Ultrastructure and Physiological Characterization of Morchella Mitospores and Their Relevance in the Understanding of the Morel Life Cycle
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Material
2.2. Induction Conditions of Mitospore Formation
2.3. Mitospore Germination
2.4. Microscopic Analysis
2.5. Determination of Growth Rate and Longevity of Mitospore-Germinated Strains
2.6. Mating Genes Detection of the Mitospore-Germinating Strains
3. Results
3.1. Induction of Mitospore Formation
3.2. Morphological Characteristics of Mitospores
3.3. Germination Characteristics of Mitospores
3.4. Growth Rate and Longevity of Mitospore-Germinated Strains of M. sextelata
3.5. Mating Type Genotyping of Mitospore-Germinated Strains
4. Discussion
4.1. Influence of Mitospore Formation by Nutrition, Aeration and Humidity
4.2. Mitospore Germination Conditions and Rapid Aging
4.3. The Mitospore of M. sextelata Should Be a Gamete
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pilz, D.; Rebecca, M.L.; Susan, A.; Luis, V.R.; Shannon, B.; Tricia, W.; Parks, C.G.; Erika, M.F.; Blaze, B. Ecology and Management of Morels Harvested from the Forests of Western North America; General Technical Report PNW-GTR-710 Portland. 2007; p. 161. Available online: https://www.fs.usda.gov/pnw/pubs/pnw_gtr710.pdf (accessed on 22 December 2022).
- Liu, W.; Zhang, Y.; He, P.X. Morel Biology and Cultivation; Jilin science and Technology Press: Changchun, China, 2017. [Google Scholar]
- Dissanayake, A.A.; Mills, G.L.; Bonito, G.; Rennick, B.; Nair, M.G. Chemical composition and anti-inflammatory and antiox-idant activities of extracts from cultivated morel mushrooms, species of genus Morchella (Ascomycota). Int. J. Med. Mushrooms 2021, 23, 73–83. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Geng, L.; Mao, D.; Xu, C. Production, characterization and antioxidant activity of exopolysaccharides from submerged culture of Morchella crassipes. Bioprocess Biosyst. Eng. 2012, 35, 1325–1332. [Google Scholar] [CrossRef]
- Su, C.-A.; Xu, X.-Y.; Liu, D.-Y.; Wu, M.; Zeng, F.-Q.; Zeng, M.-Y.; Wei, W.; Jiang, N.; Luo, X. Isolation and characterization of exopolysaccharide with immunomodulatory activity from fermentation broth of Morchella conica. DARU J. Pharm. Sci. 2013, 21, 5. [Google Scholar] [CrossRef] [PubMed]
- Dahlstrom, J.L.; Smith, J.E.; Weber, N.S. Mycorrhiza-like interaction by Morchella with species of the Pinaceae in pure culture synthesis. Mycorrhiza 2000, 9, 279–285. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, H.; Zhang, Y.; Dong, C. Artificial cultivation of true morels: Current state, issues and perspectives. Crit. Rev. Biotechnol. 2017, 38, 259–271. [Google Scholar] [CrossRef]
- Ower, R.D. Cultural Studies of Morels; San Francisco State University: San Francisco, CA, USA, 1980. [Google Scholar]
- Du, X.-H.; Yang, Z.L. Mating Systems in True Morels (Morchella). Microbiol. Mol. Biol. Rev. 2021, 85, e0022020. [Google Scholar] [CrossRef]
- He, P.; Cai, Y.; Yu, F.; Liu, W. Spatial and temporal disequilibrium of nuclear distribution in heterothallic Morchella importuna. J. Agric. Food Res. 2021, 6, 100240. [Google Scholar] [CrossRef]
- Shi, X.; Liu, D.; He, X.; Liu, W.; Yu, F. Epidemic Identification of Fungal Diseases in Morchella Cultivation across China. J. Fungi 2022, 8, 1107. [Google Scholar] [CrossRef]
- He, P.; Chen, Z.; Men, Y.; Wang, M.; Wang, W.; Liu, W. Activity Assay of Amylase and Xylanase Is Available for Quantitative Assessment of Strain Aging in Cultivated Culinary-Medicinal Morchella Mushrooms (Ascomycotina). Int. J. Med. Mushrooms 2023, 25, 57–64. [Google Scholar] [CrossRef]
- He, P.; Liu, W.; Cai, Y.; He, X. Strain identification and phylogenetic analysis of cultivated and wild strains of Morchella be-longing to elata clade in China. J. Zhengzhou Univ. Light Ind. (Nat. Sci.) 2015, 30, 26–29. [Google Scholar] [CrossRef]
- He, P.; Yu, M.; Cai, Y.; Liu, W.; Wang, W.; Wang, S.; Li, J. Effect of Aging on Culture and Cultivation of the Culinary-Medicinal Mushrooms Morchella importuna and M. sextelata (Ascomycetes). Int. J. Med. Mushrooms 2019, 21, 1089–1098. [Google Scholar] [CrossRef]
- He, P.; Cai, Y.; Liu, S.; Han, L.; Huang, L.; Liu, W. Morphological and ultrastructural examination of senescence in Morchella elata. Micron 2015, 78, 79–84. [Google Scholar] [CrossRef]
- Chai, H.; Chen, L.; Chen, W.; Zhao, Q.; Zhang, X.; Su, K.; Zhao, Y. Characterization of mating-type idiomorphs suggests that Morchella importuna, Mel-20 and M. sextelata are heterothallic. Mycol. Prog. 2017, 16, 743–752. [Google Scholar] [CrossRef]
- Du, X.-H.; Zhao, Q.; Xia, E.-H.; Gao, L.-Z.; Richard, F.; Yang, Z.L. Mixed-reproductive strategies, competitive mating-type distribution and life cycle of fourteen black morel species. Sci. Rep. 2017, 7, 1493. [Google Scholar] [CrossRef]
- He, P.; Wang, K.; Cai, Y.; Liu, W. Live cell confocal laser imaging studies on the nuclear behavior during meiosis and ascosporogenesis in Morchella importuna under artificial cultivation. Micron 2017, 101, 108–113. [Google Scholar] [CrossRef]
- Liu, W.; Chen, L.; Cai, Y.; Zhang, Q.; Bian, Y. Opposite Polarity Monospore Genome De Novo Sequencing and Comparative Analysis Reveal the Possible Heterothallic Life Cycle of Morchella importuna. Int. J. Mol. Sci. 2018, 19, 2525. [Google Scholar] [CrossRef]
- Liu, W.; Cai, Y.; He, P.; Bian, Y. Cultivation of monosporic and hybrid populations and polarity analysis of Morchella importuna. J. Fungal Res. 2019, 17, 7. [Google Scholar] [CrossRef]
- Zhang, Q.; Shu, F.; Chen, X.; Liu, W.; Bian, Y.; Kang, H. Construction of nucleus-directed fluorescent reporter systems and its application to verification of heterokaryon formation in Morchella importuna. Front. Microbiol. 2022, 13. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, J.; Geng, F.; Li, X.; Yu, J.; Zhang, Y.; Chen, Y.; Liu, D. Metabolic and proteomic analysis of morel fruiting body (Morchella importuna). J. Food Compos. Anal. 2019, 76, 51–57. [Google Scholar] [CrossRef]
- Cai, Y.; Ma, X.; Zhang, Q.; Yu, F.; Zhao, Q.; Huang, W.; Song, J.; Liu, W. Physiological Characteristics and Comparative Secretome Analysis of Morchella importuna Grown on Glucose, Rice Straw, Sawdust, Wheat Grain, and MIX Substrates. Front. Microbiol. 2021, 12, 636344. [Google Scholar] [CrossRef]
- Benucci, G.M.N.; Longley, R.; Zhang, P.; Zhao, Q.; Bonito, G.; Yu, F. Microbial communities associated with the black morel Morchella sextelata cultivated in greenhouses. Peerj 2019, 7, e7744. [Google Scholar] [CrossRef] [PubMed]
- Longley, R.; Benucci, G.M.N.; Mills, G.; Bonito, G. Fungal and bacterial community dynamics in substrates during the cultiva-tion of morels (Morchella rufobrunnea) indoors. FEMS Microbiol. Lett. 2019, 366, fnz215. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Zhang, J.; Wang, H.; Wang, Q.; Chen, M.; Juan, J.; Feng, Z.; Chen, H. Comparative transcriptome analysis reveals potential fruiting body formation mechanisms in Morchella importuna. AMB Express 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Cai, Y.; Zhang, Q.; Shu, F.; Chen, L.; Ma, X.; Bian, Y. Subchromosome-Scale Nuclear and Complete Mitochondrial Genome Characteristics of Morchella crassipes. Int. J. Mol. Sci. 2020, 21, 483. [Google Scholar] [CrossRef]
- Han, M.; Wang, Q.; Baiyintala; Wuhanqimuge. The whole-genome sequence analysis of Morchella sextelata. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Chen, C.; Fu, R.; Wang, J.; Li, X.; Chen, X.; Li, Q.; Lu, D. Genome sequence and transcriptome profiles of pathogenic fungus Paecilomyces penicillatus reveal its interactions with edible fungus Morchella importuna. Comput. Struct. Biotechnol. J. 2021, 19, 2607–2617. [Google Scholar] [CrossRef]
- Fischer, R.; Kües, U. Asexual Sporulation in Mycelial Fungi. In Growth, Differentiation and Sexuality; Kües, U., Fischer, R., Eds.; Springer Berlin Heidelberg: Berlin, Germany, 2006; pp. 263–292. [Google Scholar]
- Huang, M.; Hull, C.M. Sporulation: How to survive on planet Earth (and beyond). Curr. Genet. 2017, 63, 831–838. [Google Scholar] [CrossRef]
- Kirschner, R. Sex does not sell: The argument for using the terms “anamorph” and “teleomorph” for fungi. Mycol. Prog. 2018, 18, 305–312. [Google Scholar] [CrossRef]
- Maheshwari, R. Microconidia ofNeurospora crassa. Fungal Genet. Biol. 1999, 26, 1–18. [Google Scholar] [CrossRef]
- Fones, H.N.; Mardon, C.; Gurr, S.J. A role for the asexual spores in infection of Fraxinus excelsior by the ash-dieback fungus Hymenoscyphus fraxineus. Sci. Rep. 2016, 6, 34638. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Z.; Wang, C.; Li, Y.; Xu, J.-R. Germination and infectivity of microconidia in the rice blast fungus Magnaporthe oryzae. Nat. Commun. 2014, 5, 4518. [Google Scholar] [CrossRef]
- Chai, H.; Chen, W.; Zhang, X.; Su, K.; Zhao, Y. Structural variation and phylogenetic analysis of the mating-type locus in the genusMorchella. Mycologia 2019, 111, 551–562. [Google Scholar] [CrossRef]
- Yatsiuk, I.; Saar, I.; Kalamees, K.; Sulaymonov, S.; Gafforov, Y.; O’Donnell, K.; Iryna, Y.; Irja, S.; Kuulo, K.; Shaxob, S.; et al. Epitypification of Morchella steppicola (Morchellaceae, Pezizales), a morphologically, phylogenetically and biogeographically distinct member of the Esculenta Clade from central Eurasia. Phytotaxa 2016, 284, 31–40. [Google Scholar] [CrossRef]
- Taşkin, H.; Doğan, H.H.; Büyükalaca, S. Morchella galilaea, an autumn species from Turkey. Mycotaxon 2015, 130, 215–221. [Google Scholar] [CrossRef]
- Richard, F.; Bellanger, J.-M.; Clowez, P.; Hansen, K.; O’Donnell, K.; Urban, A.; Sauve, M.; Courtecuisse, R.; Moreau, P.-A. True morels (Morchella, Pezizales) of Europe and North America: Evolutionary relationships inferred from multilocus data and a unified taxonomy. Mycologia 2015, 107, 359–382. [Google Scholar] [CrossRef]
- Molliard, M. Mycelium et forme conidienne de la morille. CR Hebd. Seances Acad. Sci. 1904, 138, 516–517. [Google Scholar]
- Masaphy, S. Biotechnology of morel mushrooms: Successful fruiting body formation and development in a soilless system. Biotechnol. Lett. 2010, 32, 1523–1527. [Google Scholar] [CrossRef]
- Carris, L.M.; Peever, T.L.; McCotter, S.W. Mitospore stages of Disciotis, Gyromitra and Morchella in the inland Pacific Northwest USA. Mycologia 2015, 107, 729–744. [Google Scholar] [CrossRef]
- Liu, W.; CAI, Y.; He, P.; Zhang, Y.; Bian, Y. Morphological and structural analysis of mitospore of Morchella importuna. J. Fungal Res. 2016, 14, 157–161. [Google Scholar]
- Baran, J.; Boroń, P. Two species of true morels (the genus Morchella, Ascomycota) recorded in the Ojców National Park (south Poland). Acta Mycol. 2017, 52, 1094. [Google Scholar] [CrossRef]
- Yuan, B.-H.; Li, H.; Liu, L.; Du, X.-H. Successful induction and recognition of conidiation, conidial germination and chlamydospore formation in pure culture of Morchella. Fungal Biol. 2021, 125, 285–293. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Timberlake, W.E. Developmental gene regulation in Aspergillus nidulans. Dev. Biol. 1980, 78, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-Y.; Qi, Y.-L.; Cai, L. Induction of sporulation in plant pathogenic fungi. Mycology 2012, 3, 195–200. [Google Scholar] [CrossRef]
- Sun, X.; Yu, L.; Lan, N.; Wei, S.; Yu, Y.; Zhang, H.; Zhang, X.; Li, S. Analysis of the role of transcription factor VAD-5 in conidiation of Neurospora crassa. Fungal Genet. Biol. 2012, 49, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-S.; Yu, J.-H. Genetic control of asexual sporulation in filamentous fungi. Curr. Opin. Microbiol. 2012, 15, 669–677. [Google Scholar] [CrossRef]
- Papadaki, A.; Diamantopoulou, P.; Papanikolaou, S.; Philippoussis, A. Evaluation of biomass and chitin production of Mor-chella mushrooms grown on starch-based substrates. Foods 2019, 8, 239. [Google Scholar] [CrossRef]
- Healy, R.A.; Smith, M.E.; Bonito, G.M.; Pfister, D.H.; Ge, Z.-W.; Guevara, G.G.; Williams, G.; Stafford, K.; Kumar, L.; Lee, T.; et al. High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizalPezizales. Mol. Ecol. 2012, 22, 1717–1732. [Google Scholar] [CrossRef]
- Nakano, S.; Obase, K.; Nakamura, N.; Kinoshita, A.; Kuroda, K.; Yamanaka, T. Mitospore formation on pure cultures of Tuber japonicum (Tuberaceae, Pezizales) in vitro. Mycorrhiza 2022, 32, 353–360. [Google Scholar] [CrossRef]
- He, P.; Wang, K.; Cai, Y.; Hu, X.; Zheng, Y.; Zhang, J.; Liu, W. Involvement of autophagy and apoptosis and lipid accumulation in sclerotial morphogenesis of Morchella importuna. Micron 2018, 109, 34–40. [Google Scholar] [CrossRef]
- Fukumori, Y.; Nakajima, M.; Akutsu, K. Microconidia act the role as spermatia in the sexual reproduction of Botrytis cinerea. J. Gen. Plant Pathol. 2004, 70, 256–260. [Google Scholar] [CrossRef]
- Hervey, A.; Bistis, G.; Leong, I. Cultural Studies of Single Ascospore Isolates of Morchella esculenta. Mycologia 1978, 70, 1269. [Google Scholar] [CrossRef]
- Schmidt, E.L. Spore Germination of and Carbohydrate Colonization by Morchella Esculenta at Different Soil Temperatures. Mycologia 1983, 75, 870–875. [Google Scholar] [CrossRef]
- Spiers, A.G.; Hopcroft, D.H. Ultrastructural studies of the telial, basidial, and spermatial stages of the willow rust fungusMelampsora coleosporioidesin New Zealand. New Zealand J. Bot. 1988, 26, 423–430. [Google Scholar] [CrossRef]
- Florance, E.R.; Denison, W.C.; Allen, T.C., Jr. Ultrastructure of Dormant and Germinating Conidia of Aspergillus Nidulans. Mycologia 1972, 64, 115–123. [Google Scholar] [CrossRef]
- Kim, K.W.; Park, E.W. Ultrastructure of spined conidia and hyphae of the rice false smut fungus Ustilaginoidea virens. Micron 2007, 38, 626–631. [Google Scholar] [CrossRef]
- Mims, C.W.; Seabury, F.; Thurston, E.L. An ultrastructural study of spermatium formation in the rust fungus Gymnosporangium iuniperi-virginianae. Am. J. Bot. 1976, 63, 997–1002. [Google Scholar] [CrossRef]
- Lowry, R.J.; Durkee, T.L.; Sussman, A.S. Ultrastructural Studies of Microconidium Formation in Neurospora crassa. J. Bacteriol. 1967, 94, 1757–1763. [Google Scholar] [CrossRef]
- Bistis, G.N. Chemotropic Interactions Between Trichogynes and Conidia of Opposite Mating-Type inNeurospora Crassa. Mycologia 1981, 73, 959–975. [Google Scholar] [CrossRef]
- Jiang, L.; Qian, Y.; Ling, J.; Li, T.; Du, X. Mating types of sclerotia in Morchella. J. Fungal Res. 2021, 19, 255–262. [Google Scholar]
- Volk, T.J.; Leonard, T.J. Cytology of the life-cycle of Morchella. Mycol. Res. 1990, 94, 399–406. [Google Scholar] [CrossRef]
- Shi, J.; Guo, M.; Guo, S.; Zhou, W.; Wang, Z.; Wu, X.; Li, Y. Microscopic observation and analysis of primodiam formation of Morchella conica. J. Shanxi Agric. Sci. 2019, 47, 1709–1712. [Google Scholar]






| Mitospore Properties | Culture Medium | Initial Concentration | Number That Germinated | Germination Rate | The Earliest Germination Time | The Latest Germination Time |
|---|---|---|---|---|---|---|
| Mitospores were kept at 4 °C for 1 month | SYM | 2.65 × 105 | ||||
| PDA | 2.65 × 105 | 5 | 1.88679 × 10−5 | 11 days | 39 days | |
| CYM | 2.65 × 105 | |||||
| MYM | 2.65 × 105 | 2 | 7.54717 × 10−6 | 12 days | 20 days | |
| CHM | 2.65 × 105 | 2 | 7.54717 × 10−6 | 14 days | 59 days | |
| Mitospores were kept at 15 °C for 2 months | SYM | 1.34 × 105 | ||||
| PDA | 1.34 × 105 | 1 | 7.46269 × 10−6 | 9 days | 9 days | |
| CYM | 1.34 × 105 | |||||
| MYM | 1.34 × 105 | 3 | 2.23881 × 10−5 | 13 days | 30 days | |
| CHM | 1.34 × 105 | 1 | 7.46269 × 10−6 | 36 days | ||
| Mitospores were kept at 4 °C for 2 months | CYM | 4.92 × 106 | 13 | 2.64228 × 10−6 | 12 days | 24 days |
| CYM | 4.92 × 105 | |||||
| CYM | 4.92 × 104 | |||||
| PDA | 4.92 × 106 | 16 | 3.25203 × 10−6 | 9 days | 25 days | |
| PDA | 4.92 × 105 | 4 | 8.13008 × 10−6 | 12 days | 33 days | |
| PDA | 4.92 × 104 | |||||
| MYG | 4.92 × 106 | 21 | 4.26829 × 10−6 | 10 days | 30 days | |
| MYG | 4.92 × 105 | 2 | 4.06504 × 10−6 | 20 days | 30 days | |
| MYG | 4.92 × 104 | |||||
| Mitospores were kept at 15 °C for 3 months | CYM | 7.58 × 105 | 2 | 2.63852 × 10−6 | 7 days | 12 days |
| CYM | 7.58 × 104 | |||||
| PDA | 7.58 × 105 | 7 | 9.23483 × 10−6 | 7 days | 21 days | |
| PDA | 7.58 × 104 | 2 | 2.63852 × 10−5 | 17 days | 23 days | |
| MYG | 7.58 × 105 | 15 | 1.97889 × 10−5 | 6 days | 59 days | |
| MYG | 7.58 × 104 | |||||
| Mitospores were kept at 4 °C for 7 months | SYM | 2.46 × 105 | 2 | 8.13008 × 10−6 | 18 days | 21 days |
| PDA | 2.46 × 105 | 2 | 8.13008 × 10−6 | 17 days | 32 days | |
| CYM | 2.46 × 105 | 2 | 8.13008 × 10−6 | 18 days | ||
| MYM | 2.46 × 105 | 3 | 1.21951 × 10−5 | 15 days | 19 days | |
| CHM | 2.46 × 105 | 0 | 0 | Nonexistant | Nonexistant | |
| Mitospores were kept at 4 °C for 7 months | SYM | 3.45 × 104 | 0 | 0 | Nonexistant | Nonexistant |
| PDA | 3.45 × 104 | 0 | 0 | Nonexistant | Nonexistant | |
| CYM | 3.45 × 104 | 0 | 0 | Nonexistant | Nonexistant | |
| MYM | 3.45 × 104 | 0 | 0 | Nonexistant | Nonexistant | |
| CHM | 3.45 × 104 | 2 | 5.7971 × 10−5 | 6 days | 13 days | |
| Mitospores were kept at 4 °C for 9 months | CYM | 9.17 × 104 | 0 | 0 | Nonexistant | Nonexistant |
| PDA | 9.17 × 104 | 0 | 0 | Nonexistant | Nonexistant | |
| MYG | 9.17 × 104 | 1 | 1.09051 × 10−5 | 30 days | 30 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; He, P.; Zhang, J.; Wu, L.; Er, L.; Shi, X.; Gu, Z.; Yu, F.; Pérez-Moreno, J. Ultrastructure and Physiological Characterization of Morchella Mitospores and Their Relevance in the Understanding of the Morel Life Cycle. Microorganisms 2023, 11, 345. https://doi.org/10.3390/microorganisms11020345
Liu W, He P, Zhang J, Wu L, Er L, Shi X, Gu Z, Yu F, Pérez-Moreno J. Ultrastructure and Physiological Characterization of Morchella Mitospores and Their Relevance in the Understanding of the Morel Life Cycle. Microorganisms. 2023; 11(2):345. https://doi.org/10.3390/microorganisms11020345
Chicago/Turabian StyleLiu, Wei, Peixin He, Jin Zhang, Liyuan Wu, Lingfang Er, Xiaofei Shi, Zhijia Gu, Fuqiang Yu, and Jesús Pérez-Moreno. 2023. "Ultrastructure and Physiological Characterization of Morchella Mitospores and Their Relevance in the Understanding of the Morel Life Cycle" Microorganisms 11, no. 2: 345. https://doi.org/10.3390/microorganisms11020345
APA StyleLiu, W., He, P., Zhang, J., Wu, L., Er, L., Shi, X., Gu, Z., Yu, F., & Pérez-Moreno, J. (2023). Ultrastructure and Physiological Characterization of Morchella Mitospores and Their Relevance in the Understanding of the Morel Life Cycle. Microorganisms, 11(2), 345. https://doi.org/10.3390/microorganisms11020345

