Incidence and Risk Factors for Clostridioides difficile Infections in Non-COVID and COVID-19 Patients: Experience from a Tertiary Care Hospital
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Study Setting
2.2. Diagnosis and Definitions
2.3. Data Collection
2.4. Ethical Consideration
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawson, P.A.; Citron, D.M.; Tyrrell, K.L.; Finegold, S.M. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prevot 1938. Anaerobe 2016, 40, 95–99. [Google Scholar] [CrossRef]
- Finn, E.; Andersson, F.L.; Madin-Warburton, M. Burden of Clostridioides difficile infection (CDI)—A systematic review of the epidemiology of primary and recurrent CDI. BMC Infect. Dis. 2021, 21, 456. [Google Scholar] [CrossRef]
- Guh, A.Y.; Mu, Y.; Winston, L.G.; Johnston, H.; Olson, D.; Farley, M.M.; Wilson, L.E.; Holzbauer, S.M.; Phipps, E.C.; Dumyati, G.K.; et al. Trends in U.S. Burden of Clostridioides difficile Infection and Outcomes. N. Engl. J. Med. 2020, 382, 1320–1330. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Clostridioides (Clostridium) Difficile Infections Annual Epidemiological Report for 2016–2017; ECDC: Stocholm, Sweden, 2022; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/clostridioides-clostridium-difficile-infections.pdf (accessed on 9 January 2023).
- Perić, A.; Rančić, N.; Dragojević-Simić, V.; Milenković, B.; Ljubenović, N.; Rakonjac, B.; Begović-Kuprešanin, V.; Šuljagić, V. Association between Antibiotic Use and Hospital-Onset Clostridioides difficile Infection in University Tertiary Hospital in Serbia, 2011-2021: An Ecological Analysis. Antibiotics 2022, 11, 1178. [Google Scholar] [CrossRef] [PubMed]
- Curcio, D.; Cané, A.; Fernández, F.A.; Correa, J. Clostridium difficile-associated Diarrhea in Developing Countries: A Systematic Review and Meta-Analysis. Infect. Dis. Ther. 2019, 8, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Azimirad, M.; Noori, M.; Raeisi, H.; Yadegar, A.; Shahrokh, S.; Asadzadeh Aghdaei, H.; Bentivegna, E.; Martelletti, P.; Petrosillo, N.; Zali, M.R. How Does COVID-19 Pandemic Impact on Incidence of Clostridioides difficile Infection and Exacerbation of Its Gastrointestinal Symptoms? Front. Med. 2021, 8, 775063. [Google Scholar] [CrossRef]
- Adenote, A.; Dumic, I.; Madrid, C.; Barusya, C.; Nordstrom, C.W.; Rueda Prada, L. NAFLD and Infection, a Nuanced Relationship. Can. J. Gastroenterol. Hepatol. 2021, 2021, 5556354. [Google Scholar] [CrossRef]
- Król, Z.; Szymański, P.; Bochnia, A.; Abramowicz, E.; Płachta, A.; Rzepliński, R.; Sługocki, M.; Nowak, B.; Zaczyński, A.; Kozłowski, K.; et al. Transformation of a large multi-speciality hospital into a dedicated COVID-19 centre during the coronavirus pandemic. Ann. Agric. Environ. Med. 2020, 27, 201–206. [Google Scholar] [CrossRef]
- Tosoni, A.; Rizzatti, G.; Nicolotti, N.; Di Giambenedetto, S.; Addolorato, G.; Franceschi, F.; Zileri Dal Verme, L.; Gemelli Against COVID-19 Clinician Team (GAC-19 CT) Study Group. Hospital reengineering against COVID-19 outbreak: 1-month experience of an Italian tertiary care center. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 8202–8209. [Google Scholar] [CrossRef]
- Ndayishimiye, C.; Sowada, C.; Dyjach, P.; Stasiak, A.; Middleton, J.; Lopes, H.; Dubas-Jakóbczyk, K. Associations between the COVID-19 Pandemic and Hospital Infrastructure Adaptation and Planning-A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 8195. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Living Guidance for Clinical Management of COVID-19: Living Guidance, 27 May 2020; World Health Organization: Geneva, Switzerland, 2020; Available online: https://apps.who.int/iris/bitstream/handle/10665/332196/WHO-2019-nCoV-clinical-2020.5-eng.pdf (accessed on 4 June 2020).
- European Centre for Disease Prevention and Control. Case Definition for Coronavirus Disease 2019 (COVID19), as of 3 December 2020. Available online: https://www.ecdc.europa.eu/en/covid-19/surveillance/case-definition (accessed on 5 December 2020).
- Shane, A.L.; Mody, R.K.; Crump, J.A.; Tarr, P.I.; Steiner, T.S.; Kotloff, K.; Langley, J.M.; Wanke, C.; Warren, C.A.; Cheng, A.C.; et al. Infectious Diseases Society of America Clinical Practice Guidelines for the Diagnosis and Management of Infectious Diarrhea. Clin. Infect. Dis. 2017, 65, 1963–1973. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.R.; Fischer, M.; Allegretti, J.R.; LaPlante, K.; Stewart, D.B.; Limketkai, B.N.; Stollman, N.H. ACG Clinical Guidelines: Prevention, Diagnosis, and Treatment of Clostridioides difficile Infections. Am. J. Gastroenterol. 2021, 116, 1124–1147. [Google Scholar] [CrossRef] [PubMed]
- Crobach, M.J.; Planche, T.; Eckert, C.; Barbut, F.; Terveer, E.M.; Dekkers, O.M.; Wilcox, M.H.; Kuijper, E.J. European Society of Clinical Microbiology and Infectious Diseases: Update of the diagnostic guidance document for Clostridium difficile infection. Clin. Microbiol. Infect. 2016, 22 (Suppl. S4), S63–S81. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. European Surveillance of Clostridioides (Clostridium) Difficile Infections. Surveillance Protocol Version, Version 2.4; ECDC: Stocholm, Sweden, 2022; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/clostridium-difficile-infections-EU-surveillance-protocol-vers2.4.pdf (accessed on 9 January 2023).
- Kuijper, E.J.; Coignard, B.; Tüll, P.; ESCMID Study Group for Clostridium Difficile; EU Member States; European Centre for Disease Prevention and Control. Emergence of Clostridium difficile-associated disease in North America and Europe. Clin. Microbiol. Infect. 2006, 12 (Suppl. S6), 2–18. [Google Scholar] [CrossRef]
- Mu, Y.; Dudeck, M.; Jones, K.; Li, Q.; Soe, M.; Nkwata, A.; Edwards, J. Trends in Hospital Onset Clostridioides difficile Infection Incidence, National Healthcare Safety Network, 2010–2018. Infect. Control Hosp. Epidemiol. 2020, 41, S53–S54. [Google Scholar] [CrossRef]
- Rizzo, K.R.; Yi, S.H.; Garcia, E.P.; Zahn, M.; Epson, E. Reduction in Clostridium difficile infection rates following a multifacility prevention initiative in Orange County, California: A controlled interrupted time series evaluation. Infect. Control Hosp. Epidemiol. 2019, 40, 872–879. [Google Scholar] [CrossRef]
- Redmond, S.N.; Silva, S.Y.; Wilson, B.M.; Cadnum, J.L.; Donskey, C.J. Impact of Reduced Fluoroquinolone Use on Clostridioides difficile Infections Resulting from the Fluoroquinolone-Resistant Ribotype 027 Strain in a Veterans Affairs Medical Center. Pathog. Immun. 2019, 4, 251–259. [Google Scholar] [CrossRef]
- Davies, K.; Lawrence, J.; Berry, C.; Davis, G.; Yu, H.; Cai, B.; Gonzalez, E.; Prantner, I.; Kurcz, A.; Macovei, I.; et al. Results from the Observational Study of Risk Factors for Clostridium difficile Infection in Hospitalized Patients With Infective Diarrhea (ORCHID). Front. Public Health 2020, 8, 293. [Google Scholar] [CrossRef]
- Rose, A.N.; Baggs, J.; Kazakova, S.V.; Guh, A.Y.; Yi, S.H.; McCarthy, N.L.; Jernigan, J.A.; Reddy, S.C. Trends in facility-level rates of Clostridioides difficile infections in US hospitals, 2019–2020. Infect. Control Hosp. Epidemiol. 2022, 1–8. [Google Scholar] [CrossRef]
- Vendrik, K.E.W.; Baktash, A.; Goeman, J.J.; Harmanus, C.; Notermans, D.W.; de Greeff, S.C.; Kuijper, E.J.C. difficile surveillance study group. Comparison of trends in Clostridioides difficile infections in hospitalised patients during the first and second waves of the COVID-19 pandemic: A retrospective sentinel surveillance study. Lancet Reg. Health Eur. 2022, 19, 100424. [Google Scholar] [CrossRef]
- Vázquez-Cuesta, S.; Olmedo, M.; Reigadas, E.; Alcalá, L.; Marín, M.; Muñoz, P.; Bouza, E. Clostridioides difficile infection epidemiology and clinical characteristics in COVID-19 pandemic. Front. Med. 2022, 9, 953724. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.B.; Du, T.; Silva, A.; Golding, G.R.; Pelude, L.; Mitchell, R.; Rudnick, W.; Hizon, R.; Al-Rawahi, G.N.; Chow, B.; et al. Trends in Clostridioides difficile infection rates in Canadian hospitals during the coronavirus disease 2019 (COVID-19) pandemic. Infect. Control Hosp. Epidemiol. 2022, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, K.; Rosołowski, M.; Kaniewska, M.; Kucha, P.; Meler, A.; Wierzba, W.; Rydzewska, G. Clostridioides difficile infection in coronavirus disease 2019 (COVID-19): An underestimated problem? Pol. Arch. Intern. Med. 2021, 131, 121–127. [Google Scholar] [CrossRef]
- Kovačević, N.; Lendak, D.; Popović, M.; Plećaš Đuric, A.; Pete, M.; Petrić, V.; Sević, S.; Tomić, S.; Alargić, J.; Damjanov, D.; et al. Clinical Presentations, Predictive Factors, and Outcomes of Clostridioides difficile Infection among COVID-19 Hospitalized Patients-A Single Center Experience from the COVID Hospital of the University Clinical Center of Vojvodina, Serbia. Medicina 2022, 58, 1262. [Google Scholar] [CrossRef]
- Despotović, A.; Barać, A.; Cucanić, T.; Cucanić, K.; Stevanović, G. Antibiotic (Mis)Use in COVID-19 Patients before and after Admission to a Tertiary Hospital in Serbia. Antibiotics 2022, 11, 847. [Google Scholar] [CrossRef]
- Abad, C.L.R.; Safdar, N. A Review of Clostridioides difficile Infection and Antibiotic-Associated Diarrhea. Gastroenterol. Clin. N. Am. 2021, 50, 323–340. [Google Scholar] [CrossRef]
- Kovačević, N.; Petrić, V.; Pete, M.; Popović, M.; Plećaš-Đurić, A.; Pejaković, S.; Tomić, S.; Damjanov, D.; Kosijer, D.; Lekin, M. Clostridioides Difficile Infection before and during Coronavirus Disease 2019 Pandemic-Similarities and Differences. Microorganisms 2022, 10, 2284. [Google Scholar] [CrossRef]
- Sahu, A.K.; Mathew, R.; Bhat, R.; Malhotra, C.; Nayer, J.; Aggarwal, P.; Galwankar, S. Steroids use in non-oxygen requiring COVID-19 patients: A systematic review and meta-analysis. QJM Mon. J. Assoc. Physicians 2021, 114, 455–463. [Google Scholar] [CrossRef]
- Cruciani, M.; Pati, I.; Masiello, F.; Pupella, S.; De Angelis, V. Corticosteroids use for COVID-19: An overview of systematic reviews. Le Infez. Med. 2022, 30, 469–479. [Google Scholar] [CrossRef]
- Singh, H.; Nugent, Z.; Yu, B.N.; Lix, L.M.; Targownik, L.E.; Bernstein, C.N. Higher incidence of Clostridium difficile infection among individuals with inflammatory bowel disease. Gastroenterology 2017, 153, 430–438.e2. [Google Scholar] [CrossRef] [PubMed]
- Scardina, T.L.; Kang Martinez, E.; Balasubramanian, N.; Fox-Geiman, M.; Smith, S.E.; Parada, J.P. Evaluation of risk factors for Clostridium difficile infection in hematopoietic stem cell transplant recipients. Pharmacotherapy 2017, 37, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Carlson, T.J.; Gonzales-Luna, A.J.; Wilcox, M.F.; Theriault, S.G.; Alnezary, F.S.; Patel, P.; Ahn, B.K.; Zasowski, E.J.; Garey, K.W. Corticosteroids Do Not Increase the Likelihood of Primary Clostridioides difficile Infection in the Setting of Broad-Spectrum Antibiotic Use. Open Forum Infect. Dis. 2021, 8, ofab419. [Google Scholar] [CrossRef]
- Wiedermann, C.J. Hypoalbuminemia as Surrogate and Culprit of Infections. Int. J. Mol. Sci. 2021, 22, 4496. [Google Scholar] [CrossRef]
- di Masi, A.; Leboffe, L.; Polticelli, F.; Tonon, F.; Zennaro, C.; Caterino, M.; Stano, P.; Fischer, S.; Hägele, M.; Müller, M.; et al. Human Serum Albumin Is an Essential Component of the Host Defense Mechanism Against Clostridium difficile Intoxication. J. Infect. Dis. 2018, 218, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- Tawam, D.; Baladi, M.; Jungsuwadee, P.; Earl, G.; Han, J. The Positive Association between Proton Pump Inhibitors and Clostridium Difficile Infection. Innov. Pharm. 2021, 12, 21. [Google Scholar] [CrossRef]
- Trifan, A.; Stanciu, C.; Girleanu, I.; Stoica, O.C.; Singeap, A.M.; Maxim, R.; Chiriac, S.A.; Ciobica, A.; Boiculese, L. Proton pump inhibitors therapy and risk of Clostridium difficile infection: Systematic review and meta-analysis. World J. Gastroenterol. 2017, 23, 6500–6515. [Google Scholar] [CrossRef]
- Davies, K.; Davis, G.; Barbut, F.; Eckert, C.; Petrosillo, N.; Pisapia, R.; Gärtner, B.; Berger, F.K.; Reigadas, E.; Bouza, E.; et al. Factors affecting reported Clostridioides difficile infection rates; the more you look the more you find, but should you believe what you see? Anaerobe 2020, 62, 102178. [Google Scholar] [CrossRef]
- Ramachandran, P.; Onukogu, I.; Ghanta, S.; Gajendran, M.; Perisetti, A.; Goyal, H.; Aggarwal, A. Gastrointestinal symptoms and outcomes in hospitalized coronavirus disease 2019 patients. Dig. Dis. 2020, 38, 373–379. [Google Scholar] [CrossRef]
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef]
- Boeriu, A.; Roman, A.; Dobru, D.; Stoian, M.; Voidăzan, S.; Fofiu, C. The Impact of Clostridioides Difficile Infection in Hospitalized Patients: What Changed during the Pandemic? Diagnostics 2022, 12, 3196. [Google Scholar] [CrossRef] [PubMed]
- Zakariaee, S.S.; Abdi, A.I. Influence of threshold selection strategy on the prognostic accuracy of chest CT severity score for mortality prediction of COVID-19 patients. Heart Lung 2022, 56, 74–75. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, P.G.; Mruk, B.; Mazur, S.; Półtorak-Szymczak, G.; Sklinda, K.; Walecki, J. COVID-19 severity scoring systems in radiological imaging—A review. Pol. J. Radiol. 2020, 85, e361–e368. [Google Scholar] [CrossRef] [PubMed]
- Korać, M.; Rupnik, M.; Nikolić, N.; Jovanović, M.; Tošić, T.; Malinić, J.; Mitrović, N.; Marković, M.; Vujović, A.; Peruničić, S.; et al. Clostridioides difficile ribotype distribution in a large teaching hospital in Serbia. Gut Pathog. 2020, 12, 26. [Google Scholar] [CrossRef]
Patients without COVID-19 Disease | COVID-19 Patients | Total | p Value | |
---|---|---|---|---|
N (%) | ||||
Total | 206 (37.7) | 341 (62.3) | 547 (100.0) | |
Gender: | 0.546 | |||
Male | 96 (46.6) | 168 (49.3) | 264 (48.3) | |
Female | 110 (53.4) | 173 (50.7) | 283 (51.7) | |
Age—years (mean ± SD) | 72.5 ± 11.6 | 69.9 ± 12.6 | 70.9 ± 12.3 | 0.017 |
BMI (mean ± SD) | 27.6 ± 6.9 | 27.5 ± 4.7 | 27.5 ± 5.5 | 0.900 |
Admitted to hospital: | ||||
From home | 195 (94.7) | 260 (76.2) | 455 (83.2) | <0.001 |
From another hospital | 6 (2.9) | 70 (20.5) | 76 (13.9) | |
From nursing home | 5 (2.4) | 11 (3.2) | 16 (2.9) | |
Prior hospital stay in the last month | 73 (35.4) | 97 (28.4) | 170 (31.1) | 0.087 |
Prior hospital stay in the same hospital | 43 (20.9) | 16 (4.7) | 59 (10.8) | <0.001 |
Length of prior hospital stay in the same hospital—days (mean ± SD) | 11.7 ± 8.8 | 10.2 ± 5.6 | 11.3 ± 8.0 | 0.537 |
Prior hospital stay in the another hospital | 32 (15.5) | 82 (24.0) | 114 (20.8) | 0.018 |
Length of prior hospital stay in another hospital—days (mean ± SD) | 12.5 ± 9.0 | 9.1 ± 5.7 | 10.0 ± 6.8 | 0.091 |
Outcome | ||||
Dismissed to go home | 155 (75.2) | 270 (79.2) | 425 (77.7) | 0.387 |
Moved to another hospital | 0 (0.0) | 1 (0.3) | 1 (0.2) | |
Fatal outcome | 51 (24.8) | 70 (20.5) | 121 (22.1) | |
Length of hospitalization—days (mean ± SD) | 21.2 ± 12.8 | 20.1 ± 11.2 | 20.5 ± 11.8 | 0.272 |
Without COVID-19 Disease n (%) | COVID-19 Patients n (%) | Total n (%) | p Value | |
---|---|---|---|---|
Hypertension | 148 (71.8) | 226 (66.3) | 374 (68.4) | 0.175 |
Coronary heart disease | 64 (31.1) | 56 (16.4) | 120 (21.9) | <0.001 |
Chronic obstructive lung disease | 28 (13.7) | 14 (4.1) | 42 (7.7) | <0.001 |
Advanced stage of renal failure | 19 (9.2) | 9 (2.6) | 28 (5.1) | 0.001 |
Malignancy | 52 (25.2) | 21 (6.2) | 73 (13.3) | <0.001 |
Inflammatory bowel disease | 3 (1.5) | 2 (0.6) | 5 (0.9) | 0.300 |
Stroke | 8 (3.9) | 11 (3.2) | 19 (3.5) | 0.684 |
Chronic liver disease (compensated cirrhosis) | 5 (2.4) | 2 (0.6) | 7 (1.3) | 0.063 |
Endocrine diseases | 63 (30.6) | 105 (30.8) | 168 (30.7) | 0.959 |
Diabetes mellitus type 2 | 56 (27.2) | 78 (22.9) | 134 (24.5) | 0.256 |
Hyperthyroidism | 2 (1.0) | 3 (0.9) | 5 (0.9) | |
Hypothyroidism | 11 (5.3) | 24 (7.0) | 35 (6.4) | 0.760 |
Hyperlipidemia | 0 (0.0) | 1 (0.3) | 1 (0.2) | |
Hypercholesterolemia | 0 (0.0) | 1 (0.3) | 1 (0.2) |
Without COVID-19 Disease n (%) | COVID-19 Patients n (%) | Total n (%) | p Value | |
---|---|---|---|---|
Antibiotic therapy up to one month before the diagnosis of C. difficile infection | 188 (91.3) | 338 (99.1) | 526 (96.2) | <0.001 |
Number of antibiotics used in therapy | ||||
One | 64 (38.1) | 87 (25.9) | 151 (30.0) | 0.030 |
Two | 55 (32.7) | 118 (35.1) | 173 (34.3) | |
Three | 30 (17.9) | 75 (22.3) | 105 (20.8) | |
Four and more | 19 (11.3) | 56 (16.7) | 75 (14.9) | |
Length of administration of one antibiotic—days (mean ± SD) | 5.1 ± 3.6 | 5.6 ± 3.3 | 5.4 ± 3.5 | 0.364 |
Length of administration of two antibiotics—days (mean ± SD) | 10.0 ± 7.2 | 11.0 ± 5.5 | 10.7 ± 6.1 | 0.288 |
Length of administration of three antibiotics—days (mean ± SD) | 13.8 ± 9.5 | 17.7 ± 7.8 | 16.6 ± 8.5 | 0.035 |
Length of administration of four and more antibiotics—days (mean ± SD) | 28.0 ± 18.8 | 27.3 ± 14.8 | 27.5 ± 15.8 | 0.866 |
Chemotherapy | 23 (11.2) | 6 (1.8) | 29 (5.3) | <0.001 |
H2-receptor antagonists | 34 (16.5) | 0 (0.0) | 34 (6.2) | <0.001 |
Proton pump inhibitors | 103 (50.0) | 327 (95.9) | 430 (78.6) | <0.001 |
Proton pump inhibitors therapy duration—days (mean ± SD) | 8.6 ± 7.5 | 11.2 ± 8.0 | 10.7 ± 8.0 | 0.012 |
Probiotics | 123 (60.0) | 303 (88.9) | 426 (78.0) | <0.001 |
Probiotics therapy duration—days (mean ± SD) | 10.1 ± 9.0 | 11.2 ± 8.0 | 10.9 ± 8.2 | 0.251 |
Statins | 23 (11.2) | 30 (8.8) | 53 (9.7) | 0.364 |
Steroids | 85 (41.3) | 315 (92.4) | 400 (73.1) | <0.001 |
Abdominal surgery in the last month | 8 (3.9) | 6 (1.8) | 14 (2.6) | 0.127 |
Other surgery in the last month | 15 (7.3) | 4 (1.2) | 19 (3.5) | <0.001 |
Surgery during ongoing hospitalization | 19 (9.2) | 3 (0.9) | 22 (4.0) | <0.001 |
Without COVID-19 Disease n (%) | COVID-19 Patients n (%) | Total n (%) | p Value | |
---|---|---|---|---|
Mean days from admission to laboratory confirmation of C. difficile infection | 10.5 ± 8.6 | 11.0 ± 7.9 | 10.8 ± 8.2 | 0.547 |
Clinical manifestation | ||||
Abdominal pain | 22 (10.7) | 13 (3.8) | 35 (6.4) | 0.001 |
Stomach cramps | 10 (4.9) | 4 (1.2) | 14 (2.6) | 0.008 |
Nausea/vomiting | 15 (7.3) | 7 (2.1) | 22 (4.0) | 0.003 |
Laboratory analyses | ||||
High leukocytes level (>10 × 109/L) | 127 (62.6) | 198 (58.1) | 325 (59.7) | 0.301 |
High neutrophils level (>7.5 × 109/L) | 126 (62.1) | 215 (63.4) | 341 (62.9) | 0.752 |
High lymphocytes level (>4 × 109/L) | 5 (2.5) | 6 (1.8) | 11 (2.0) | 0.573 |
High creatinine level (>106 umol/L) | 78 (38.6) | 66 (19.5) | 144 (26.7) | <0.001 |
High LDH level (>270 U/L) | 72 (54.5) | 187 (61.3) | 259 (59.3) | 0.186 |
Low albumin level (<35 g/L) | 118 (79.7) | 161 (58.1) | 279 (65.6) | <0.001 |
High CRP level (>5 mg/L) | 188 (96.4) | 284 (83.3) | 472 (88.1) | <0.001 |
Sedimentation rate (mean ± SD) | 41.86 ± 20.86 | 33.90 ± 28.57 | 36.56 ± 26.35 | 0.262 |
Univariate Logistic Regression | Multivariate Logistic Regression | |||
---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age | 0.98 (0.97–0.99) | 0.018 | 0.95 (0.91–0.99) | 0.017 |
Gender (female vs. male) | 0.90 (0.64–1.27) | 0.546 | ||
BMI | 0.99 (0.92–1.07) | 0.898 | ||
Admitted to hospital: | ||||
From home | ref. | ref. | ||
From another hospital | 0.61 (0.21–1.77) | 0.360 | 33.04 (3.40–320.83) | 0.003 |
From nursing home | 5.30 (1.38–20.38) | 0.015 | 1.08 (0.15–7.57) | 0.939 |
Prior hospital stay in the last month | 0.72 (0.50–1.05) | 0.087 | ||
Prior hospital stay in the same hospital in the last month | 0.19 (0.10–0.34) | <0.001 | ||
Prior hospital stay in the another hospital | 1.72 (1.10–2.70) | 0.018 | ||
Abdominal surgery in the last month | 0.44 (0.15–1.30) | 0.137 | ||
Other surgery in the last month | 0.15 (0.05–0.46) | 0.001 | ||
ICU hospitalization | 0.89 (0.55–1.43) | 0.628 | ||
Surgery during ongoing hospitalization | 0.09 (0.03–0.30) | <0.001 | ||
Hypertension | 0.77 (0.53–1.12) | 0.175 | ||
Coronary heart disease | 0.44 (0.29–0.66) | <0.001 | 0.41 (0.16–1.08) | 0.072 |
Chronic obstructive pulmonary disease | 0.27 (0.14–0.53) | <0.001 | ||
Advanced stage of renal failure | 0.27 (0.12–0.60) | 0.001 | 0.10 (0.02–0.50) | 0.005 |
Cancer | 0.19 (0.11–0.33) | <0.001 | ||
Inflammatory bowel disease | 0.40 (0.07–2.41) | 0.317 | ||
Stroke | 0.82 (0.33–2.09) | 0.684 | ||
Chronic liver disease | 0.24 (0.05–1.23) | 0.087 | ||
Endocrine diseases | 1.01 (0.69–1.47) | 0.959 | ||
Diabetes mellitus type 2 | 0.79 (0.53–1.18) | 0.257 | ||
Chemotherapy | 0.14 (0.06–0.36) | <0.001 | 0.06 (0.01–0.38) | 0.003 |
Antibiotic therapy up to one month before the diagnosis of C. difficile infection | 10.79 (3.14–37.10) | <0.001 | ||
Number of antibiotics used in therapy | ||||
One | ref. | |||
Two | 1.58 (1.002–2.49) | 0.049 | ||
Three | 1.94 (1.08–3.13) | 0.025 | ||
Four and more | 2.17 (1.17–4.00) | 0.013 | ||
Length of administration of one antibiotic | 1.03 (1.01–1.05) | 0.005 | 1.06 (1.01–1.11) | 0.020 |
Proton pump inhibitors | 23.36 (12.81–42.58) | <0.001 | ||
Proton pump inhibitors therapy duration—days | 1.05 (1.01–1.09) | 0.013 | ||
Probiotics | 5.32 (3.43–8.24) | <0.001 | ||
Probiotics therapy duration—days | 1.02 (0.99–1.05) | 0.252 | ||
Statins | 0.77 (0.43–1.36) | 0.365 | ||
Steroids | 17.25 (10.60–28.06) | <0.001 | 19.69 (7.70–50.34) | <0.001 |
High creatinine level | 0.39 (0.26–0.57) | <0.001 | ||
Low albumin level | 0.35 (0.22–0.56) | <0.001 | 0.41 (0.16–0.99) | 0.050 |
High LDH level | 1.32 (0.87–2.00) | 0.187 | ||
High CRP level | 0.19 (0.08–0.41) | <0.001 | 0.17 (0.03–1.02) | 0.052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markovic-Denic, L.; Nikolic, V.; Toskovic, B.; Brankovic, M.; Crnokrak, B.; Popadic, V.; Radojevic, A.; Radovanovic, D.; Zdravkovic, M. Incidence and Risk Factors for Clostridioides difficile Infections in Non-COVID and COVID-19 Patients: Experience from a Tertiary Care Hospital. Microorganisms 2023, 11, 435. https://doi.org/10.3390/microorganisms11020435
Markovic-Denic L, Nikolic V, Toskovic B, Brankovic M, Crnokrak B, Popadic V, Radojevic A, Radovanovic D, Zdravkovic M. Incidence and Risk Factors for Clostridioides difficile Infections in Non-COVID and COVID-19 Patients: Experience from a Tertiary Care Hospital. Microorganisms. 2023; 11(2):435. https://doi.org/10.3390/microorganisms11020435
Chicago/Turabian StyleMarkovic-Denic, Ljiljana, Vladimir Nikolic, Borislav Toskovic, Marija Brankovic, Bogdan Crnokrak, Viseslav Popadic, Aleksandra Radojevic, Dusan Radovanovic, and Marija Zdravkovic. 2023. "Incidence and Risk Factors for Clostridioides difficile Infections in Non-COVID and COVID-19 Patients: Experience from a Tertiary Care Hospital" Microorganisms 11, no. 2: 435. https://doi.org/10.3390/microorganisms11020435
APA StyleMarkovic-Denic, L., Nikolic, V., Toskovic, B., Brankovic, M., Crnokrak, B., Popadic, V., Radojevic, A., Radovanovic, D., & Zdravkovic, M. (2023). Incidence and Risk Factors for Clostridioides difficile Infections in Non-COVID and COVID-19 Patients: Experience from a Tertiary Care Hospital. Microorganisms, 11(2), 435. https://doi.org/10.3390/microorganisms11020435