Diversity of Microbial Communities, PAHs, and Metals in Road and Leaf Dust of Functional Zones of Moscow and Murmansk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sampling Procedures
2.2. DNA Isolation from the Samples and 16S/ITS Metabarcoding
2.3. Bioinformatic Analysis
2.4. Analyses of Chemical Components
2.4.1. Analyses of PAH
2.4.2. Analyses of Metals
2.5. Statistical Analysis
3. Results
3.1. Diversity of Bacterial and Fungal Communities
3.1.1. Chao1 Richness and Shannon Diversity Indices
3.1.2. Taxonomic Composition of Bacterial and Fungal Communities
3.1.3. Similarity of Bacterial and Fungal Communities in Studied Sites
3.2. Chemical Composition of Leaf and Road Dust of the Cities’ Functional Zones
3.3. Correlation of the Studied Characteristics of Functional Zone Biotopes
3.3.1. RDA of Bacterial Classes and Chemical Compositions
3.3.2. RDA of Fungal Classes and Chemical Compositions
4. Discussion
4.1. Content of PAHs and Metals in Urban Dust Samples
4.2. Factors Determining the Diversity of Microbial Communities
4.2.1. Chao1 and Shannon Indices
4.2.2. Differences in Taxon Distribution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nikolaeva, O.V.; Kulachkova, S.A.; Astaikina, A.A.; Astaikina, A.A.; Fedoseeva, E.V.; Terekhova, V.A. Ecotoxicity of Urban Dust: Existing Practices and Prospects for Bioassay Application. Moscow Univ. Soil Sci. Bull. 2022, 77, 113–127. [Google Scholar] [CrossRef]
- Dahmardeh Behrooz, R.; Tashakor, M.; Asvad, R.; Esmaili-Sari, A.; Kaskaoutis, D.G. Characteristics and Health Risk Assessment of Mercury Exposure via Indoor and Outdoor Household Dust in Three Iranian Cities. Atmosphere 2022, 13, 583. [Google Scholar] [CrossRef]
- Franzetti, A.; Gandolfi, I.; Bestetti, G.; Padoa Schioppa, E.; Canedoli, C.; Brambilla, D.; Cappelletti, D.; Sebastiani, B.; Federici, E.; Papacchini, M.; et al. Plant-microorganisms interaction promotes removal of air pollutants in Milan (Italy) urban area. J. Hazard. Mater. 2020, 384, 121021. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Slezakova, K.; Delerue-Matos, C.; Pereira, M.C.; Morais, S. Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impacts. Environ. Int. 2019, 124, 180–204. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 2007, 20, 459–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeedi, M.; Li, L.Y.; Salmanzadeh, M. Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. J. Hazard. Mater. 2012, 227–228, 9–17. [Google Scholar] [CrossRef]
- Pshenin, V.N. Pollution of soil cover of roadside territories. Motor transport: From ecological policy to everyday practice. In Proceedings of the IV International Scientific and Practical Conference, 22 April 2008; St. Petersburg, Russia; pp. 20–21. [Google Scholar]
- Johnsen, A.R.; de Lipthay, J.R.; Sorensen, S.J.; Ekelund, F.; Christensen, P.; Andersen, O.; Karlson, U.; Jacobsen, C.S. Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil. Environ. Microbiol. 2006, 8, 535–545. [Google Scholar] [CrossRef]
- Sager, M. Urban Soils and Road Dust—Civilization Effects and Metal Pollution—A Review. Environments 2020, 9, 98. [Google Scholar] [CrossRef]
- Jin, Y.; Luan, Y.; Ning, Y.; Wang, L. Effects and Mechanisms of Microbial Remediation of Heavy Metals in Soil: A Critical Review. Appl. Sci. 2018, 8, 1336. [Google Scholar] [CrossRef] [Green Version]
- Roslund, M.I.; Grönroos, M.; Rantalainen, A.L.; Jumpponen, A.; Romantschuk, M.; Parajuli, A.; Hyöty, H.; Laitinen, O.; Sinkkonen, A. Half-lives of PAHs and temporal microbiota changes in commonly used urban landscaping materials. PeerJ 2018, 6, e4508. [Google Scholar] [CrossRef] [Green Version]
- Signorini, M.; Midolo, G.; Cesco, S.; Mimmo, T.; Borruso, L. A Matter of Metals: Copper but Not Cadmium Affects the Microbial Alpha-Diversity of Soils and Sediments—A Meta-analysis. Microb. Ecol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Quan, Q.; Gan, Y.; Dong, J.; Fang, J.; Wang, L.; Liu, J. Effects of heavy metals on microbial communities in sediments and establishment of bioindicators based on microbial taxa and function for environmental monitoring and management. Sci. Total Environ. 2020, 749, 141555. [Google Scholar] [CrossRef] [PubMed]
- Markowicz, A.; Cycoń, M.; Piotrowska-Seget, Z. Microbial Community Structure and Diversity in Long-term Hydrocarbon and Heavy Metal Contaminated Soils. Int. J. Environ. Res. 2016, 10, 321–332. [Google Scholar] [CrossRef]
- Thompson, L.R.; Sanders, J.G.; McDonald, D.; Amir, A.; Ladau, J.; Locey, K.J.; Prill, R.J.; Tripathi, A.; Gibbons, S.M.; Ackermann, G.; et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 2017, 551, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Fuhrimann, S.; Stalder, M.; Winkler, M.S.; Niwagaba, C.B.; Babu, M.; Masaba, G.; Kabatereine, N.B.; Halage, A.A.; Schneeberger, P.H.; Utzinger, J.; et al. Microbial and chemical contamination of water, sediment and soil in the Nakivubo wetland area in Kampala, Uganda. Environ. Monit. Assess. 2015, 187, 475. [Google Scholar] [CrossRef] [Green Version]
- Salawu-Rotimi, A.; Lebre, P.H.; Vos, H.C.; Fister, W.; Kuhn, N.; Eckardt, F.D.; Cowan, D.A. Gone with the Wind: Microbial Communities Associated with Dust from Emissive Farmlands. Microb. Ecol. 2021, 82, 859–869. [Google Scholar] [CrossRef]
- Gandolfi, I.; Canedoli, C.; Imperato, V.; Tagliaferri, I.; Gkorezis, P.; Vangronsveld, J.; Padoa Schioppa, E.; Papacchini, M.; Bestetti, G.; Franzetti, A. Diversity and hydrocarbon-degrading potential of epiphytic microbial communities on Platanus x acerifolia leaves in an urban area. Environ. Pollut. 2017, 220 Pt A, 650–658. [Google Scholar] [CrossRef]
- Pollegioni, P.; Mattioni, C.; Ristorini, M.; Occhiuto, D.; Canepari, S.; Korneykova, M.V.; Gavrichkova, O. Diversity and Source of Airborne Microbial Communities at Differential Polluted Sites of Rome. Atmosphere 2022, 13, 224. [Google Scholar] [CrossRef]
- Prussin, A.J., II.; Marr, L.C. Sources of airborne microorganisms in the built environment. Microbiome 2015, 3, 78. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.R. Influence of roadside pollution on the phylloplane microbial community of Alnus nepalensis (Betulaceae). Rev. De Biol. Trop. 2008, 56, 1521–1529. [Google Scholar] [CrossRef] [Green Version]
- Jia, T.; Guo, T.; Cao, M.; Chai, B. Effects of Heavy Metals on Phyllosphere and Rhizosphere Microbial Community of Bothriochloa ischaemum. Appl. Sci. 2018, 8, 1419. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Gebert, M.J.; Faith, S.A.; Dunn, R.R.; Fierer, N.; Barberán, A. Global Patterns and Climatic Controls of Dust-Associated Microbial Communities. Microbiol. Spectr. 2021, 9, e0144721. [Google Scholar] [CrossRef]
- Barberán, A.; Ladau, J.; Leff, J.W.; Pollard, K.S.; Menninger, H.L.; Dunn, R.R.; Fierer, N. Continental-scale distributions of dustassociated bacteria and fungi. Proc. Nat. Acad. Sci. USA 2015, 112, 5756–5761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivashchenko, K.V.; Ananyeva, N.; Vasenev, V.I.; Kudeyarov, V.; Valentini, R. Biomass and respiration activity of soil microorganisms in anthropogenically transformed ecosystems (Moscow region). Eurasian Soil Sci. 2014, 47, 892–903. [Google Scholar] [CrossRef]
- Sarzhanov, D.A.; Vasenev, V.I.; Sotnikova, Y.L.; Tembo, A.; Vasenev, I.; Valentini, R. Short-term dynamics and spatial heterogeneity of CO2 emission from the soils of natural and urban ecosystems in the Central Chernozemic Region. Eurasian Soil Sci 2015, 48, 416–424. [Google Scholar] [CrossRef]
- Massimi, L.; Ristorini, M.; Astolfi, M.L.; Perrino, C.; Canepari, S. High resolution spatial mapping of element concentrations in PM10: A powerful tool for localization of emission sources. Atmos. Res. 2020, 244, 105060. [Google Scholar] [CrossRef]
- Baldacchini, C.; Castanheiro, A.; Maghakyan, N.; Sgrigna, G.; Verhelst, J.; Alonso, R.; Amorim, J.H.; Bellan, P.; Đunisijević Bojović, D.; Breuste, J.; et al. How does the amount and composition of PM deposited on Platanus acerifolia leaves change across different cities in Europe? Environ. Sci. Techno.l 2017, 51, 1147–1156. [Google Scholar] [CrossRef]
- Liu, D.; Wu, P.; Zhao, N.; Nie, S.; Cui, J.; Zhao, M.; Jin, H. Differences of bisphenol analogue concentrations in indoor dust between rural and urban areas. Chemosphere 2021, 276, 130016. [Google Scholar] [CrossRef]
- Korneykova, M.V.; Soshina, A.S.; Novikov, A.I.; Ivashchenko, K.V.; Sazonova, O.I.; Slukovskaya, M.V.; Shirokaya, A.A.; Vasenev, V.I.; Vetrova, A.A.; Gavrichkova, O. Microscopic fungi in big cities: Biodiversity, source, and relation to pollution by potentially toxic metals. Atmosphere 2021, 12, 1471. [Google Scholar] [CrossRef]
- Sazonova, O.I.; Gavrichkova, O.; Ivanova, A.A.; Petrikov, K.V.; Streletskii, R.A.; Sarzhanov, D.A.; Korneykova, M.V.; Novikov, A.I.; Vasenev, V.I.; Ivashchenko, K.V.; et al. Polycyclic Aromatic Hydrocarbon-Degrading Bacteria in Three Different Functional Zones of the Cities of Moscow and Murmansk. Microorganisms 2022, 10, 1979. [Google Scholar] [CrossRef]
- Mosecomonitoring Site. 2020. Available online: https://mosecom.mos.ru/home-page/ (accessed on 15 August 2020).
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glockner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Op De Beeck, M.; Lievens, B.; Busschaert, P.; Declerck, S.; Vangronsveld, J.; Colpaert, J.V. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS ONE 2014, 9, e97629. [Google Scholar] [CrossRef] [Green Version]
- Sequentia Biotech GAIA Site. 2022. Available online: http://gaia.sequentiabiotech.com/ (accessed on 11 January 2022).
- US EPA. Priority Pollutant List. 2014. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-listepa.pdf (accessed on 3 November 2021).
- MicrobiomeAnalyst Site. 2022. Available online: https://www.microbiomeanalyst.ca/ (accessed on 12 December 2022).
- Venny 2.1 Site. Available online: http://bioinfogp.cnb.csic.es/tools/venny/ (accessed on 18 December 2022).
- Morpheus. Available online: https://software.broadinstitute.org/morpheus/ (accessed on 10 December 2022).
- ClustVis Service. Available online: http://biit.cs.ut.ee/clustvis/ (accessed on 10 December 2022).
- Weyens, N.; Thijs, S.; Popek, R.; Witters, N.; Przybysz, A.; Espenshade, J.; Gawronska, H.; Vangronsveld, J.; Gawronski, S.W. The Role of Plant-Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants. Int. J. Mol. Sci. 2015, 16, 25576–25604. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Teng, Y.; Song, L.; Zuo, R. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China. PLoS ONE 2016, 11, e0168528. [Google Scholar] [CrossRef] [Green Version]
- Postevaya, M.A.; Slukovskii, z. Analysis of atmospheric emissions in Murmansk and their relationship with pollution of urban lakes. Vestn. MSTU 2021, 24, 190–201. (In Russia) [Google Scholar] [CrossRef]
- Coutinho, T.; Bophela, K. Chapter 7—Tree leaves as a habitat for phyllobacteria. In Forest Microbiology, Forest Microbiology; Asiegbu, O.F., Kovalchuk, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 133–144. ISBN 9780128225424. [Google Scholar] [CrossRef]
- Kumar, S.; Abedin, M.M.; Singh, A.K.; Das, S. Role of Phenolic Compounds in Plant-Defensive Mechanisms. In Plant Phenolics in Sustainable Agriculture; Lone, R., Shuab, R., Kamili, A., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Samaké, A.; Bonin, A.; Jaffrezo, J.-L.; Taberlet, P.; Weber, S.; Uzu, G.; Jacob, V.; Conil, S.; Martins, J.M.F. High levels of primary biogenic organic aerosols are driven by only a few plant-associated microbial taxa. Atmos. Chem. Phys. 2020, 20, 5609–5628. [Google Scholar] [CrossRef]
- Wuyts, K.; Smets, W.; Lebeer, S.; Samson, R. Green infrastructure and atmospheric pollution shape diversity and composition of phyllosphere bacterial communities in an urban landscape. FEMS Microbiol. Ecol. 2020, 96, fiz173. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, R.H. Classification of natural communities. Bot. Rew. 1962, 28, 1–239. [Google Scholar] [CrossRef]
- Lebedeva, N.V. Biological Diversity; Vlados: Moscow, Russia, 2004; p. 432. [Google Scholar]
- Solyanikova, I.P.; Golovleva, L.A. Physiological and biochemical properties of Actinobacteria as the basis of their high biodegradative activity (review). Appl. Biochem. Microbiol. 2015, 51, 143–149. [Google Scholar] [CrossRef]
- Morales-López, S.; Yepes, J.A.; Prada-Herrera, J.C.; Torres-Jiménez, A. Enterobacteria in the 21st century: A review focused on taxonomic changes. J. Infect. Dev. Ctries. 2019, 13, 265–273. [Google Scholar] [CrossRef]
- Kim, S.J.; Moon, J.Y.; Weon, H.Y.; Hong, S.B.; Seok, S.J.; Kwon, S.W. Noviherbaspirillum suwonense sp. nov., isolated from an air sample. Int. J. Syst. Evol. Microbiol. 2014, 64 Pt 5, 1552–1558. [Google Scholar] [CrossRef]
- Nishiyama, M.; Senoo, K.; Wada, H.; Matsumoto, S. Identification of soil micro-habitats for growth, death and survival of a bacterium, g-1,2,3,4,5,6-hexachlorocyclohexane-assimilating Sphingomonas paucimobilis, by fractionation of soil. FEMS Microbiol. Ecol. 1992, 101, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Basta, T.; Buerger, S.; Stolz, A. Structural and replicative diversity of large plasmids from sphingomonads that degrade polycyclic aromatic compounds and xenobiotics. Microbiology (Reading) 2005, 151 Pt 6, 2025–2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, R.H.; Xiong, A.S.; Xue, Y.; Fu, X.Y.; Gao, F.; Zhao, W.; Tian, Y.S.; Yao, Q.H. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 2008, 32, 927–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vila, J.; Tauler, M.; Grifoll, M. Bacterial PAH degradation in marine and terrestrial habitats. Curr. Opin. Biotechnol. 2015, 33, 95–102. [Google Scholar] [CrossRef]
- Vila, J.; Maria Nieto, J.; Mertens, J.; Springael, D.; Grifoll, M. Microbial community structure of a heavy fuel oil-degrading marine consortium: Linking microbial dynamics with polycyclic aromatic hydrocarbon utilization. FEMS Microbiol. Ecol. 2010, 73, 349–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weikl, F.; Tischer, C.; Probst, A.J.; Heinrich, J.; Markevych, I.; Jochner, S.; Pritsch, K. Fungal and Bacterial Communities in Indoor Dust Follow Different Environmental Determinants. PLoS ONE 2016, 11, e0154131. [Google Scholar] [CrossRef]
- Haferburg, G.; Kothe, E. Microbes and metals: Interactions in the environment. J. Basic Microbiol. 2007, 47, 453–467. [Google Scholar] [CrossRef]
- Gadd, G.M.; Griffiths, A.J. Microorganisms and heavy metal toxicity. Microb. Ecol. 1977, 4, 303–317. [Google Scholar] [CrossRef]
- Yi, J.; Lo, L.S.H.; Liu, H.; Qian, P.-Y.; Cheng, J. Study of Heavy Metals and Microbial Communities in Contaminated Sediments Along an Urban Estuary. Front. Mar. Sci. 2021, 8, 741912. [Google Scholar] [CrossRef]
- Frossard, A.; Hartmann, M.; Frey, B. Tolerance of the forest soil microbiome to increasing mercury concentrations. Soil Biol. Biochem. 2017, 105, 162–176. [Google Scholar] [CrossRef]
- Rajapaksha, R.M.; Tobor-Kaplon, M.A.; Baath, E. Metal toxicity affects fungal and bacterial activities in soil differently. Appl. Environ. Microbiol. 2004, 70, 2966–2973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerwien, F.; Skrahina, V.; Kasper, L.; Hube, B.; Brunke, S. Metals in fungal virulence. FEMS Microbiol. Rev. 2018, 42, fux050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solioz, M. Copper Disposition in Bacteria; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Vest, K.E.; Zhu, X.; Cobine, P.A. Copper disposition in yeast. In Clinical and Translational Perspectives on WILSON DISEASE; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 115–126. [Google Scholar] [CrossRef]
- Hao, X.; Zhu, J.; Rensing, C.; Liu, Y.; Gao, S.; Chen, W.; Huang, Q.; Liu, Y.R. Recent advances in exploring the heavy metal (loid) resistant microbiome. Comput. Struct. Biotechnol. J. 2021, 19, 94–109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vetrova, A.A.; Sazonova, O.I.; Ivanova, A.A.; Streletskii, R.A.; Sarzhanov, D.A.; Korneykova, M.V.; Novikov, A.I.; Vasenev, V.I.; Ivashchenko, K.V.; Slukovskaya, M.V.; et al. Diversity of Microbial Communities, PAHs, and Metals in Road and Leaf Dust of Functional Zones of Moscow and Murmansk. Microorganisms 2023, 11, 526. https://doi.org/10.3390/microorganisms11020526
Vetrova AA, Sazonova OI, Ivanova AA, Streletskii RA, Sarzhanov DA, Korneykova MV, Novikov AI, Vasenev VI, Ivashchenko KV, Slukovskaya MV, et al. Diversity of Microbial Communities, PAHs, and Metals in Road and Leaf Dust of Functional Zones of Moscow and Murmansk. Microorganisms. 2023; 11(2):526. https://doi.org/10.3390/microorganisms11020526
Chicago/Turabian StyleVetrova, Anna A., Olesya I. Sazonova, Anastasia A. Ivanova, Rostislav A. Streletskii, Dmitriy A. Sarzhanov, Maria V. Korneykova, Andrey I. Novikov, Viacheslav I. Vasenev, Kristina V. Ivashchenko, Marina V. Slukovskaya, and et al. 2023. "Diversity of Microbial Communities, PAHs, and Metals in Road and Leaf Dust of Functional Zones of Moscow and Murmansk" Microorganisms 11, no. 2: 526. https://doi.org/10.3390/microorganisms11020526
APA StyleVetrova, A. A., Sazonova, O. I., Ivanova, A. A., Streletskii, R. A., Sarzhanov, D. A., Korneykova, M. V., Novikov, A. I., Vasenev, V. I., Ivashchenko, K. V., Slukovskaya, M. V., & Gavrichkova, O. (2023). Diversity of Microbial Communities, PAHs, and Metals in Road and Leaf Dust of Functional Zones of Moscow and Murmansk. Microorganisms, 11(2), 526. https://doi.org/10.3390/microorganisms11020526