Antimicrobial Resistance of Campylobacter coli Isolated from Caecal Samples of Fattening Pigs at Slaughter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Campylobacter Isolates and Antimicrobial Susceptibility Testing
2.2. Species Identification
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, e05500. [Google Scholar]
- Whitehouse, C.A.; Zhao, S.; Tate, H. Antimicrobial resistance in Campylobacter species: Mechanisms and genomic epidemiology. Adv. Appl. Microbiol. 2018, 103, 1–47. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Information for Health Proffessionals. Campylobacter. CDC. Available online: https://www.cdc.gov/campylobacter/technical.html (accessed on 13 February 2023).
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union one health 2019 zoonoses report. EFSA J. 2021, 19, e06406. [Google Scholar] [CrossRef]
- Sheppard, S.K.; Colles, F.M.; McCarthy, N.D.; Strachan, N.J.; Ogden, I.D.; Forbes, K.J.; Dallas, J.F.; Maiden, M.C. Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species. Mol. Ecol. 2011, 20, 3484–3490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mughini Gras, L.; Smid, J.H.; Wagenaar, J.A.; de Boer, A.G.; Havelaar, A.H.; Friesema, I.H.; French, N.P.; Busani, L.; van Pelt, W. Risk factors for campylobacteriosis of chicken, ruminant, and environmental origin: A combined case-control and source attribution analysis. PLoS ONE 2012, 8, e42599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haruna, M.; Sasaki, Y.; Murakami, M.; Mori, T.; Asai, T.; Ito, K.; Yamada, Y. Prevalence and antimicrobial resistance of Campylobacter isolates from beef cattle and pigs in Japan. J. Vet. Med. Sci. 2013, 75, 625–628. [Google Scholar] [CrossRef] [Green Version]
- Kempf, I.; Kerouanton, A.; Bougeard, S.; Nagard, B.; Rose, V.; Mourand, G.; Osterberg, J.; Denis, M.; Bengtsson, B.O. Campylobacter coli in organic and conventional pig production in France and Sweden: Prevalence and antimicrobial resistance. Front. Microbiol. 2017, 8, 955. [Google Scholar] [CrossRef]
- Meistere, I.; Ķibilds, J.; Eglīte, L.; Alksne, L.; Avsejenko, J.; Cibrovska, A.; Makarova, S.; Streikiša, M.; Grantiņa-Ieviņa, L.; Bērziņš, A. Campylobacter species prevalence, characterisation of antimicrobial resistance and analysis of whole-genome sequence of isolates from livestock and humans, Latvia, 2008 to 2016. Eurosurveill 2019, 24, 1800357. [Google Scholar] [CrossRef] [Green Version]
- Di Donato, G.; Marotta, F.; Nuvoloni, R.; Zilli, K.; Neri, D.; Di Sabatino, D.; Calistri, P.; Di Giannatale, E. Prevalence, population diversity and antimicrobial resistance of Campylobacter coli isolated in Italian swine at slaughterhouse. Microorganisms 2020, 8, 222. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, K.; Osek, J. Antimicrobial resistance mechanisms among Campylobacter. Biomed. Res. Int. 2013, 2013, 340605. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, C.O.; Badoni, M.; McGinnis, J.C. Assessment of the adequacy of cleaning of equipment used for breaking beef carcasses. Int. J. Food. Microbiol. 1999, 46, 1–8. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). The FAO Action Plan on Antimicrobial Resistance 2021–2025; FAO: Rome, Italy, 2021; pp. 1–46. [CrossRef]
- Gillespie, I.A.; O’Brien, S.J.; Frost, J.A.; Adak, G.K.; Horby, P.; Swan, A.V.; Painter, M.J.; Neal, K.R.; Campylobacter Sentinel Surveillance System Collaborators. A case-case comparison of Campylobacter coli and Campylobacter jejuni infection: A tool for generating hypotheses. Emerg. Infect. Dis. 2002, 8, 937. [Google Scholar] [CrossRef] [PubMed]
- Mourkas, E.; Florez-Cuadrado, D.; Pascoe, B.; Calland, J.K.; Bayliss, S.C.; Mageiros, L.; Méric, G.; Hitchings, M.D.; Quesada, A.; Porrero, C.; et al. Gene pool transmission of multidrug resistance among Campylobacter from livestock, sewage and human disease. Environ. Microbiol. 2019, 21, 4597–4613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J. 2023, 21, 7867. [Google Scholar] [CrossRef]
- European Commission. Directive (EC) No 2003/99 of 17 November 2003 on the Monitoring of Zoonoses and Zoonotic Agents; Publications Office of the European Union: Luxembourg, 2003; p. 325. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32003L0099 (accessed on 26 April 2023).
- European Commission (EC). Implementing Decision 2013/652/EU of 12 November 2013 on the Monitoring and Reporting of Antimicrobial Resistance in Zoonotic and Commensal Bacteria; Official Journal of the European Union: Luxembourg, 2013; pp. 26–39. Available online: http://data.europa.eu/eli/dec_impl/2013/652/oj (accessed on 26 April 2023).
- ISO 10272-1:2018; Microbiology of the Food Chain-Horizontal Method for Detection and Enumeration of Campylobacter spp.-Part 1: Detection Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2017; pp. 1–24.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 29 April 2023).
- Mossong, J.; Mughini-Gras, L.; Penny, C.; Devaux, A.; Olinger, C.; Losch, S.; Cauchie, H.M.; van Pelt, W.; Ragimbeau, C. Human campylobacteriosis in Luxembourg, 2010–2013: A case-control study combined with multilocus sequence typing for source attribution and risk factor analysis. Sci. Rep. 2016, 6, 20939. [Google Scholar] [CrossRef] [Green Version]
- Rosner, B.M.; Schielke, A.; Didelot, X.; Kops, F.; Breidenbach, J.; Willrich, N.; Gölz, G.; Alter, T.; Stingl, K.; Josenhans, C.; et al. A combined case-control and molecular source attribution study of human Campylobacter infections in Germany, 2011–2014. Sci. Rep. 2017, 7, 5139. [Google Scholar] [CrossRef] [Green Version]
- Statistics Estonia. Available online: https://andmed.stat.ee/et (accessed on 29 April 2023).
- Mäesaar, M.; Praakle, K.; Meremäe, K.; Kramarenko, T.; Sõgel, J.; Viltrop, A.; Muutra, K.; Kovalenko, K.; Matt, D.; Hörman, A.; et al. Prevalence and counts of Campylobacter spp. in poultry meat at retail level in Estonia. Food Control. 2014, 44, 72–77. [Google Scholar] [CrossRef]
- Mäesaar, M.; Meremäe, K.; Ivanova, M.; Roasto, M. Antimicrobial resistance and multilocus sequence types of Campylobacter jejuni isolated from Baltic broiler chicken meat and Estonian human patients. Poult. Sci. 2018, 97, 3645–3651. [Google Scholar] [CrossRef]
- Kuus, K.; Kramarenko, T.; Sõgel, J.; Mäesaar, M.; Fredriksson-Ahomaa, M.; Roasto, M. Prevalence and serotype diversity of Salmonella enterica in the Estonian meat production chain in 2016–2020. Pathogens 2021, 10, 1622. [Google Scholar] [CrossRef]
- Pezzotti, G.; Serafin, A.; Luzzi, I.; Mioni, R.; Milan, M.; Perin. Occurrence and resistance to antibiotics of Campylobacter jejuni and Campylobacter coli in animals and meat in northeastern Italy. Int. J. Food Microbiol. 2003, 82, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Agbankpe, A.J.; Kougblenou, S.D.; Dougnon, T.V.; Oussou, A.; Gbotche, E.; Koudokpon, C.H.; Legba, B.B.; Baba-Moussa, L.; Bankole, H.S. Prevalence and antimicrobial resistance of Campylobacter coli and Campylobacter jejuni isolated from pig guts, pig faeces, and surface swabs from the cutting tables at slaughterhouse and taverns in southern Benin. Int. J. Microbiol. 2022, 2022, 5120678. [Google Scholar] [CrossRef] [PubMed]
- Boes, J.; Nersting, L.; Nielsen, E.M.; Kranker, S.; EnØe, C.; Wachmann, H.C.; Baggesen, D.L. Prevalence and diversity of Campylobacter jejuni in pig herds on farms with and without cattle or poultry. J. Food. Prot. 2005, 68, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Kolstoe, E.M.; Iversen, T.; Østensvik, Ø.; Abdelghani, A.; Secic, I.; Nesbakken, T. Specific pathogen-free pig herds also free from Campylobacter? Zoonoses. Public Health. 2014, 62, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Lindblad, M.; Lindmark, H.; Lambertz, S.T.; Lindqvist, R. Microbiological baseline study of swine carcasses at Swedish slaughterhouses. J. Food Prot. 2007, 70, 1790–1797. [Google Scholar] [CrossRef]
- Conesa, A.; Garofolo, G.; Di Pasquale, A.; Cammà, C. Monitoring AMR in Campylobacter jejuni from Italy in the last 10 years (2011–2021): Microbiological and WGS data risk assessment. EFSA J. 2022, 20, e200406. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Decision (EU) 2020/1729 of 17 November 2020 on the Monitoring and Reporting of Antimicrobial Resistance in Zoonotic and Commensal Bacteria and Repealing Implementing Decision 2013/652/EU; Official Journal of the European Union: Luxembourg, 2020; pp. 8–21. Available online: http://data.europa.eu/eli/dec_impl/2020/1729/oj (accessed on 26 April 2023).
- Estonian Agency of Medicines. Statistics on Veterinary Medicines. Available online: https://www.ravimiamet.ee/en/statistics/statistics-veterinary-medicines (accessed on 26 April 2023).
- Finnish Food Safety Authority. Risk Assessment of Campylobacter spp. in Finland. Available online: https://www.ruokavirasto.fi/globalassets/tietoameista/julkaisut/julkaisusarjat/tutkimukset/riskiraportit/risk-assessment-of-campylobacter-spp_2_2016.pdf (accessed on 28 April 2023).
- Aarestrup, F.M.; Nielsen, E.M.; Madsen, M.; Engberg, J. Antimicrobial susceptibility patterns of thermophilic Campylobacter spp. from humans, pigs, cattle, and broilers in Denmark. Antimicrob. Agents Chemother. 1997, 41, 2244–2250. [Google Scholar] [CrossRef] [Green Version]
- Danish Programme for Surveillance of Antimicrobial Consumption and Resistance in Bacteria from Food Animals, Food and Humans (DANMAP). Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark. Available online: https://www.danmap.org/-/media/sites/danmap/downloads/reports/2020/summary_danmap_2020_17112021_version-4_low.pdf (accessed on 28 April 2023).
- World Health Organization (WHO). Critically Important Antimicrobials for Human Medicine, 6th ed.; WHO: Geneva, Switzerland, 2019; Available online: https://www.who.int/publications/i/item/9789241515528 (accessed on 29 April 2023).
- Finnish Food Authority. FINRES-Vet 2021: Finnish Veterinary Antimicrobial Resistance Monitoring and Consumption of Antimicrobial Agents. Available online: https://www.ruokavirasto.fi/en/animals/animal-medication/monitoring-of-antibiotic-resistance/finres-vet-reports/ (accessed on 28 April 2023).
- Juntunen, P.; Heiska, H.; Olkkola, S.; Myllyniemi, A.L.; Hänninen, M.L. Antimicrobial resistance in Campylobacter coli selected by tylosin treatment at a pig farm. Vet. Microbiol. 2010, 146, 90–97. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC); European Food Safety Authority (EFSA); European Medicines Agency (EMA). ECDC/EFSA/EMA Second Joint Report on the Integrated Analysis of the Consumption of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Human and Food-Producing Animals. EFSA J. 2017, 15, 4872. [Google Scholar] [CrossRef]
- Catalano, A.; Iacopetta, D.; Ceramella, J.; Scumaci, D.; Giuzio, F.; Saturnino, C.; Aquaro, S.; Rosano, C.; Sinicropi, M.S. Multidrug resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules 2022, 27, 616. [Google Scholar] [CrossRef]
- Marotta, F.; Di Marcantonio, L.; Janowicz, A.; Pedonese, F.; Di Donato, G.; Ardelean, A.; Nuvoloni, R.; Di Giannatale, E.; Garofolo, G. Genotyping and antibiotic resistance traits in Campylobacter jejuni and coli from pigs and wild boars in Italy. Front. Cell. Infect. 2020, 10, 592512. [Google Scholar] [CrossRef] [PubMed]
- Pascoe, B.; Meric, G.; Yahara, K.; Wimalarathna, H.; Murray, S.; Hitchings, M.D.; Sproston, E.L.; Carrillo, C.D.; Taboada, E.N.; Cooper, K.K.; et al. Local genes for local bacteria: Evidence of allopatry in the genomes of transatlantic Campylobacter populations. Mol. Ecol. 2017, 26, 4497–4508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, M.; Zhou, Q.; Zhang, X.; Zhou, S.; Zhang, J.; Tang, X.; Lu, J.; Gao, Y. Antibiotic resistance profiles and molecular mechanisms of Campylobacter from chicken and pig in China. Front. Microbiol. 2020, 11, 592496. [Google Scholar] [CrossRef]
- Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahn, L.H.; Bergeron, G.; Bourassa, M.W.; De Vegt, B.; Gill, J.; Gomes, F.; Malouin, F.; Opengart, K.; Ritter, G.D.; Singer, R.S.; et al. From farm management to bacteriophage therapy: Strategies to reduce antibiotic use in animal agriculture. Ann. N. Y. Acad. Sci. 2019, 1441, 31–39. [Google Scholar] [CrossRef]
- Huber, N.; Andraud, M.; Sassu, E.L.; Prigge, C.; Zoche-Golob, V.; Käsbohrer, A.; d’Angelantonio, D.; Viltrop, A.; Żmudzki, J.; Jones, H.; et al. What is a biosecurity measure? A definition proposal for animal production and linked processing operations. One Health 2022, 15, 100433. [Google Scholar] [CrossRef]
- Albernaz-Gonçalves, R.; Olmos Antillón, G.; Hötzel, M.J. Linking animal welfare and antibiotic use in pig farming—A review. Animals 2022, 12, 216. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Global Action Plan on Antimicrobial Resistance. Available online: https://apps.who.int/iris/rest/bitstreams/864486/retrieve (accessed on 29 April 2023).
- World Organization for Animal Health (OIE). The OIE Strategy on Antimicrobial Resistance and the Prudent Use of Antimicrobials. Available online: https://www.woah.org/fileadmin/Home/eng/Media_Center/docs/pdf/PortailAMR/EN_OIE-AMRstrategy.pdf (accessed on 29 April 2023).
- Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0006&qid=1682759895351 (accessed on 29 April 2023).
- Regulation (EU) 2019/4 of the European Parliament and of the Council of 11 December 2018 on the Manufacture, Placing on the Market and Use of Medicated Feed, Amending Regulation (EC) No 183/2005 of the European Parliament and of the Council and Repealing Council Directive 90/167/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0004&qid=1682759993934 (accessed on 29 April 2023).
- Charlier, J.; Barkema, H.W.; Becher, P.; De Benedictis, P.; Hansson, I.; Hennig-Pauka, I.; La Ragione, R.; Larsen, L.E.; Madoroba, E.; Maes, D.; et al. Disease control tools to secure animal and public health in a densely populated world. Lancet Planet Health 2022, 6, e812–e824. [Google Scholar] [CrossRef]
- Estonian Health Board. Salmonellooside Ja Kamülobakterenteriidi Esinemine Eestis. Available online: https://www.terviseamet.ee/et/nakkus-haigused/tervishoiutootajale/nakkushaigustesse-haigestumine (accessed on 5 June 2023).
- Liu, F.; Lee, S.A.; Xue, J.; Riordan, S.M.; Zhang, L. Global epidemiology of campylobacteriosis and the impact of COVID-19. Front. Cell. Infect. Microbiol. 2022, 12, 1666. [Google Scholar] [CrossRef]
Year | No. of Samples 2 | No. of Positive Samples (%) | 95% CI 3 |
---|---|---|---|
2015 | 87 | 33 (37.9) | 27.9–49.0 |
2017 | 68 | 20 (29.4) | 19.3–41.9 |
2019 | 74 | 66 (89.2) | 79.3–94.9 |
Total | 229 | 119 (52.0) | 45.3–58.6 |
Year | No. of Isolates | Antimicrobial-Resistant Isolates (No.) | Multidrug-Resistant 1 | Susceptible to All Antimicrobials (%) | |||
---|---|---|---|---|---|---|---|
Resistant to One | Resistant to Two | Resistant to Three | Resistant to Four | ||||
2015 | 33 | 17 | 7 | 4 | 1 | 5 | 4 (12.1) |
2017 | 20 | 10 | 6 | 3 | - | 3 | 1 (5.0) |
2019 | 66 | 28 | 25 | 10 | - | 10 | 3 (4.5) |
Total | 119 | 55 | 38 | 17 | 1 | 18 | 8 (6.7) |
Antimicrobial | Number of Resistant Isolates/All Isolates Tested (%) | |||
---|---|---|---|---|
2015 | 2017 | 2019 | All 1 | |
Erythromycin | 1/33 (3.0) | 0/20 (0) | 0/66 (0) | 1/119 (0.8) a |
Ciprofloxacin | 9/33 (27.3) | 6/20 (30.0) | 26/66 (39.4) | 41/119 (34.4) b |
Tetracycline | 12/33 (36.4) | 8/20 (40.0) | 34/66 (51.5) | 54/119 (45.4) b,c |
Gentamicin | 1/33 (3.0) | 0/20 (0) | 0/66 (0) | 1/119 (0.8) a |
Nalidixic acid | 8/33 (24.2) | 4/20 (20.0) | 26/66 (39.4) | 38/119 (31.9) b,c |
Streptomycin | 24/33 (72.7) | 17/20 (85.0) | 48/66 (72.7) | 89/119 (74.8) d |
Antimicrobial Resistance Phenotype 1 | Number of C. coli Isolates (%) | Number of All Isolates (%) 2 | ||
---|---|---|---|---|
2015 | 2017 | 2019 | ||
Ery/Cip/Tet/Nal/Str | 1 (3.0) | 0 (0) | 0 (0) | 1 (0.8) |
Cip/Tet/Nal/Str | 3 (9.1) | 3 (15.0) | 10 (15.2) | 16 (13.4) |
Cip/Tet/Nal | 2 (6.1) | 0 (0) | 5 (7.6) | 7 (5.9) |
Cip/Nal/Str | 1 (3.0) | 2 (10.0) | 6 (9.1) | 9 (7.6) |
Cip/Tet/Str | 1 (3.0) | 0 (0) | 0 (0) | 1 (0.8) |
Cip/Nal | 1 (3.0) | 0 (0) | 5 (7.6) | 6 (5.0) |
Tet/Str | 4 (12.1) | 3 (15.0) | 14 (21.2) | 21 (17.6) |
Cip/Tet | 0 (0) | 1 (5.0) | 0 (0) | 1 (0.8) |
Cip/Str | 0 (0) | 1 (5.0) | 0 (0) | 1 (0.8) |
Tet | 1 (3.0) | 1 (5.0) | 5 (7.6) | 7 (5.9) |
Gen | 1 (3.0) | 0 (0) | 0 (0) | 1 (0.8) |
Str | 14 (42.4) | 8 (40.0) | 18 (27.3) | 40 (33.6) |
Resistant to one or more antimicrobials | 29 (87.9) | 19 (95.0) | 63 (95.5) | 111 (93.3) |
Susceptible to all antimicrobials | 4 (12.1) | 1 (5.0) | 3 (4.5) | 8 (6.7) |
Total | 33 (100) | 20 (100) | 66 (100) | 119 (100) |
No. of Isolates | Antimicrobial 1 | No. of Isolates with MIC Value (µg/mL) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | ||
119 | Ery | - | - | - | 113 | 3 | 2 | - | - | - | - | 1 (1) |
Cip | 58 | 17 | 4 | 1 | 4 | - | 13 | 22 (7) | - | - | - | |
Tet | 20 | - | 40 | 5 | - | 1 | 1 | 1 | 4 | 47 (21) | - | |
Gen | 10 | 4 | 19 | 60 | 25 | - | - | 1 (1) | - | - | - | |
Nal | - | - | - | 3 | 4 | 12 | 44 | 18 | 7 | 31 (24) | ||
Str | - | - | - | - | 2 | 28 | 20 | 69 (65) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tedersoo, T.; Roasto, M.; Mäesaar, M.; Fredriksson-Ahomaa, M.; Meremäe, K. Antimicrobial Resistance of Campylobacter coli Isolated from Caecal Samples of Fattening Pigs at Slaughter. Microorganisms 2023, 11, 1540. https://doi.org/10.3390/microorganisms11061540
Tedersoo T, Roasto M, Mäesaar M, Fredriksson-Ahomaa M, Meremäe K. Antimicrobial Resistance of Campylobacter coli Isolated from Caecal Samples of Fattening Pigs at Slaughter. Microorganisms. 2023; 11(6):1540. https://doi.org/10.3390/microorganisms11061540
Chicago/Turabian StyleTedersoo, Triin, Mati Roasto, Mihkel Mäesaar, Maria Fredriksson-Ahomaa, and Kadrin Meremäe. 2023. "Antimicrobial Resistance of Campylobacter coli Isolated from Caecal Samples of Fattening Pigs at Slaughter" Microorganisms 11, no. 6: 1540. https://doi.org/10.3390/microorganisms11061540