Endophytic Bacterium Flexivirga meconopsidis sp. nov. with Plant Growth-Promoting Function, Isolated from the Seeds of Meconopsis integrifolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Cultivation
2.2. 16S rRNA Gene Phylogeny
2.3. Genome Features
2.4. Physiology
2.5. Chemotaxonomy
2.6. Shotgun Proteomics Analyses
2.7. Determination of the Growth-Promoting Ability
2.8. Potting Test
3. Results
3.1. Phylogenetic Analysis
3.2. Genome Sequence Analysis
3.3. Physiology and Chemotaxonomy
3.4. Shotgun Proteomic Analysis
3.5. IAA Production and Nitrogen Fixation Ability of Strain Q11T
Effects on Maize Growth and Development
4. Description of Flexivirga meconopsidis sp. nov.
Flexivirga meconopsidis (me.co.nop’si.dis. N.L. gen. n. Meconopsidis, of the Plant Meconopsis integrifolia)
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anzai, K.; Sugiyama, T.; Sukisaki, M.; Sakiyama, Y.; Otoguro, M.; Ando, K. Flexivirga Alba Gen. Nov., sp. Nov., an Actinobacterial Taxon in the Family Dermacoccaceae. J. Antibiot. 2011, 64, 613–616. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Liu, B.B.; Yang, W.; Song, P.F.; Chen, W.; Salam, N.; Duan, Y.Q.; Li, Q.Q.; Li, W.J. Flexivirga endophytica sp. Nov., an Endophytic Actinobacterium Isolated from a Leaf of Sweet Basil. Int. J. Syst. Evol. Microbiol. 2016, 66, 3388–3392. [Google Scholar] [CrossRef]
- Kang, W.; Hyun, D.W.; Kim, P.S.; Shin, N.R.; Kim, H.S.; Lee, J.Y.; Tak, E.J.; Roh, J.R.; Park, S.D.; Shim, H.E.; et al. Flexivirga lutea sp. Nov., Isolated from the Faeces of a Crested Ibis, Nipponia Nippon, and Emended Description of the Genus Flexivirga. Int. J. Syst. Evol. Microbiol. 2016, 66, 3594–3599. [Google Scholar] [CrossRef] [PubMed]
- Hyeon, J.W.; Kim, H.R.; Lee, H.J.; Jeong, S.E.; Choi, S.H.; Jeon, C.O. Flexivirga oryzae sp. Nov., Isolated from Soil of a Rice Paddy, and Emended Description of the Genus Flexivirga Anzai et al. 2012. Int. J. Syst. Evol. Microbiol. 2017, 67, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Keum, D.H.; Lee, Y.J.; Lee, S.Y.; Im, W.T. Flexivirga caeni sp. Nov., Isolated from Activated Sludge. Int. J. Syst. Evol. Microbiol. 2020, 70, 1266–1272. [Google Scholar] [CrossRef]
- Chaudhary, D.K.; Lee, H.; Dahal, R.H.; Kim, D.H.; Cha, I.T.; Lee, K.; Kim, D.U. Flexivirga aerilata sp. Nov., Isolated from an Automobile Air Conditioning System. Curr. Microbiol. 2021, 78, 796–802. [Google Scholar] [CrossRef]
- Zhou, G.; Chen, Y.; Liu, S.; Yao, X.; Wang, Y. In Vitro and in Vivo Hepatoprotective and Antioxidant Activity of Ethanolic Extract from Meconopsis integrifolia (Maxim.) Franch. J. Ethnopharmacol. 2013, 148, 664–670. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, Q.; Wang, L.; Hu, J.; Xue, H.; Han, D.; Xing, Z.; Ruan, Z. Structure and Function Analysis of Cultivated Meconopsis integrifolia Soil Microbial Community Based on High-Throughput Sequencing and Culturability. Biology 2023, 12, 160. [Google Scholar] [CrossRef]
- Reinhold-Hurek, B.; Hurek, T. Life in Grasses: Diazotrophic Endophytes. Trends Microbiol. 1998, 6, 139–144. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Jha, D.K. Plant Growth-Promoting Rhizobacteria (PGPR): Emergence in Agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.A.; De Bruin, S.; Luckerhoff, L.; Van Logtestijn, R.S.P.; Schlaeppi, K. A Widespread Plant-Fungal-Bacterial Symbiosis Promotes Plant Biodiversity, Plant Nutrition and Seedling Recruitment. ISME J. 2016, 10, 389. [Google Scholar] [CrossRef]
- Khan, M.S.; Gao, J.; Chen, X.; Zhang, M.; Yang, F.; Du, Y.; Moe, T.S.; Munir, I.; Xue, J.; Zhang, X. Isolation and Characterization of Plant Growth-Promoting Endophytic Bacteria Paenibacillus Polymyxa SK1 from Lilium Lancifolium. BioMed Res. Int. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Abedinzadeh, M.; Etesami, H.; Alikhani, H.A. Characterization of Rhizosphere and Endophytic Bacteria from Roots of Maize (Zea mays L.) Plant Irrigated with Wastewater with Biotechnological Potential in Agriculture. Biotechnol. Rep. 2019, 21, e00305. [Google Scholar] [CrossRef] [PubMed]
- Weilharter, A.; Mitter, B.; Shin, M.V.; Chain, P.S.G.; Nowak, J.; Sessitsch, A. Complete Genome Sequence of the Plant Growth-Promoting Endophyte Burkholderia Phytofirmans Strain PsJN. J. Bacteriol. 2011, 193, 3383–3384. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, L.; Chen, Y.; Wang, S.; Xue, L.; Meng, W.; Jiang, J.; Cao, X. Diversity of Endophytic Microbes in Taxus Yunnanensis and Their Potential for Plant Growth Promotion and Taxane Accumulation. Microorganisms 2023, 11, 1645. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L.; Qiu, F.; Schumann, P.; Shi, Y.; Zou, Y.; Zhang, X.; Song, W. Paenibacillus hunanensis sp. Nov., Isolated from Rice Seeds. Int. J. Syst. Evol. Microbiol. 2010, 60, 1266–1270. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, J.; Ma, Q.; Han, X.; Zhang, W.; Ruan, Z. C Edecea sulfonylureivorans sp. Nov., a Novel Chlorimuron-Ethyldegrading Bacterium Isolated from an Herbicides-Degrading Consortium. Arch. Microbiol. 2023, 205, 21. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Felsenstein, J. Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef]
- Miya, M.; Nishida, M. Use of Mitogenomic Information in Teleostean Molecular Phylogenetics: A Tree-Based Exploration under the Maximum-Parsimony Optimality Criterion. Mol. Phylogenet. Evol. 2000, 17, 437–455. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide Sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Fu, G.Y.; Zhang, C.Y.; Hu, J.; Xu, L.; Wang, R.J.; Su, Y.; Han, S.B.; Yu, X.Y.; Cheng, H.; et al. Isolation and Complete Genome Sequence of Algibacter alginolytica sp. Nov., a Novel Seaweed-Degrading Bacteroidetes Bacterium with Diverse Putative Polysaccharide Utilization Loci. Appl. Environ. Microbiol. 2016, 82, 2975–2987. [Google Scholar] [CrossRef] [PubMed]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of Microbial Genomes Using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.Y.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-Depth Characterization and Visualization of Bacterial Genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.; Blin, K.; Duddela, S.; Krug, D.; Kim, H.U.; Bruccoleri, R.; Lee, S.Y.; Fischbach, M.A.; Müller, R.; Wohlleben, W.; et al. AntiSMASH 3.0—A Comprehensive Resource for the Genome Mining of Biosynthetic Gene Clusters. Nucleic Acids Res. 2015, 43, W237–W243. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S.Y.; Medema, M.H.; Weber, T. AntiSMASH 5.0: Updates to the Secondary Metabolite Genome Mining Pipeline. Nucleic Acids Res. 2019, 47, W81–W87. [Google Scholar] [CrossRef]
- Ruan, Z.; Wang, Y.; Song, J.; Jiang, S.; Wang, H.; Li, Y.; Zhao, B.; Jiang, R.; Zhao, B. Kurthia huakuii sp. Nov., Isolated from Biogas Slurry, and Emended Description of the Genus Kurthia. Int. J. Syst. Evol. Microbiol. 2014, 64, 518–521. [Google Scholar] [CrossRef]
- Halebian, S.; Harris, B.; Finegold, S.M.; Rolfe, R.D. Rapid Method That Aids in Distinguishing Gram-Positive from Gram-Negative Anaerobic Bacteria. J. Clin. Microbiol. 1981, 13, 444–448. [Google Scholar] [CrossRef]
- Stokes, E.J. A Guide to the Identification of the Genera of Bacteria. J. Clin. Pathol. 1968, 21, 229–230. [Google Scholar] [CrossRef]
- Chen, Y.G.; Cui, X.L.; Pukall, R.; Li, H.M.; Yang, Y.L.; Xu, L.H.; Wen, M.L.; Peng, Q.; Jiang, C.L. Salinicoccus kunmingensis sp. Nov,. a Moderately Halophilic Bacterium Isolated from a Salt Mine in Yunnan, South-West China. Int. J. Syst. Evol. Microbiol. 2007, 57, 2327–2332. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Xue, C.X.; Li, B.; Zhou, S.; Liu, L.; Zhang, X.H. Photobacterium chitinilyticum sp. Nov., a Marine Bacterium Isolated from Seawater at the Bottom of the East China Sea. Int. J. Syst. Evol. Microbiol. 2019, 69, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
- Kamlage, B. Methods for General and Molecular Bacteriology. Edited by P. Gerhardt, R.G.E. Murray, W.A. Wood and N. R. Krieg. 791 Pages, Numerous Figures and Tables. American Society for Microbiology, Washington, D.C., 1994. Price: 55.00 £. Food Nahr. 1996, 40, 103. [Google Scholar] [CrossRef]
- Sakamoto, M.; Suzuki, M.; Umeda, M.; Ishikawa, I.; Benno, Y. Reclassification of Bacteroides Forsythus (Tanner et al. 1986) as Tannerella Forsythensis Corrig., Gen. Nov., Comb. Nov. Int. J. Syst. Evol. Microbiol. 2002, 52, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.D.; Pirouz, T.; Goodfellow, M.; Minnikin, D.E. Distribution of Menaquinones in Actinomycetes and Corynebacteria. J. Gen. Microbiol. 1977, 100, 221–230. [Google Scholar] [CrossRef]
- Minnikin, D.E.; O’Donnell, A.G.; Goodfellow, M.; Alderson, G.; Athalye, M.; Schaal, A.; Parlett, J.H. An Integrated Procedure for the Extraction of Bacterial Isoprenoid Quinones and Polar Lipids. J. Microbiol. Methods 1984, 2, 233–241. [Google Scholar] [CrossRef]
- Xu, X.W.; Huo, Y.Y.; Wang, C.S.; Oren, A.; Cui, H.L.; Vedler, E.; Wu, M. Pelagibacterium halotolerans Gen. Nov., sp. Nov. and Pelagibacterium luteolum sp. Nov., Novel Members of the Family Hyphomicrobiaceae. Int. J. Syst. Evol. Microbiol. 2011, 61, 1817–1822. [Google Scholar] [CrossRef]
- Kong, D.; Wang, Y.; Li, Q.; Zhou, Y.; Jiang, X.; Xing, Z.; Wang, Z.; Ruan, Z. Chryseobacterium subflavum sp. Nov., Isolated from Soil. Int. J. Syst. Evol. Microbiol. 2022, 72, 005345. [Google Scholar] [CrossRef]
- Omenn, G.S.; Lane, L.; Overall, C.M.; Pineau, C.; Packer, N.H.; Cristea, I.M.; Lindskog, C.; Weintraub, S.T.; Orchard, S.; Roehrl, M.H.A.; et al. The 2022 Report on the Human Proteome from the HUPO Human Proteome Project. J. Proteome Res. 2023, 22, 1024–1042. [Google Scholar] [CrossRef]
- Wilhelm, M.; Schlegl, J.; Hahne, H.; Gholami, A.M.; Lieberenz, M.; Savitski, M.M.; Ziegler, E.; Butzmann, L.; Gessulat, S.; Marx, H.; et al. Mass-Spectrometry-Based Draft of the Human Proteome. Nature 2014, 509, 582–587. [Google Scholar] [CrossRef]
- Hamane, S.; El Yemlahi, A.; Hassani Zerrouk, M.; El Galiou, O.; Laglaoui, A.; Bakkali, M.; Arakrak, A. Promoting the Growth of Sulla flexuosa L. by Endophytic Root Nodule Bacteria Authors and Affiliations. World J. Microbiol. Biotechnol. 2023, 39, 253. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Singh, P.; Sharma, A.; Guo, D.J.; Upadhyay, S.K.; Song, Q.Q.; Verma, K.K.; Li, D.P.; Malviya, M.K.; Song, X.P.; et al. Unraveling Nitrogen Fixing Potential of Endophytic Diazotrophs of Different Saccharum Species for Sustainable Sugarcane Growth. Int. J. Mol. Sci. 2022, 23, 6242. [Google Scholar] [CrossRef] [PubMed]
- Schwyn, B.; Neilands, J.B. Universal Chemical Assay for the Detection and Determination of Siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Smith, K.P.; Goodman, R.M. Host Variation for Interactions with Beneficial Plant-Associated Microbes. Annu. Rev. Phytopathol. 1999, 37, 473–491. [Google Scholar] [CrossRef] [PubMed]
- Hernández, I.; Taulé, C.; Pérez-Pérez, R.; Battistoni, F.; Fabiano, E.; Villanueva-Guerrero, A.; Nápoles, M.C.; Herrera, H. Endophytic Seed-Associated Bacteria as Plant Growth Promoters of Cuban Rice (Oryza sativa L.). Microorganisms 2023, 11, 2317. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, H.F.; Fan, J.H.; Li, Y.Y.; Ma, L.J.; Wang, L.L.; Li, X.M. Transcriptome Modulation by Endophyte Drives Rice Seedlings Response to Pb Stress. Ecotoxicol. Environ. Saf. 2023, 254, 114740. [Google Scholar] [CrossRef] [PubMed]
- Netto, A.T.; Campostrini, E.; De Oliveira, J.G.; Bressan-Smith, R.E. Photosynthetic Pigments, Nitrogen, Chlorophyll a Fluorescence and SPAD-502 Readings in Coffee Leaves. Sci. Hortic. 2005, 104, 199–209. [Google Scholar] [CrossRef]
- Kamarianakis, Z.; Panagiotakis, S. Design and Implementation of a Low-Cost Chlorophyll Content Meter. Sensors 2023, 23, 2699. [Google Scholar] [CrossRef]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.W.; De Meyer, S.; et al. Proposed Minimal Standards for the Use of Genome Data for the Taxonomy of Prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef]
- Courvalin, P. Vancomycin Resistance in Gram-Positive Cocci. Clin. Infect. Dis. 2006, 42 (Suppl. S1), S25–S34. [Google Scholar] [CrossRef]
- Kalan, L.; Ebert, S.; Kelly, T.; Wright, G.D. Noncanonical Vancomycin Resistance Cluster from Desulfitobacterium Hafniense Y51. Antimicrob. Agents Chemother. 2009, 53, 2841–2845. [Google Scholar] [CrossRef]
- Kobayashi, S.; Kuzuyama, T.; Seto, H. Characterization of the FomA and FomB Gene Products from Streptomyces Wedmorensis, Which Confer Fosfomycin Resistance on Escherichia coli. Antimicrob. Agents Chemother. 2000, 44, 647–650. [Google Scholar] [CrossRef]
- Moens, S.; Schloter, M.; Vanderleyden, J. Expression of the Structural Gene, Laf1, Encoding the Flagellin of the Lateral Flagella in Azospirillum Brasilense Sp7. J. Bacteriol. 1996, 178, 5017–5019. [Google Scholar] [CrossRef]
- Redenbach, M.; Kieser, H.M.; Denapaite, D.; Eichner, A.; Cullum, J.; Kinashi, H.; Hopwood, D.A. A Set of Ordered Cosmids and a Detailed Genetic and Physical Map for the 8 Mb Streptomyces Coelicolor A3(2) Chromosome. Mol. Microbiol. 1996, 21, 77–96. [Google Scholar] [CrossRef]
- Belin, B.J.; Busset, N.; Giraud, E.; Molinaro, A.; Silipo, A.; Newman, D.K. Hopanoid Lipids: From Membranes to Plant-Bacteria Interactions. Nat. Rev. Microbiol. 2018, 16, 304–315. [Google Scholar] [CrossRef]
- Purev, E.; Kondo, T.; Takemoto, D.; Niones, J.T.; Ojika, M. Identification of ε-Poly-L-Lysine as an Antimicrobial Product from an Epichloë Endophyte and Isolation of Fungal ε-PL Synthetase Gene. Molecules 2020, 25, 1032. [Google Scholar] [CrossRef]
- Nguyen, N.A.; Cong, Y.; Hurrell, R.C.; Arias, N.; Garg, N.; Puri, A.W.; Schmidt, E.W.; Agarwal, V. A Silent Biosynthetic Gene Cluster from a Methanotrophic Bacterium Potentiates Discovery of a Substrate Promiscuous Proteusin Cyclodehydratase. ACS Chem. Biol. 2022, 17, 1577–1585. [Google Scholar] [CrossRef]
- Shao, M.; Ma, J.; Li, Q.; Ju, J. Identification of the Anti-Infective Aborycin Biosynthetic Gene Cluster from Deep-Sea-Derived Streptomyces sp. SCSIO ZS0098 Enables Production in a Heterologous Host. Mar. Drugs 2019, 17, 127. [Google Scholar] [CrossRef]
- Robinson, S.L.; Christenson, J.K.; Wackett, L.P. Biosynthesis and Chemical Diversity of β-Lactone Natural Products. Nat. Prod. Rep. 2019, 36, 458–475. [Google Scholar] [CrossRef]
- Heine, D.; Martin, K.; Hertweck, C. Genomics-Guided Discovery of Endophenazines from Kitasatospora sp. HKI 714. J. Nat. Prod. 2014, 77, 1083–1087. [Google Scholar] [CrossRef] [PubMed]
- Smits, T.H.M.; Duffy, B. Genomics of Iron Acquisition in the Plant Pathogen Erwinia amylovora: Insights in the Biosynthetic Pathway of the Siderophore Desferrioxamine E. Arch. Microbiol. 2011, 193, 693–699. [Google Scholar] [CrossRef]
- Ozaki, T.; Nishiyama, M.; Kuzuyama, T. Novel Tryptophan Metabolism by a Potential Gene Cluster That Is Widely Distributed among Actinomycetes. J. Biol. Chem. 2013, 288, 9946–9956. [Google Scholar] [CrossRef]
- Ma, H.M.; Zhou, Q.; Tang, Y.M.; Zhang, Z.; Chen, Y.S.; He, H.Y.; Pan, H.X.; Tang, M.C.; Gao, J.F.; Zhao, S.Y.; et al. Unconventional Origin and Hybrid System for Construction of Pyrrolopyrrole Moiety in Kosinostatin Biosynthesis. Chem. Biol. 2013, 20, 796–805. [Google Scholar] [CrossRef]
- Prabhu, J.; Schauwecker, F.; Grammel, N.; Keller, U.; Bernhard, M. Functional Expression of the Ectoine Hydroxylase Gene (ThpD) from Streptomyces chrysomallus in Halomonas elongata. Appl. Environ. Microbiol. 2004, 70, 3130–3132. [Google Scholar] [CrossRef]
- Tu, J.; Lu, F.; Miao, S.; Ni, X.; Jiang, P.; Yu, H.; Xing, L.; Yu, S.; Ding, C.; Hu, Q. The Siderophore-Interacting Protein Is Involved in Iron Acquisition and Virulence of Riemerella Anatipestifer Strain CH3. Vet. Microbiol. 2014, 168, 395–402. [Google Scholar] [CrossRef]
- Li, K.; Chen, W.H.; Bruner, S.D. Structure and Mechanism of the Siderophore-Interacting Protein from the Fuscachelin Gene Cluster of Thermobifida Fusca. Biochemistry 2015, 54, 3989–4000. [Google Scholar] [CrossRef]
- Delepelaire, P. Bacterial ABC Transporters of Iron Containing Compounds. Res. Microbiol. 2019, 170, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Kudo, F.; Rohmer, M.; Eguchi, T. Biochemical and Mutational Analysis of Radical S-Adenosyl-L-Methionine Adenosylhopane Synthase HpnH from Zymomonas Mobilis Reveals That the Conserved Residue Cysteine-106 Reduces a Radical Intermediate and Determines the Stereochemistry. Biochemistry 2021, 60, 2865–2874. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Y.; Sun, J.; Huang, W.C.; Xue, C.; Mao, X. A Novel Soluble Squalene-Hopene Cyclase and Its Application in Efficient Synthesis of Hopene. Front. Bioeng. Biotechnol. 2020, 8, 526933. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yu, H.; Li, J.; Dong, N.; Chen, B.; Xu, R.; Wu, J.; Chang, X.; Wang, J.; Peng, H.; et al. Cloning, Expression, and Functional Analysis of the Full-Length CDNA of Acetyl-CoA C-Acetyltransferase (AACT) Genes Related to Terpenoid Synthesis in Platycodon Grandiflorus. Protein Pept. Lett. 2022, 29, 1061–1071. [Google Scholar] [CrossRef]
- Wang, W.; Feng, J.; Wei, L.; Khalil-Ur-Rehman, M.; Nieuwenhuizen, N.J.; Yang, L.; Zheng, H.; Tao, J. Transcriptomics Integrated with Free and Bound Terpenoid Aroma Profiling during “Shine Muscat” (Vitis Labrusca × V. Vinifera) Grape Berry Development Reveals Coordinate Regulation of MEP Pathway and Terpene Synthase Gene Expression. J. Agric. Food Chem. 2021, 69, 1413–1429. [Google Scholar] [CrossRef]
- De Araújo, N.C.; Bury, P.D.S.; Tavares, M.T.; Huang, F.; Parise-Filho, R.; Leadlay, P.; Dias, M.V.B. Crystal Structure of GenD2, an NAD-Dependent Oxidoreductase Involved in the Biosynthesis of Gentamicin. ACS Chem. Biol. 2019, 14, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Yuan, H.; Wang, X.; Dai, H.E.; Zhang, M.; Liu, L. Crystal Structure of the Large Subunit of Cobaltochelatase from Mycobacterium Tuberculosis. Proteins 2021, 89, 462–467. [Google Scholar] [CrossRef]
- Sasaki, K.; Imai, R. Pleiotropic Roles of Cold Shock Domain Proteins in Plants. Front. Plant Sci. 2012, 2, 20693. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hu, X.; Lu, Q.; Yang, Y.; Linghu, S.; Zhang, X. Study on the Differences in Sludge Toxicity and Microbial Community Structure Caused by Catechol, Resorcinol and Hydroquinone with Metagenomic Analysis. J. Environ. Manag. 2022, 302, 114027. [Google Scholar] [CrossRef]
- Wurzburger, N.; Bellenger, J.P.; Kraepiel, A.M.L.; Hedin, L.O. Molybdenum and Phosphorus Interact to Constrain Asymbiotic Nitrogen Fixation in Tropical Forests. PLoS ONE 2012, 7, e33710. [Google Scholar] [CrossRef]
- Stocker, B.D.; Prentice, I.C.; Cornell, S.E.; Davies-Barnard, T.; Finzi, A.C.; Franklin, O.; Janssens, I.; Larmola, T.; Manzoni, S.; Näsholm, T.; et al. Terrestrial Nitrogen Cycling in Earth System Models Revisited. New Phytol. 2016, 210, 1165–1168. [Google Scholar] [CrossRef]
- Walker Lawrence, R.; Del Moral, R. Lessons from Primary Succession for Restoration of Severely Damaged Habitats. Appl. Veg. Sci. 2009, 12, 55–67. [Google Scholar] [CrossRef]
- Liu, J.Q.; Chen, S.M.; Zhang, C.M.; Xu, M.J.; Xing, K.; Li, C.G.; Li, K.; Zhang, Y.Q.; Qin, S. Abundant and Diverse Endophytic Bacteria Associated with Medicinal Plant Arctium lappa L. and Their Potential for Host Plant Growth Promoting. Antonie Van Leeuwenhoek 2022, 115, 1405–1420. [Google Scholar] [CrossRef]
- Rana, K.L.; Kour, D.; Kaur, T.; Devi, R.; Yadav, A.; Yadav, A.N. Bioprospecting of Endophytic Bacteria from the Indian Himalayas and Their Role in Plant Growth Promotion of Maize (Zea mays L.). J. Appl. Biol. Biotechnol. 2021, 9, 41–50. [Google Scholar] [CrossRef]
- Ashajyothi, M.; Kumar, A.; Sheoran, N.; Ganesan, P.; Gogoi, R.; Subbaiyan, G.K.; Bhattacharya, R. Black Pepper (Piper nigrum L.) Associated Endophytic Pseudomonas Putida BP25 Alters Root Phenotype and Induces Defense in Rice (Oryza sativa L.) against Blast Disease Incited by Magnaporthe Oryzae. Biol. Control 2020, 143, 104181. [Google Scholar] [CrossRef]
- Shan, W.; Zhou, Y.; Liu, H.; Yu, X. Endophytic Actinomycetes from Tea Plants (Camellia sinensis): Isolation, Abundance, Antimicrobial, and Plant-Growth-Promoting Activities. BioMed Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Jian, Z.; Zeng, L.; Xu, T.; Sun, S.; Yan, S.; Yang, L.; Huang, Y.; Jia, J.; Dou, T. Antibiotic Resistance Genes in Bacteria: Occurrence, Spread, and Control. J. Basic Microbiol. 2021, 61, 1049–1070. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Last 25 Years. J. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef] [PubMed]
- Al-Amrani, S.; Al-Jabri, Z.; Al-Zaabi, A.; Alshekaili, J.; Al-Khabori, M. Proteomics: Concepts and Applications in Human Medicine. World J. Biol. Chem. 2021, 12, 57. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Bradford, P.A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef] [PubMed]
- Ambúr, O.H.; Reynolds, P.E.; Arias, C.A. D-Ala:D-Ala Ligase Gene Flanking the VanC Cluster: Evidence for Presence of Three Ligase Genes in Vancomycin-Resistant Enterococcus Gallinarum BM4174. Antimicrob. Agents Chemother. 2002, 46, 95–100. [Google Scholar] [CrossRef]
- Cao, L.; Gao, Y.; Yu, J.; Niu, S.; Zeng, J.; Yao, Q.; Wang, X.; Bu, Z.; Xu, T.; Liu, X.; et al. Streptomyces Hygroscopicus OsiSh-2-Induced Mitigation of Fe Deficiency in Rice Plants. Plant Physiol. Biochem. 2021, 158, 275–283. [Google Scholar] [CrossRef]
- Cui, K.; Xu, T.; Chen, J.; Yang, H.; Liu, X.; Zhuo, R.; Peng, Y.; Tang, W.; Wang, R.; Chen, L.; et al. Siderophores, a Potential Phosphate Solubilizer from the Endophyte streptomyces sp. CoT10, Improved Phosphorus Mobilization for Host Plant Growth and Rhizosphere Modulation. J. Clean. Prod. 2022, 367, 133110. [Google Scholar] [CrossRef]
- Araujo, R.; Kaewkla, O.; Franco, C.M.M. Endophytic Actinobacteria: Beneficial Partners for Sustainable Agriculture. In Endophytes Biology and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 171–191. [Google Scholar] [CrossRef]
- Roberts, M.E.; Inniss, W.E. The Synthesis of Cold Shock Proteins and Cold Acclimation Proteins in the Psychrophilic Bacterium Aquaspirillum Arcticum. Curr. Microbiol. 1992, 25, 275–278. [Google Scholar] [CrossRef]
- Margesin, R.; Zhang, D.C.; Frasson, D.; Brouchkov, A. Glaciimonas frigoris sp. Nov., a Psychrophilic Bacterium Isolated from Ancient Siberian Permafrost Sediment, and Emended Description of the Genus Glaciimonas. Int. J. Syst. Evol. Microbiol. 2016, 66, 744–748. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.; Margesin, R. Psychrophilic Lifestyles: Mechanisms of Adaptation and Biotechnological Tools. Appl. Microbiol. Biotechnol. 2019, 103, 2857–2871. [Google Scholar] [CrossRef] [PubMed]
Region | Type | From-To | Most Similar Known Cluster | Similarity |
---|---|---|---|---|
Region 1.1 | terpene | 133,677–159,753 | hopene | 38% |
Region 1.2 | NAPAA, RiPP-like | 412,322–454,746 | ε-poly-L-lysine | 100% |
Region 1.3 | proteusin | 650,410–671,897 | aborycin | 14% |
Region 1.4 | betalactone | 798,229–827,406 | ||
Region 2.1 | terpene | 131,910–152,806 | ||
Region 2.2 | phenazine | 682,797–708,915 | 5-acetyl-5,10-dihydrophenazine-1-carboxylic acid; 5-(2-hydroxyacetyl)-5,10-dihydrophenazine-1-carboxylic acid; endophenazine A1; endophenazine F; endophenazine G | 30% |
Region 2.3 | Ni–siderophore | 920,994–933,354 | desferrioxamine E | 75% |
Region 3.1 | linaridin | 65,567–88,156 | 5-dimethylallylindole-3-acetonitrile | 33% |
Region 3.2 | ectoine | 149,753–160,127 | kosinostatin | 8% |
Region 6.1 | ectoine | 13,107–23,508 | ectoine | 100% |
Characteristic | 1 | 2 a | 3 b | 4 c |
---|---|---|---|---|
Gram stain | positive | positive | positive | positive |
Temperature range for growth (°C) | 25–40 | 25–45 | 10–40 | 20–45 |
Optimal growth (°C) | 30 | 35 | 25–37 | 28–35 |
pH range for growth | 6.0–8.0 | 6.0–8.0 | 5.0–10.0 | 5.0–8.0 |
Optimal pH | 7.0 | 7.0 | 7.0 | 7.0 |
Growth in NaCl (% w/v) | 0–4 | 0–6 | 0–5 | 0–7 |
Optimal NaCl concentration (% w/v) | 1 | 0 | 1 | 0–3 |
Tween 60 | + | − | − | + |
Alkaline phosphatase | + | − | + | + |
Esterase (C4) | − | + | + | + |
Esterase Lipase (C8) | w | − | + | + |
Valine arylamidase | w | w | + | + |
Cystine arylamidase | w | w | + | + |
α−Galactosidase | + | − | + | − |
β−Galactosidase | + | − | + | − |
β−Glucosidase | + | + | − | + |
N−Acetyl−β−glucosaminidase | + | − | − | + |
α−Fucosidase | + | − | + | − |
Gelatinase | + | − | − | − |
β−Galactosidase | + | − | + | − |
Glucose | + | + | − | − |
Mannose | + | − | + | − |
Mannitol | − | + | − | + |
N−Acetyl−glucosamine | + | − | + | − |
Malic acid | + | + | − | − |
Citrate | + | + | − | + |
Phenylacetic acid | − | − | + | + |
Erythritol | + | − − | − | − |
d−Galactose | + | − | − | − |
d−Fructose | + | − | − | + |
DNA G + C content (mol%) * | 68.5 | 69.8 | 68.0 | 66.7 |
Fatty Acids | 1 | 2 a | 3 b | 4 c |
---|---|---|---|---|
C16:0 | 1.0 | 0.77 | 1.1 | 1.4 |
C16:1 2OH | - | 1.5 | 5.9 | TR |
C18:0 | 7.3 | 1.6 | - | - |
C18:0 10-methyl | 7.0 | 2.8 | TR | 0.6 |
C18:1 ω9c | 3.5 | 1.8 | - | 0.8 |
C19:0 cyclo ω8c | 1.0 | - | - | |
iso-C15:0 | 1.9 | 2.4 | 4.6 | 4.5 |
iso-C16:0 | 19.7 | 24.6 | 39.8 | 27.6 |
iso-C16:1 H | 2.3 | 3.4 | 0.6 | 3.2 |
iso-C17:0 | 10.5 | 8.3 | 9.0 | 9.8 |
iso-C18:0 | 4.9 | 3.5 | 1.4 | 1.9 |
iso-C19:0 | 1.0 | - | - | - |
anteiso-C15:0 | tr | - | 1.0 | 1.8 |
anteiso-C17:0 | 8.7 | 10.6 | 24.3 | 23.5 |
anteiso-C17:1 ω9c | 3.1 | 4.5 | 0.8 | 9.1 |
anteiso-C19:0 | 1.6 | 0.9 | TR | 0.5 |
Summed feature 3 | 1.7 | 1.7 | - | 2.7 |
Summed feature 9 | 22.5 | 17.2 | 4.0 | 8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kan, Y.; Zhang, L.; Wang, Y.; Ma, Q.; Zhou, Y.; Jiang, X.; Zhang, W.; Ruan, Z. Endophytic Bacterium Flexivirga meconopsidis sp. nov. with Plant Growth-Promoting Function, Isolated from the Seeds of Meconopsis integrifolia. Microorganisms 2023, 11, 2899. https://doi.org/10.3390/microorganisms11122899
Kan Y, Zhang L, Wang Y, Ma Q, Zhou Y, Jiang X, Zhang W, Ruan Z. Endophytic Bacterium Flexivirga meconopsidis sp. nov. with Plant Growth-Promoting Function, Isolated from the Seeds of Meconopsis integrifolia. Microorganisms. 2023; 11(12):2899. https://doi.org/10.3390/microorganisms11122899
Chicago/Turabian StyleKan, Yongtao, Li Zhang, Yan Wang, Qingyun Ma, Yiqing Zhou, Xu Jiang, Wei Zhang, and Zhiyong Ruan. 2023. "Endophytic Bacterium Flexivirga meconopsidis sp. nov. with Plant Growth-Promoting Function, Isolated from the Seeds of Meconopsis integrifolia" Microorganisms 11, no. 12: 2899. https://doi.org/10.3390/microorganisms11122899
APA StyleKan, Y., Zhang, L., Wang, Y., Ma, Q., Zhou, Y., Jiang, X., Zhang, W., & Ruan, Z. (2023). Endophytic Bacterium Flexivirga meconopsidis sp. nov. with Plant Growth-Promoting Function, Isolated from the Seeds of Meconopsis integrifolia. Microorganisms, 11(12), 2899. https://doi.org/10.3390/microorganisms11122899