopedia of Dairy Sciences; Academic Press: Cambridge, MA, USA, 2022; pp. 187–197. [Google Scholar]
- Thakur, N.; Rokana, N.; Panwar, H. Probiotics, Selection Criteria, Safety and Role in Health And. J. Innov. Biol. Jan. 2016, 3, 259–270. [Google Scholar]
- Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion Mechanisms Mediated by Probiotics and Prebiotics and Their Potential Impact on Human Health. Appl. Microbiol. Biotechnol. 2019, 103, 6463–6472. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, D.A.; Jeffers, F.; Parker, M.L.; Vibert-Vallet, A.; Bongaerts, R.J.; Roos, S.; Walter, J.; Juge, N. Strain-Specific Diversity of Mucus-Binding Proteins in the Adhesion and Aggregation Properties of Lactobacillus Reuteri. Microbiology 2010, 156, 3368–3378. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Qiao, L.; Liu, R.; Yao, H.; Gao, C. Potential Probiotic Properties of Lactic Acid Bacteria Isolated from the Intestinal Mucosa of Healthy Piglets. Ann. Microbiol. 2017, 67, 239–253. [Google Scholar] [CrossRef]
- Tulumoglu, S.; Yuksekdag, Z.N.; Beyatli, Y.; Simsek, O.; Cinar, B.; Yaşar, E. Probiotic Properties of Lactobacilli Species Isolated from Children’s Feces. Anaerobe 2013, 24, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Vlková, E.; Grmanová, M.; Killer, J.; Mrázek, J.; Kopecný, J.; Bunesová, V.; Rada, V. Survival of Bifidobacteria Administered to Calves. Folia Microbiol. 2010, 55, 390–392. [Google Scholar] [CrossRef]
- Mulaw, G.; Sisay Tessema, T.; Muleta, D.; Tesfaye, A. In Vitro Evaluation of Probiotic Properties of Lactic Acid Bacteria Isolated from Some Traditionally Fermented Ethiopian Food Products. Int. J. Microbiol. 2019, 2019, 7179514. [Google Scholar] [CrossRef] [Green Version]
- FAO; WHO. Guidelines for the Evaluation of Probiotics in Food; World Health Organization: Geneva, Switzerland; Food And Agriculture Organization: Rome, Italy, 2002.
- Carvalho, A.S.; Silva, J.; Ho, P.; Teixeira, P.; Malcata, F.X.; Gibbs, P. Relevant Factors for the Preparation of Freeze-Dried Lactic Acid Bacteria. Int. Dairy J. 2004, 14, 835–847. [Google Scholar] [CrossRef]
- Geigerová, M.; Vlková, E.; Bunešová, V.; Rada, V. Persistence of Bifidobacteria in the Intestines of Calves after Administration in Freeze-Dried Form or in Fermented Milk. Czech J. Anim. Sci. 2016, 61, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Darnaud, M.; De Vadder, F.; Bogeat, P.; Boucinha, L.; Bulteau, A.-L.; Bunescu, A.; Couturier, C.; Delgado, A.; Dugua, H.; Elie, C.; et al. A Standardized Gnotobiotic Mouse Model Harboring a Minimal 15-Member Mouse Gut Microbiota Recapitulates SOPF/SPF Phenotypes. Nat. Commun. 2021, 12, 6686. [Google Scholar] [CrossRef]
Targeted Bacterial Groups | Cultivation Medium | Cultivation Condition |
---|---|---|
Total anaerobes | Wilkins–Chalgren agar, 5 g/L soya peptone (both Oxoid), 0.5 g/L L-cysteine, 1 mL/L tween 80 (both Sigma-Aldrich), WSP agar | 37 °C, 48 h, anaerobiosis |
Bifidobacteria | WSP agar, 100 mg/L norfloxacin, 100 mg/L mupirocin (both Oxoid), 1 mL/L glacial acetic acid (Sigma-Aldrich) [49] | 37 °C, 48 h, anaerobiosis |
Sporulates | WSP agar/Tryptone Soya agar (Oxoid) | 37 °C, 48 h, anaerobiosis/aerobiosis; 80 °C for 10 min prior cultivation |
Lactobacilli | Rogosa agar (Oxoid), 1.32 mL/L acetic acid (Sigma-Aldrich) | 37 °C, 72 h, microaerophilic conditions |
Coliforms | TBX agar (Oxoid) | 37 °C, 24 h, aerobiosis |
Targeted Bacterial Groups | Isolated Bacteria (Number of Isolates) | |
---|---|---|
Total anaerobes | Acidaminococcus fermentans (5) | Eubacterium tenue (3) |
Bacteroides uniformis (9) | Mitsuokella mulracida (5) | |
Enterococcus durans (5) | Staphylococcus aureus (6) | |
Enterococcus faecalis (9) | Staphylococcus warneri (3) | |
Enterococcus faecium (7) | Streptococcus alactolyticus (2) | |
Bifidobacteria | Bifidobacterium animalis (12) | Bifidobacterium pseudolongum (8) |
Bifidobacterium apri (3) | Bifidobacterium thermophilium (9) | |
Bifidobacterium boum (9) | Mitsuokella mulracida (6) | |
Bifidobacterium porcinum (12) | ||
Sporulates | Bacillus amyloliquefaciens (2) | Bacillus vallismortis (2) |
Bacillus cereus (2) | Clostridium cochlearium (3) | |
Bacillus licheniformis (7) | Clostridium perfringens (10) | |
Bacillus mycoides (8) | Clostridium sporogenes (12) | |
Bacillus paramycoides (5) | Paeniclostridium sordellii (8) | |
Bacillus subtilis (8) | Paraclostridium bifermentans (4) | |
Bacillus thuringiensis (1) | Terrisporobacter glycolicus (1) | |
Lactobacilli | Lacticaseibacillus paracasei (5) | Lactobacillus porci (8) |
Lactobacillus amylovorus (17) | Ligilactobacillus agilis (2) | |
Lactobacillus antri (2) | Ligilactobacillus ruminis (10) | |
Lactobacillus delbrueckii (2) | Ligilactobacillus salivarius (3) | |
Lactobacillus fermentum (2) | Limosilactobacillus mucosae (4) | |
Lactobacillus johnsonii (5) | Limosilactobacillus reuteri (18) | |
Lactobacillus kitasatonis (2) | ||
Coliforms | Escherichia fergusonii (3) | Shigella flexneri (4) |
Escherichia coli (11) |
Delta log CFU/mL Decrease after Incubation in | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH 3 | 1.5% Bile | Inhibition Zones (mm) * | ||||||||||
Strain | Identification by 16S rRNA Gene Sequencing | GenBank | Origin | 1 h | 2 h | 2 h | 3 h | LT2 | STM | Agg | Agg% ** | Adhesion ** |
PG1 | Bacillus paramycoides/paranthracis/nitratireducens | OP778050 | domestic pig colon | 0.75 | 0.97 | 0.26 | 0.44 | 6.00 ± 0.00 | 6.00 ± 0.00 | − | nt | 0.41 ± 0.19 |
PG2 | Bifidobacterium animalis subsp. lactis | OP778043 | domestic pig feces | 0.17 | 0.19 | 0.00 | 0.10 | 7.67 ± 0.58 | 8.33 ± 0.58 | + | 73.66 ± 1.53 | 17.42 ± 2.22 |
PG3 | Bifidobacterium porcinum | OP778042 | domestic pig feces | 0.06 | 0.17 | 0.15 | 0.16 | 9.00 ± 0.00 | 8.00 ± 0.00 | + | 41.07 ± 3.10 | 0.17 ± 0.08 |
PG4 | Clostridium sporogenes | OP778045 | domestic pig colon | 0.03 | 0.07 | 0.11 | 0.13 | 7.33 ± 0.58 | 7.00 ± 0.00 | + | 24.37 ± 1.52 | 0.41 ± 0.10 |
PG5 | Lactobacillus paracasei subsp. tolerans | OP778044 | domestic pig colon | 0.07 | 0.21 | 0.06 | 0.33 | 13.00 ± 0.00 | 8.33 ± 0.58 | + | 61.27 ± 3.61 | 2.29 ± 0.46 |
PG6 | Lactobacillus amylovorus | OP778047 | wild pig colon | 0.19 | 0.23 | 0.45 | 0.79 | 10.00 ± 0.00 | 8.67 ± 0.58 | + | 21.83 ± 2.22 | 0.27 ± 0.03 |
PG7 | Limosilactobacillus reuteri subsp. porcinus | OP778046 | wild pig colon | 0.03 | 0.13 | 0.01 | 0.01 | 9.00 ± 0.00 | 10.67 ± 0.58 | + | 54.57 ± 2.30 | 1.13 ± 0.64 |
PG8 | Limosilactobacillus reuteri subsp. suis | OP778049 | domestic pig feces | 0.11 | 0.14 | 0.07 | 0.11 | 8.33 ± 0.58 | 10.00 ± 0.00 | + | 55.80 ± 0.44 | 1.63 ± 0.75 |
PG9 | Limosilactobacillus reuteri subsp. porcinus | OP778048 | domestic piglet colon | 0.01 | 0.32 | 0.05 | 0.08 | 7.67 ± 0.58 | 7.33 ± 0.58 | + | 32.33 ± 1.33 | 0.74 ± 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvathova, K.; Modrackova, N.; Splichal, I.; Splichalova, A.; Amin, A.; Ingribelli, E.; Killer, J.; Doskocil, I.; Pechar, R.; Kodesova, T.; et al. Defined Pig Microbiota with a Potential Protective Effect against Infection with Salmonella Typhimurium. Microorganisms 2023, 11, 1007. https://doi.org/10.3390/microorganisms11041007
Horvathova K, Modrackova N, Splichal I, Splichalova A, Amin A, Ingribelli E, Killer J, Doskocil I, Pechar R, Kodesova T, et al. Defined Pig Microbiota with a Potential Protective Effect against Infection with Salmonella Typhimurium. Microorganisms. 2023; 11(4):1007. https://doi.org/10.3390/microorganisms11041007
Chicago/Turabian StyleHorvathova, Kristyna, Nikol Modrackova, Igor Splichal, Alla Splichalova, Ahmad Amin, Eugenio Ingribelli, Jiri Killer, Ivo Doskocil, Radko Pechar, Tereza Kodesova, and et al. 2023. "Defined Pig Microbiota with a Potential Protective Effect against Infection with Salmonella Typhimurium" Microorganisms 11, no. 4: 1007. https://doi.org/10.3390/microorganisms11041007
APA StyleHorvathova, K., Modrackova, N., Splichal, I., Splichalova, A., Amin, A., Ingribelli, E., Killer, J., Doskocil, I., Pechar, R., Kodesova, T., & Vlkova, E. (2023). Defined Pig Microbiota with a Potential Protective Effect against Infection with Salmonella Typhimurium. Microorganisms, 11(4), 1007. https://doi.org/10.3390/microorganisms11041007