Genomic Islands Identified in Highly Resistant Serratia sp. HRI: A Pathway to Discover New Disinfectant Resistance Elements
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Argudín, M.A.; Lauzat, B.; Kraushaar, B.; Alba, P.; Agerso, Y.; Cavaco, L.; Butaye, P.; Porrero, M.C.; Battisti, A.; Tenhagen, B.-A.; et al. Heavy metal and disinfectant resistance genes among livestock-associated methicillin-resistant Staphylococcus aureus isolates. Vet. Microbiol. 2016, 191, 88–95. [Google Scholar] [CrossRef]
- Deng, W.; Quan, Y.; Yang, S.; Guo, L.; Zhang, X.; Liu, S.; Chen, S.; Zhou, K.; He, L.; Li, B.; et al. Antibiotic Resistance in Salmonella from Retail Foods of Animal Origin and Its Association with Disinfectant and Heavy Metal Resistance. Microb. Drug Resist. 2018, 24, 782–791. [Google Scholar] [PubMed]
- Guo, L.; Long, M.; Huang, Y. Antimicrobial and disinfectant resistance of Escherichia coli isolated from giant pandas. J. Appl. Microbiol. 2015, 119, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ye, L.; Kromann, S.; Meng, H. Occurrence of Extended-Spectrum β-Lactamases, Plasmid-Mediated Quinolone Resistance, and Disinfectant Resistance Genes in Escherichia coli Isolated from Ready-To-Eat Meat Products. Foodborne Pathog. Dis. 2017, 14, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, A.; Nagaya, Y.; Pradel, E.; Ooka, T.; Ogura, Y.; Katsura, K.; Kurokawa, K.; Oshima, K.; Hattori, M.; Parkhill, J.; et al. Genome Evolution and Plasticity of Serratia marcescens, an Important Multidrug-Resistant Nosocomial Pathogen. Genome Biol. Evol. 2014, 6, 2096–2110. [Google Scholar] [PubMed]
- Juhas, M.; Van Der Meer, J.R.; Gaillard, M.; Harding, R.M.; Hood, D.W.; Crook, D.W. Genomic islands: Tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol. Rev. 2009, 33, 376–393. [Google Scholar] [PubMed]
- Mc Carlie, S.; Boucher, C.; Bragg, R. Molecular basis of bacterial disinfectant resistance. Drug Resist. Updat. 2020, 48, 100672. [Google Scholar]
- Verma, J.; Bag, S.; Saha, B.; Kumar, P.; Ghosh, T.S.; Dayal, M.; Senapati, T.; Mehra, S.; Dey, P.; Desigamani, A.; et al. Genomic plasticity associated with antimicrobial resistance in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 2019, 116, 6226–6231. [Google Scholar]
- Kim, M.; Weigand, M.R.; Oh, S.; Hatt, J.K.; Krishnan, R.; Tezel, U.; Pavlostathis, S.G.; Konstantinidis, K.T. Widely used benzalkonium chloride disinfectants can promote antibiotic resistance. Appl. Environ. Microbiol. 2018, 84, 7–19. [Google Scholar] [CrossRef]
- Bertelli, C.; Tilley, K.E.; Brinkman, F.S.L. Microbial genomic island discovery, visualization and analysis. Brief. Bioinform. 2019, 20, 1685–1698. [Google Scholar]
- Langille, M.G.I.; Hsiao, W. genomic islands using bioinformatics approaches. llia. W.L.; Brinkman, F.S.L. Detecting genomic islands using bioinformatics approaches. Nat. Rev. Microbiol. 2010, 8, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Soucy, S.M.; Huang, J.; Gogarten, J.P. Horizontal gene transfer: Building the web of life. Nat. Rev. Genet. 2015, 16, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Hacker, J.; Bender, L.; Ott, M.; Wingender, J.; Lund, B.; Marre, R.; Goebel, W. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb. Pathog. 1990, 8, 213–225. [Google Scholar] [PubMed]
- Juhas, M.; Power, P.M.; Harding, R.M.; Ferguson, D.J.P.; Dimopoulou, I.D.; Elamin, A.R.E.; Mohd-Zain, Z.; Hood, D.W.; Adegbola, R.; Erwin, A.; et al. Sequence and functional analyses of Haemophilus spp. genomic islands. Genome Biol. 2007, 8, R237. [Google Scholar] [CrossRef]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Lau, B.Y.; Hoad, G.; Winsor, G.L.; Brinkman, F.S. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017, 45, W30–W35. [Google Scholar]
- Li, W.; Wang, A. Genomic islands mediate environmental adaptation and the spread of antibiotic resistance in multiresistant Enterococci-evidence from genomic sequences. BMC Microbiol. 2021, 21, 55. [Google Scholar] [CrossRef]
- Gilmour, M.W.; Graham, M.; Van Domselaar, G.; Tyler, S.; Kent, H.; Trout-Yakel, K.M.; Larios, O.; Allen, V.; Lee, B.; Nadon, C. High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics 2010, 11, 120. [Google Scholar] [CrossRef]
- Kovacevic, J.; Ziegler, J.; Walecka-Zacharska, E.; Reimer, A.; Kitts, D.D.; Gilmour, M.W. Tolerance of Listeria monocytogenes to quaternary ammonium sanitizers is mediated by a novel efflux pump encoded by emrE. Appl. Environ. Microbiol. 2015, 82, 939–953. [Google Scholar] [CrossRef]
- Jiang, X.; Ren, S.; Geng, Y.; Yu, T.; Li, Y.; Liu, L.; Liu, G.; Wang, H.; Shi, L. The sug operon involves in resistance to quaternary ammonium compounds in Listeria monocytogenes EGD-e. Appl. Microbiol. Biotechnol. 2020, 104, 7093–7104. [Google Scholar] [CrossRef]
- Mc Carlie, S.; Hellmuth, J.; Newman, J.; Boucher, C.E.; Bragg, R.R. Genome Sequence of Resistant Serratia sp. Strain HRI, Isolated from a Bottle of Didecyldimethylammonium Chloride-Based Disinfectant. Microbiol. Resour. Announc. 2020, 9, e00095-20. [Google Scholar] [CrossRef]
- Olson, R.D.; Assaf, R.; Brettin, T.; Conrad, N.; Cucinell, C.; Davis, J.J.; Dempsey, D.M.; Dickerman, A.; Dietrich, E.M.; Kenyon, R.W.; et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 2023, 51, D678–D689. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, L.; Sun, L.; Yu, J.; Jin, Q. VFDB 2008 release: An enhanced web-based resource for comparative pathogenomics. Nucleic Acids Res. 2008, 36, D539–D542. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Abraham, D.; Wattam, A.R.; Wilson, M.J.C.; Shukla, M.; Yoo, H.S.; Sobral, B.W. Curation, integration and visualization of bacterial virulence factors in PATRIC. Bioinformatics 2015, 31, 252–258. [Google Scholar] [CrossRef]
- Ho Sui, S.J.; Fedynak, A.; Hsiao, W.W.L.; Langille, M.G.I.; Brinkman, F.S.L. The association of virulence factors with genomic islands. PLoS One 2009, 4, e8094. [Google Scholar] [CrossRef]
- Dhillon, B.K.; Laird, M.R.; Shay, J.A.; Winsor, G.L.; Lo, R.; Nizam, F.; Pereira, S.K.; Waglechner, N.; McArthur, A.G.; Langille, M.G.I.; et al. IslandViewer 3: More flexible, interactive genomic island discovery, visualization and analysis. Nucleic Acids Res. 2015, 43, W104–W108. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genomics 2008, 9, 75. [Google Scholar] [CrossRef]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [PubMed]
- Vong, K.; Auclair, K. Understanding and overcoming aminoglycoside resistance caused by N-6′-acetyltransferase. Medchemcomm 2012, 3, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Liu, D.; Wang, L.; Wang, Y.; Zang, Z.; Liu, Z.; Song, B.; Gu, L.; Fan, Z.; Yang, S.; et al. A Putative Efflux Transporter of the ABC Family, YbhFSR, in Escherichia coli Functions in Tetracycline Efflux and Na+(Li+)/H+ Transport. Front. Microbiol. 2020, 11, 556. [Google Scholar] [PubMed]
- Liu, Q. TMBIM-mediated Ca2+ homeostasis and cell death. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Descheemaeker, P.; Chapelle, S.; Lammens, C.; Hauchecorne, M.; Wijdooghe, M.; Vandamme, P.; Ieven, M.; Goossens, H. Macrolide resistance and erythromycin resistance determinants among Belgian Streptococcus pyogenes and Streptococcus pneumoniae isolates. J. Antimicrob. Chemother. 2000, 45, 167–173. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nishijima, T. Distribution of mefE and ermB genes in macrolide-resistant strains of Streptococcus pneumoniae and their variable susceptibility to various antibiotics. J. Antimicrob. Chemother. 1999, 43, 637–643. [Google Scholar] [CrossRef]
- Huang, H.-H.; Lin, Y.-T.; Chen, P.-Y.; Li, L.-H.; Ning, H.-C.; Yang, T.-C. ClpA and HtpX Proteases Are Involved in Intrinsic Aminoglycoside Resistance of Stenotrophomonas maltophilia and Are Potential Aminoglycoside Adjuvant Targets. Antimicrob. Agents Chemother. 2018, 62, e00554-18. [Google Scholar] [CrossRef]
- Basta, D.W.; Angeles-Albores, D.; Spero, M.A.; Ciemniecki, J.A.; Newman, D.K. Heat-shock proteases promote survival of Pseudomonas aeruginosa during growth arrest. Proc. Natl. Acad. Sci. USA 2020, 117, 4358–4367. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, B.; Li, M.; Shi, J.; Long, Y.; Jin, Y.; Bai, F.; Cheng, Z.; Jin, S.; Wu, W. HigB Reciprocally Controls Biofilm Formation and the Expression of Type III Secretion System Genes through Influencing the Intracellular c-di-GMP Level in Pseudomonas aeruginosa. Toxins 2018, 10, 424. [Google Scholar] [CrossRef]
- Wood, T.L.; Wood, T.K. The HigB/HigA toxin/antitoxin system of Pseudomonas aeruginosa influences the virulence factors pyochelin, pyocyanin, and biofilm formation. Microbiol. Open 2016, 5, 499–511. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Nigro, S.J.; Hall, R.M. Loss and gain of aminoglycoside resistance in global clone 2 Acinetobacter baumannii in Australia via modification of genomic resistance islands and acquisition of plasmids. J. Antimicrob. Chemother. 2016, 71, 2432–2440. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhang, L.; Wang, G.; Lin, Y.; Ramanathan, S.; Yang, G.; Lin, W.; Lin, X. The LysR-Type Transcriptional Regulator YeeY Plays Important Roles in the Regulatory of Furazolidone Resistance in Aeromonas hydrophila. Front. Microbiol. 2020, 11, 577376. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Zhu, J.; Feng, L.; Li, J.; Liu, X. Characterization of LuxI/LuxR and their regulation involved in biofilm formation and stress resistance in fish spoilers Pseudomonas fluorescens. Int. J. Food Microbiol. 2019, 297, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xie, J. Role and regulation of bacterial LuxR-like regulators. J. Cell. Biochem. 2011, 112, 2694–2702. [Google Scholar] [CrossRef] [PubMed]
- Manjasetty, B.A.; Halavaty, A.S.; Luan, C.-H.; Osipiuk, J.; Mulligan, R.; Kwon, K.; Anderson, W.F.; Joachimiak, A. Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity. J. Struct. Biol. 2016, 194, 18–28. [Google Scholar] [CrossRef]
- Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef]
- Paulsen, I.T.; Skurray, R.A.; Tam, R.; Saier, M.H.; Turner, R.J.; Weiner, J.H.; Goldberg, E.B.; Grinius, L.L. The SMR family: A novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol. Microbiol. 1996, 19, 1167–1175. [Google Scholar] [CrossRef]
- Cuthbertson, L.; Nodwell, J.R. The TetR Family of Regulators. Microbiol. Mol. Biol. Rev. 2013, 77, 440–475. [Google Scholar] [CrossRef]
- Ramos, J.L.; Martínez-Bueno, M.; Molina-Henares, A.J.; Terán, W.; Watanabe, K.; Zhang, X.; Gallegos, M.T.; Brennan, R.; Tobes, R. The TetR Family of Transcriptional Repressors. Microbiol. Mol. Biol. Rev. 2005, 69, 326–356. [Google Scholar] [CrossRef]
Genomic Island | Antimicrobial Resistance Genes | Hypothetical Proteins | Toxin-Antitoxin Systems | Mobility Genes | Non-Resistance Efflux Genes | Transcriptional Regulators |
---|---|---|---|---|---|---|
11 | 7 | 40 | 2 * | 9 | 0 | 5 |
18 | 2 | 0 | 0 | 0 | 1 | 0 |
20 | 3 | 10 | 0 | 11 | 1 | 3 |
23 | 1 | 1 | 0 | 0 | 0 | 0 |
28 | 1 | 1 | 0 | 3 | 1 | 0 |
33 | 1 | 5 | 0 | 0 | 0 | 0 |
42 | 13 | 23 | 7 * | 13 | 0 | 0 |
46 | 1 | 5 | 0 | 1 | 0 | 0 |
76 | 3 | 28 | 2 | 5 | 0 | 1 |
Function | Start | Stop | Length (bp) | Annotation | |
---|---|---|---|---|---|
1 | Periplasmic fimbrial chaperone StfD | 3 | 764 | 762 | |
2 | Hypothetical protein | 799 | 1455 | 657 | Fimbrial protein (Serratia) |
3 | Hypothetical protein | 1472 | 1966 | 495 | Fimbrial protein (Serratia marcescens) |
4 | MrfF | 1983 | 2474 | 492 | |
5 | Minor fimbrial subunit StfG | 2484 | 3014 | 531 | |
6 | Hypothetical protein | 3158 | 3697 | 540 | LuxR C-terminal-related transcriptional regulator (Serratia marcescens) |
7 | Hypothetical protein | 3715 | 3888 | 174 | |
8 | IS1 protein InsB | 4211 | 3969 | 243 | |
9 | Inner-membrane proton/drug antiporter (MSF type) of tripartite multidrug efflux system | 6496 | 4208 | 2289 | |
10 | Transcriptional regulator, LysR family | 6637 | 7539 | 903 | |
11 | Colicin immunity protein PA0984 | 7645 | 8010 | 366 | |
12 | YpjF toxin protein | 8619 | 8251 | 369 | |
13 | Uncharacterized protein YagB | 9016 | 8678 | 339 | |
14 | UPF0758 family protein | 9526 | 9047 | 480 | DNA repair protein RadC (Serratia marcescens) |
15 | Hypothetical protein | 9541 | 9765 | 225 | |
16 | Hypothetical protein | 9887 | 10,069 | 183 | |
17 | FIG01222608: hypothetical protein | 10,562 | 10,206 | 357 | |
18 | Hypothetical protein | 11,008 | 10,697 | 312 | |
19 | Hypothetical protein | 11,323 | 11,021 | 303 | |
20 | Hypothetical protein | 11,845 | 11,342 | 504 | |
21 | Hypothetical protein | 12,570 | 11,842 | 729 | WYL-domain-containing protein (Serratia marcescens) |
22 | Hypothetical protein | 13,008 | 12,772 | 237 | |
23 | Hypothetical protein | 13,903 | 13,019 | 885 | |
24 | Hypothetical protein | 14,462 | 15,091 | 630 | Inovirus Gp2 family protein (Serratia marcescens) |
25 | Hypothetical protein | 15,213 | 15,425 | 213 | AlpA family phage regulatory protein (Serratia marcescens) |
26 | Hypothetical protein | 15,474 | 15,632 | 159 | |
27 | Hypothetical protein | 17,366 | 15,774 | 1593 | DUF3987-domain-containing protein (Serratia marcescens) |
28 | Hypothetical protein | 17,395 | 17,535 | 141 | |
29 | Hypothetical protein | 17,784 | 17,963 | 180 | ShlB/FhaC/HecB family hemolysin secretion/activation protein (unclassified Serratia) |
30 | Hypothetical protein | 17,960 | 18,208 | 249 | |
31 | Phosphoglycerate mutase (EC 5.4.2.11) | 18,243 | 18,860 | 618 | |
32 | Il-IS_2, transposase | 19,280 | 18,843 | 438 | |
33 | Hypothetical protein | 20,125 | 19,277 | 849 | SMP-30/gluconolactonase/LRE family protein (Serratia marcescens) |
34 | Oxidoreductase, short-chain dehydrogenase/reductase family | 20,988 | 20,122 | 867 | |
35 | Transcriptional regulator, LysR family | 21,133 | 21,426 | 294 | |
36 | Mobile element protein | 22,121 | 21,606 | 516 | |
37 | Insertion element IS401 (Burkholderia multivorans) transposase | 22,400 | 22,173 | 228 | |
38 | Phage integrase | 22,837 | 22,553 | 285 | |
39 | Phage-associated DNA N-6-adenine methyltransferase | 23236 | 22,955 | 282 | |
40 | Hypothetical protein | 23,677 | 23,531 | 147 | |
41 | Hypothetical protein | 23,838 | 23,680 | 159 | |
42 | Hypothetical protein | 23,837 | 23,971 | 135 | |
43 | Hypothetical protein | 24,125 | 23,997 | 129 | |
44 | FIG01055438: hypothetical protein | 24,208 | 24,387 | 180 | |
45 | Hypothetical protein | 24,456 | 24,620 | 165 | |
46 | Hypothetical protein | 24,617 | 24,712 | 96 | |
47 | Hypothetical protein | 24,706 | 24,834 | 129 | |
48 | Hypothetical protein | 25,094 | 24,936 | 159 | |
49 | Efflux transport system, outer membrane factor (OMF) lipoprotein | 25,470 | 26,885 | 1416 | |
50 | ABC-type antimicrobial peptide transport system, permease component | 26,885 | 28,021 | 1137 | |
51 | ABC-type antimicrobial peptide transport system, ATPase component | 28,039 | 28,764 | 726 | |
52 | Probable Co/Zn/Cd efflux system membrane fusion protein | 28,775 | 29,683 | 909 | |
53 | 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate phosphatase related protein | 29,715 | 30,416 | 702 | |
54 | Hydrolase, alpha/beta fold family | 30,413 | 31,303 | 891 | |
55 | Permease of the drug/metabolite transporter (DMT) superfamily | 31,300 | 31,659 | 360 | |
56 | Permease of the drug/metabolite transporter (DMT) superfamily | 31,662 | 32,087 | 426 | |
57 | Hypothetical protein | 33,118 | 32,228 | 891 | |
58 | FIG110192: hypothetical protein | 34,184 | 33,120 | 1065 | Peptidogalycan biosysnthesis protein (Serratia) |
59 | Aminotransferase, class III | 35,560 | 34184 | 1377 | |
60 | Mobile element protein | 35,743 | 35,856 | 114 | |
61 | Hypothetical protein | 36,927 | 35,869 | 1059 | ATP-binding protein (Serratia sp. HRI) |
62 | Two-component transcriptional response regulator, LuxR family | 37,624 | 36,929 | 696 | |
63 | Hypothetical protein | 37,940 | 38,161 | 222 | |
64 | Core lipopolysaccharide phosphoethanolamine transferase EptC | 38,236 | 39,933 | 1698 | |
65 | Two-component response regulator | 40,672 | 40,502 | 171 | |
66 | Two-component response regulator | 40,948 | 40,685 | 264 | |
67 | Hypothetical protein | 41,166 | 41,032 | 135 | |
68 | Hypothetical protein | 42,468 | 41,395 | 1074 | RelA/SpoT-domain-containing protein (Serratia) |
69 | Hypothetical protein | 42,751 | 42,542 | 210 | |
70 | Hypothetical protein | 42,965 | 42,822 | 144 | |
71 | Hydrolase, alpha/beta fold family | 43,881 | 43,006 | 876 | |
72 | Monooxygenase, flavin-binding family | 45,404 | 43,878 | 1527 | |
73 | Transcriptional regulator, AcrR family | 46,310 | 45,717 | 594 | |
74 | Hypothetical protein | 46,429 | 46,310 | 120 | |
75 | Hypothetical protein | 46,428 | 46,628 | 201 | |
76 | MmcH | 46,648 | 47,535 | 888 | |
77 | Hypothetical protein | 47,657 | 47,857 | 201 | |
78 | Possible regulatory protein Trx | 47,870 | 49,126 | 1257 |
Function | Start | Stop | Length (bp) | Annotation | |
---|---|---|---|---|---|
1 | Conjugative transfer protein TrbK | 326 | 3 | 324 | |
2 | Conjugative transfer protein TrbJ | 1082 | 339 | 744 | |
3 | Conjugative transfer protein TrbE | 3529 | 1079 | 2451 | |
4 | Conjugative transfer protein TrbD | 3811 | 3542 | 270 | |
5 | Conjugative transfer protein TrbC | 4194 | 3808 | 387 | |
6 | Conjugative transfer protein TrbB | 5261 | 4191 | 1071 | |
7 | CopG-domain-containing protein | 5734 | 5258 | 477 | |
8 | Coupling protein VirD4, ATPase required for T-DNA transfer | 7728 | 5731 | 1998 | |
9 | Transcriptional regulator, LysR family | 8034 | 8939 | 906 | |
10 | Hypothetical protein | 9221 | 9751 | 531 | |
11 | Transposase and inactivated derivatives | 9796 | 10,032 | 237 | |
12 | Small multidrug resistance family (SMR) protein | 10,578 | 10,261 | 318 | |
13 | Probable lipoprotein | 10,900 | 10,637 | 264 | |
14 | Transcriptional regulator, LysR family | 11,838 | 10,933 | 906 | |
15 | Hypothetical protein | 13,335 | 11,932 | 1404 | TolC family protein |
16 | Transcriptional regulator, TetR family | 13,446 | 14,087 | 642 | |
17 | Probable Co/Zn/Cd efflux system membrane fusion protein | 14,084 | 15,250 | 1167 | MULTISPECIES: efflux RND transporter periplasmic adaptor subunit |
18 | Hypothetical protein | 15,275 | 18,379 | 3105 | MULTISPECIES: efflux RND transporter permease subunit |
19 | Hypothetical protein | 18,460 | 18,807 | 348 | MULTISPECIES: SMR family transporter |
20 | Hypothetical protein | 18,823 | 19,443 | 621 | |
21 | ABC transporter, permease protein (cluster 9, phospholipid) | 19,440 | 20,597 | 1158 | |
22 | Mobile element protein | 21,909 | 21,205 | 705 | |
23 | Integron integrase IntI1 | 21,900 | 22,196 | 297 | |
24 | Mobile element protein | 22,571 | 23,209 | 639 | |
25 | Transposase | 23,176 | 26,100 | 2925 | |
26 | Beta-glucosidase (EC 3.2.1.21) | 27,418 | 26,180 | 1239 | |
27 | Putative polysaccharide export protein YccZ precursor | 27,383 | 28,471 | 1089 | |
28 | Tyrosine-protein kinase (EC 2.7.10.2) | 28,730 | 30,892 | 2163 | |
29 | Hypothetical protein | 30,933 | 32,171 | 1239 | |
30 | Hypothetical protein | 32,197 | 33,204 | 1008 | |
31 | Hypothetical protein | 33,223 | 33,972 | 750 | |
32 | Poly(glycerol-phosphate) alpha-glucosyltransferase (EC 2.4.1.52) | 34,315 | 35,256 | 942 | |
33 | Hypothetical protein | 35,283 | 36,419 | 1137 | |
34 | UDP-galactopyranose mutase (EC 5.4.99.9) | 36,474 | 37,625 | 1152 | |
35 | Low-molecular-weight protein-tyrosine-phosphatase (EC 3.1.3.48) => Etp | 38,004 | 38,438 | 435 | |
36 | Tyrosine-protein kinase (EC 2.7.10.2) | 38,450 | 40,621 | 2172 | |
37 | Hypothetical protein | 40,702 | 41,862 | 1161 | |
38 | Hypothetical protein | 41,828 | 43,288 | 1461 | MULTISPECIES: aldo/keto reductase |
39 | Glycosyltransferase | 43,278 | 44,186 | 909 | |
40 | Glycosyl transferase, group 1 | 44,233 | 45,276 | 1044 | |
41 | Glycosyltransferase | 45,351 | 47,300 | 1950 |
Function | Start | Stop | Length (bp) | Annotation | |
---|---|---|---|---|---|
1 | Hypothetical protein | 923 | 411 | 513 | Hypothetical protein (Serratia sp. SSNIH1) |
2 | Polyketide synthase modules and related proteins | 4124 | 1122 | 3003 | |
3 | Hypothetical protein | 4338 | 4222 | 117 | |
4 | Autoinducer synthase | 4424 | 5584 | 1161 | |
5 | Hypothetical protein | 5859 | 6110 | 252 | |
6 | ABC-type multidrug transport system, permease component | 6668 | 6546 | 123 | |
7 | Hypothetical protein | 6969 | 6658 | 312 | Multidrug efflux ABC transporter permease/ATP-binding subunit SmdA (Serratia marcescens) (WP_033641139.1) |
8 | Hypothetical protein | 7032 | 8279 | 1248 | MbeB family mobilization protein (Serratia marcescens) |
9 | MobA | 8378 | 8599 | 222 | |
10 | Small multidrug resistance family (SMR) protein | 8666 | 8998 | 333 | |
11 | Hypothetical protein | 9165 | 8995 | 171 | GNAT family N-acetyltransferase (Serratia marcescens) |
12 | Hypothetical protein | 9377 | 9207 | 171 | |
13 | Hypothetical protein | 9746 | 9531 | 216 | |
14 | Mobilization protein MobC | 10,181 | 10,339 | 159 | |
15 | Hypothetical protein | 11,258 | 10,875 | 384 | |
16 | Hypothetical protein | 11,371 | 12,447 | 1077 | |
17 | Hypothetical protein | 13,804 | 12,512 | 1293 | Site-specific integrase (Serratia) |
18 | Probable site-specific recombinase | 15,011 | 13,806 | 1206 | |
19 | Transcriptional regulator, AlpA-like | 15,550 | 15,344 | 207 | |
20 | Hypothetical protein | 16,511 | 15,651 | 861 | DUF6387 family protein (Serratia) |
21 | Hypothetical protein | 16,691 | 16,575 | 117 | |
22 | Hypothetical protein | 17,617 | 16,709 | 909 | DUF4760-domain-containing protein (Enterobacterales) |
23 | Hypothetical protein | 17,972 | 17,856 | 117 | |
24 | Hypothetical protein | 18,388 | 19,452 | 1065 | |
25 | Repeat region | 19,395 | 19,521 | 127 | |
26 | Replication protein | 20,789 | 19,809 | 981 | |
27 | Hypothetical protein | 21,202 | 20,993 | 210 | |
28 | Hypothetical protein | 21,229 | 21,357 | 129 | Conjugal transfer protein TraD (Yersinia) |
29 | Hypothetical protein | 21,836 | 21,384 | 453 | |
30 | Mobilization protein | 21,871 | 23,106 | 1236 | |
31 | Hypothetical protein | 23,121 | 23,711 | 591 | tRNA modification GTPase (Yersinia enterocolitica) |
32 | Restriction enzyme BcgI alpha chain-like protein (EC:2.1.1.72) | 23,769 | 25,805 | 2037 | |
33 | Hypothetical protein | 25,847 | 26,941 | 1095 | |
34 | YoeB toxin protein | 27,235 | 26,981 | 255 | |
35 | YefM protein (antitoxin to YoeB) | 27,483 | 27,232 | 252 | |
36 | Hypothetical protein | 27,667 | 28,959 | 1293 | |
37 | Repeat region | 27,757 | 27,883 | 127 | |
38 | Phage integrase | 28,952 | 29,149 | 198 | |
39 | Type I restriction-modification system, restriction subunit R (EC 3.1.21.3) | 29,715 | 30,176 | 462 | |
40 | Hypothetical protein | 30,943 | 30,173 | 771 | MFS transporter (Serratia) |
41 | Hypothetical protein | 31,191 | 31,382 | 192 | GNAT family N-acetyltransferase (Paenibacillus xylanexedens) |
42 | Hypothetical protein | 31,502 | 31,410 | 93 | Phytanoyl-CoA dioxygenase family protein (Serratia) |
43 | Hypothetical protein | 31,702 | 32,502 | 801 | |
44 | Nodulation protein nolO (EC 2.1.3.-) | 32,512 | 34,344 | 1833 | |
45 | Hypothetical protein | 34,355 | 34,492 | 138 | |
46 | Hypothetical protein | 34,496 | 35,602 | 1107 | G-D-S-L family lipolytic protein (Serratia) |
47 | Hypothetical protein | 35,662 | 36,966 | 1305 | ATP-grasp-domain-containing protein (Serratia) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCarlie, S.J.; Boucher, C.E.; Bragg, R.R. Genomic Islands Identified in Highly Resistant Serratia sp. HRI: A Pathway to Discover New Disinfectant Resistance Elements. Microorganisms 2023, 11, 515. https://doi.org/10.3390/microorganisms11020515
McCarlie SJ, Boucher CE, Bragg RR. Genomic Islands Identified in Highly Resistant Serratia sp. HRI: A Pathway to Discover New Disinfectant Resistance Elements. Microorganisms. 2023; 11(2):515. https://doi.org/10.3390/microorganisms11020515
Chicago/Turabian StyleMcCarlie, Samantha J., Charlotte E. Boucher, and Robert R. Bragg. 2023. "Genomic Islands Identified in Highly Resistant Serratia sp. HRI: A Pathway to Discover New Disinfectant Resistance Elements" Microorganisms 11, no. 2: 515. https://doi.org/10.3390/microorganisms11020515
APA StyleMcCarlie, S. J., Boucher, C. E., & Bragg, R. R. (2023). Genomic Islands Identified in Highly Resistant Serratia sp. HRI: A Pathway to Discover New Disinfectant Resistance Elements. Microorganisms, 11(2), 515. https://doi.org/10.3390/microorganisms11020515