Genomic and Phenotypic Characterization of Shiga Toxin-Producing Escherichia albertii Strains Isolated from Wild Birds in a Major Agricultural Region in California
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Media
2.2. Genome Sequencing and Annotation
2.3. Pangenome Analyses
2.4. Identification of Virulence Genes and Pathogenicity Islands (PAIs)
2.5. Comparative Analysis of Stx-Prophages
2.6. Quantification of Shiga Toxin by ELISA
2.7. Cytotoxicity Assay
3. Results
3.1. Pangenome of E. albertii
3.2. Analyses of PAIs in E. albertii
3.2.1. LEE
3.2.2. OI-122
3.2.3. HPI
3.2.4. T6SS
3.3. Detection of E. coli virulence Genes in E. albertii
3.4. Stx2f-Converting Prophages and Production of Stx2f under Non-Inducing Condition
3.5. Cytotoxicity in E. albertii Strains
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albert, M.J.; Alam, K.; Islam, M.; Montanaro, J.; Rahaman, A.S.; Haider, K.; Hossain, M.A.; Kibriya, A.K.; Tzipori, S. Hafnia alvei, a probable cause of diarrhea in humans. Infect. Immun. 1991, 59, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Huys, G.; Cnockaert, M.; Janda, J.M.; Swings, J. Escherichia albertii sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children. Int. J. Syst. Evol. Microbiol. 2003, 53, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Hyma, K.E.; Lacher, D.W.; Nelson, A.M.; Bumbaugh, A.C.; Janda, J.M.; Strockbine, N.A.; Young, V.B.; Whittam, T.S. Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J. Bacteriol. 2005, 187, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Walk, S.T.; Alm, E.W.; Gordon, D.M.; Ram, J.L.; Toranzos, G.A.; Tiedje, J.M.; Whittam, T.S. Cryptic lineages of the genus Escherichia. Appl. Environ. Microbiol. 2009, 75, 6534–6544. [Google Scholar] [CrossRef]
- Foster, G.; Ross, H.M.; Pennycott, T.W.; Hopkins, G.F.; McLaren, I.M. Isolation of Escherichia coli O86:K61 producing cyto-lethal distending toxin from wild birds of the finch family. Lett. Appl. Microbiol. 1998, 26, 395–398. [Google Scholar] [CrossRef]
- Pennycott, T.W.; Ross, H.M.; McLaren, I.M.; Park, A.; Hopkins, G.F.; Foster, G. Causes of death of wild birds of the family Fringillidae in Britain. Vet. Rec. 1998, 143, 155–158. [Google Scholar] [CrossRef]
- Ooka, T.; Seto, K.; Kawano, K.; Kobayashi, H.; Etoh, Y.; Ichihara, S.; Kaneko, A.; Isobe, J.; Yamaguchi, K.; Horikawa, K.; et al. Clinical significance of Escherichia albertii. Emerg. Infect. Dis. 2012, 18, 488–492. [Google Scholar] [CrossRef]
- Gomes, T.A.T.; Ooka, T.; Hernandes, R.T.; Yamamoto, D.; Hayashi, T. Escherichia albertii Pathogenesis. EcoSal Plus 2020, 9, 10–1128. [Google Scholar] [CrossRef]
- Masuda, K.; Ooka, T.; Akita, H.; Hiratsuka, T.; Takao, S.; Fukada, M.; Inoue, K.; Honda, M.; Toda, J.; Sugitani, W.; et al. Epidemiological Aspects of Escherichia albertii Outbreaks in Japan and Genetic Characteristics of the Causative Pathogen. Foodborne Pathog. Dis. 2020, 17, 144–150. [Google Scholar] [CrossRef]
- Konno, T.; Yatsuyanagi, J.; Takahashi, S.; Kumagai, Y.; Wada, E.; Chiba, M.; Saito, S. Isolation and identification of Escherichia albertii from a patient in an outbreak of gastroenteritis. Jpn. J. Infect. Dis. 2012, 65, 203–207. [Google Scholar] [CrossRef]
- Ori, E.L.; Takagi, E.H.; Andrade, T.S.; Miguel, B.T.; Cergole-Novella, M.C.; Guth, B.E.C.; Hernandes, R.T.; Dias, R.C.B.; Pinheiro, S.R.S.; Camargo, C.H.; et al. Diarrhoeagenic Escherichia coli and Escherichia albertii in Brazil: Pathotypes and serotypes over a 6-year period of surveillance. Epidemiol. Infect. 2018, 147, e10. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, R.J.; Baker, K.S.; Cunningham, A.A.; Greig, D.R.; John, S.K.; Macgregor, S.K.; Seilern-Moy, K.; Spiro, S.; Chong, C.C.; De Silva, P.M.; et al. The genomic epidemiology of Escherichia albertii infecting humans and birds in Great Britain. Nat. Commun. 2023, 14, 1707. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, A.; Takemura, T.; Ogura, Y.; Nguyen, T.T.H.; Kikuchi, T.; Okuno, M.; Tokizawa, A.; Iwashita, H.; Pham, H.Q.A.; Doan, T.H.; et al. Genomic characterization of endemic diarrheagenic Escherichia coli and Escherichia albertii from infants with diarrhea in Vietnam. PLoS Negl. Trop. Dis. 2023, 17, e0011259. [Google Scholar] [CrossRef] [PubMed]
- Ooka, T.; Tokuoka, E.; Furukawa, M.; Nagamura, T.; Ogura, Y.; Arisawa, K.; Harada, S.; Hayashi, T. Human gastroenteritis outbreak associated with Escherichia albertii, Japan. Emerg. Infect. Dis. 2013, 19, 144–146. [Google Scholar] [CrossRef]
- Muchaamba, F.; Barmettler, K.; Treier, A.; Houf, K.; Stephan, R. Microbiology and Epidemiology of Escherichia albertii—An Emerging Elusive Foodborne Pathogen. Microorganisms 2022, 10, 875. [Google Scholar] [CrossRef]
- Albert, M.J.; Faruque, S.M.; Ansaruzzaman, M.; Islam, M.M.; Haider, K.; Alam, K.; Kabir, I.; Robins-Browne, R. Sharing of virulence-associated properties at the phenotypic and genetic levels between enteropathogenic Escherichia coli and Hafnia alvei. J. Med. Microbiol. 1992, 37, 310–314. [Google Scholar] [CrossRef]
- Ooka, T.; Ogura, Y.; Katsura, K.; Seto, K.; Kobayashi, H.; Kawano, K.; Tokuoka, E.; Furukawa, M.; Harada, S.; Yoshino, S.; et al. Defining the Genome Features of Escherichia albertii, an Emerging Enteropathogen Closely Related to Escherichia coli. Genome Biol. Evol. 2015, 7, 3170–3179. [Google Scholar] [CrossRef]
- Ren, C.P.; Chaudhuri, R.R.; Fivian, A.; Bailey, C.M.; Antonio, M.; Barnes, W.M.; Pallen, M.J. The ETT2 gene cluster, encoding a second type III secretion system from Escherichia coli, is present in the majority of strains but has undergone widespread mutational attrition. J. Bacteriol. 2004, 186, 3547–3560. [Google Scholar] [CrossRef]
- Shulman, A.; Yair, Y.; Biran, D.; Sura, T.; Otto, A.; Gophna, U.; Becher, D.; Hecker, M.; Ron, E.Z. The Escherichia coli Type III Secretion System 2 Has a Global Effect on Cell Surface. mBio 2018, 9, e01070-18. [Google Scholar] [CrossRef]
- Jinadasa, R.N.; Bloom, S.E.; Weiss, R.S.; Duhamel, G.E. Cytolethal distending toxin: A conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. Microbiology 2011, 157, 1851–1875. [Google Scholar] [CrossRef]
- Fedor, Y.; Vignard, J.; Nicolau-Travers, M.L.; Boutet-Robinet, E.; Watrin, C.; Salles, B.; Mirey, G. From single-strand breaks to double-strand breaks during S-phase: A new mode of action of the Escherichia coli Cytolethal Distending Toxin. Cell Microbiol. 2013, 15, 1–15. [Google Scholar] [CrossRef]
- Brandal, L.T.; Tunsjo, H.S.; Ranheim, T.E.; Lobersli, I.; Lange, H.; Wester, A.L. Shiga toxin 2a in Escherichia albertii. J. Clin. Microbiol. 2015, 53, 1454–1455. [Google Scholar] [CrossRef] [PubMed]
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef]
- Batisson, I.; Guimond, M.P.; Girard, F.; An, H.; Zhu, C.; Oswald, E.; Fairbrother, J.M.; Jacques, M.; Harel, J. Characterization of the novel factor paa involved in the early steps of the adhesion mechanism of attaching and effacing Escherichia coli. Infect. Immun. 2003, 71, 4516–4525. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Wang, H.; Payne, M.J.; Liang, C.; Bai, L.; Zheng, H.; Zhang, Z.; Zhang, L.; Zhang, X.; Yan, G.; et al. Comparative genomics of Chinese and international isolates of Escherichia albertii: Population structure and evolution of virulence and antimicrobial resistance. Microb. Genom. 2021, 7, 000710. [Google Scholar] [CrossRef]
- Hinenoya, A.; Li, X.P.; Zeng, X.; Sahin, O.; Moxley, R.A.; Logue, C.M.; Gillespie, B.; Yamasaki, S.; Lin, J. Isolation and characterization of Escherichia albertii in poultry at the pre-harvest level. Zoonoses Public Health 2021, 68, 213–225. [Google Scholar] [CrossRef]
- Cooley, M.B.; Quinones, B.; Oryang, D.; Mandrell, R.E.; Gorski, L. Prevalence of shiga toxin producing Escherichia coli, Salmonella enterica, and Listeria monocytogenes at public access watershed sites in a California Central Coast agricultural region. Front. Cell. Infect. Microbiol. 2014, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- Cooley, M.B.; Jay-Russell, M.; Atwill, E.R.; Carychao, D.; Nguyen, K.; Quinones, B.; Patel, R.; Walker, S.; Swimley, M.; Pierre-Jerome, E.; et al. Development of a robust method for isolation of Shiga toxin-positive Escherichia coli (STEC) from fecal, plant, soil and water samples from a leafy greens production region in California. PLoS ONE 2013, 8, e65716. [Google Scholar] [CrossRef]
- Perna, N.T.; Plunkett, G.; Burland, V.; Mau, B.; Glasner, J.D.; Rose, D.J.; Mayhew, G.F.; Evans, P.S.; Gregor, J.; Kirkpatrick, H.A. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 2001, 409, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Burland, V.; Shao, Y.; Perna, N.T.; Plunkett, G.; Blattner, F.R.; Sofia, H.J. The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157: H7. Nucleic Acids Res. 1998, 26, 4196–4204. [Google Scholar] [CrossRef]
- Blattner, F.R.; Plunkett, G.; Bloch, C.A.; Perna, N.T.; Burland, V.; Riley, M.; Collado-Vides, J.; Glasner, J.D.; Rode, C.K.; Mayhew, G.F. The complete genome sequence of Escherichia coli K-12. Science 1997, 277, 1453–1462. [Google Scholar] [CrossRef]
- Lindsey, R.L.; Fedorka-Cray, P.J.; Abley, M.; Turpin, J.B.; Meinersmann, R.J. Evaluating the occurrence of Escherichia albertii in chicken carcass rinses by PCR, Vitek analysis, and sequencing of the rpoB gene. Appl. Environ. Microbiol. 2015, 81, 1727–1734. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, R.L.; Rowe, L.A.; Batra, D.; Smith, P.; Strockbine, N.A. PacBio Genome Sequences of Eight Escherichia albertii Strains Isolated from Humans in the United States. Microbiol. Resour. Announc. 2019, 8, e01663-18. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, B.J. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology; Neidhardt, F.C.E.A., Ed.; ASM Press: Washington, DC, USA, 1996. [Google Scholar]
- Wirth, T.; Falush, D.; Lan, R.; Colles, F.; Mensa, P.; Wieler, L.H.; Karch, H.; Reeves, P.R.; Maiden, M.C.; Ochman, H.; et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006, 60, 1136–1151. [Google Scholar] [CrossRef]
- Carter, M.Q.; Quinones, B.; Laniohan, N.; Carychao, D.; Pham, A.; He, X.; Cooley, M. Pathogenicity assessment of Shiga toxin-producing Escherichia coli strains isolated from wild birds in a major agricultural region in California. Front. Microbiol. 2023, 14, 1214081. [Google Scholar] [CrossRef] [PubMed]
- Clawson, M.L.; Keen, J.E.; Smith, T.P.; Durso, L.M.; McDaneld, T.G.; Mandrell, R.E.; Davis, M.A.; Bono, J.L. Phylogenetic classification of Escherichia coli O157:H7 strains of human and bovine origin using a novel set of nucleotide polymorphisms. Genome Biol. 2009, 10, R56. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, C.T.; Gao, F. Ori-Finder 2, an integrated tool to predict replication origins in the archaeal genomes. Front. Microbiol. 2014, 5, 482. [Google Scholar] [CrossRef] [PubMed]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Carter, M.Q.; Laniohan, N.; Lo, C.C.; Chain, P.S.G. Comparative Genomics Applied to Systematically Assess Pathogenicity Potential in Shiga Toxin-Producing Escherichia coli O145:H28. Microorganisms 2022, 10, 866. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.Q.; Laniohan, N.; Pham, A.; Quinones, B. Comparative genomic and phenotypic analyses of the virulence potential in Shiga toxin-producing Escherichia coli O121:H7 and O121:H10. Front. Cell. Infect. Microbiol. 2022, 12, 1043726. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Bultet, L.; Nicholson, P.; Rychener, L.; Dreyer, M.; Gozel, B.; Origgi, F.C.; Oevermann, A.; Frey, J.; Falquet, L. Genetic Separation of Listeria monocytogenes Causing Central Nervous System Infections in Animals. Front. Cell. Infect. Microbiol. 2018, 8, 20. [Google Scholar] [CrossRef]
- Akarsu, H.; Aguilar-Bultet, L.; Falquet, L. deltaRpkm: An R package for a rapid detection of differential gene presence between related bacterial genomes. BMC Bioinform. 2019, 20, 621. [Google Scholar] [CrossRef] [PubMed]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef]
- He, X.; Kong, Q.; Patfield, S.; Skinner, C.; Rasooly, R. A new immunoassay for detecting all subtypes of Shiga toxins produced by Shiga toxin-producing E. coli in ground beef. PLoS ONE 2016, 11, e0148092. [Google Scholar] [CrossRef]
- Skinner, C.; Patfield, S.; Stanker, L.H.; Fratamico, P.; He, X. New high-affinity monoclonal antibodies against Shiga toxin 1 facilitate the detection of hybrid Stx1/Stx2 in vivo. PLoS ONE 2014, 9, e99854. [Google Scholar] [CrossRef]
- Quiñones, B.; Massey, S.; Friedman, M.; Swimley, M.S.; Teter, K. Novel cell-based method to detect Shiga toxin 2 from Escherichia coli O157:H7 and inhibitors of toxin activity. Appl. Environ. Microbiol. 2009, 75, 1410–1416. [Google Scholar] [CrossRef]
- Schubert, S.; Rakin, A.; Karch, H.; Carniel, E.; Heesemann, J. Prevalence of the “high-pathogenicity island” of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect. Immun. 1998, 66, 480–485. [Google Scholar] [CrossRef]
- Karch, H.; Schubert, S.; Zhang, D.; Zhang, W.; Schmidt, H.; Olschlager, T.; Hacker, J. A genomic island, termed high-pathogenicity island, is present in certain non-O157 Shiga toxin-producing Escherichia coli clonal lineages. Infect. Immun. 1999, 67, 5994–6001. [Google Scholar] [CrossRef]
- Rasko, D.A.; Rosovitz, M.J.; Myers, G.S.; Mongodin, E.F.; Fricke, W.F.; Gajer, P.; Crabtree, J.; Sebaihia, M.; Thomson, N.R.; Chaudhuri, R.; et al. The pangenome structure of Escherichia coli: Comparative genomic analysis of E. coli commensal and pathogenic isolates. J. Bacteriol. 2008, 190, 6881–6893. [Google Scholar] [CrossRef] [PubMed]
- Ooka, T.; Seto, K.; Ogura, Y.; Nakamura, K.; Iguchi, A.; Gotoh, Y.; Honda, M.; Etoh, Y.; Ikeda, T.; Sugitani, W.; et al. O-antigen biosynthesis gene clusters of Escherichia albertii: Their diversity and similarity to Escherichia coli gene clusters and the development of an O-genotyping method. Microb. Genom. 2019, 5, e000314. [Google Scholar] [CrossRef] [PubMed]
- Franzin, F.M.; Sircili, M.P. Locus of enterocyte effacement: A pathogenicity island involved in the virulence of enteropathogenic and enterohemorragic Escherichia coli subjected to a complex network of gene regulation. Biomed. Res. Int. 2015, 2015, 534738. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.D.; Frankel, G. Intimin-mediated tissue specificity in enteropathogenic Escherichia coli interaction with human intestinal organ cultures. J. Infect. Dis. 2000, 181, 1496–1500. [Google Scholar] [CrossRef] [PubMed]
- Toth, I.; Nougayrede, J.P.; Dobrindt, U.; Ledger, T.N.; Boury, M.; Morabito, S.; Fujiwara, T.; Sugai, M.; Hacker, J.; Oswald, E. Cytolethal distending toxin type I and type IV genes are framed with lambdoid prophage genes in extraintestinal pathogenic Escherichia coli. Infect. Immun. 2009, 77, 492–500. [Google Scholar] [CrossRef]
- Hinenoya, A.; Yasuda, N.; Hibino, T.; Shima, A.; Nagita, A.; Tsukamoto, T.; Yamasaki, S. Isolation and Characterization of an Escherichia albertii Strain Producing Three Different Toxins from a Child with Diarrhea. Jpn. J. Infect. Dis. 2017, 70, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Bayles, D.O. The contribution of cytolethal distending toxin to bacterial pathogenesis. Crit. Rev. Microbiol. 2006, 32, 227–248. [Google Scholar] [CrossRef]
- Hinenoya, A.; Yasuda, N.; Mukaizawa, N.; Sheikh, S.; Niwa, Y.; Awasthi, S.P.; Asakura, M.; Tsukamoto, T.; Nagita, A.; Albert, M.J.; et al. Association of cytolethal distending toxin-II gene-positive Escherichia coli with Escherichia albertii, an emerging enteropathogen. Int. J. Med. Microbiol. 2017, 307, 564–571. [Google Scholar] [CrossRef]
- Murakami, K.; Etoh, Y.; Tanaka, E.; Ichihara, S.; Horikawa, K.; Kawano, K.; Ooka, T.; Kawamura, Y.; Ito, K. Shiga toxin 2f-producing Escherichia albertii from a symptomatic human. Jpn. J. Infect. Dis. 2014, 67, 204–208. [Google Scholar] [CrossRef]
- Creuzburg, K.; Kohler, B.; Hempel, H.; Schreier, P.; Jacobs, E.; Schmidt, H. Genetic structure and chromosomal integration site of the cryptic prophage CP-1639 encoding Shiga toxin 1. Microbiology 2005, 151, 941–950. [Google Scholar] [CrossRef]
- Bonanno, L.; Loukiadis, E.; Mariani-Kurkdjian, P.; Oswald, E.; Garnier, L.; Michel, V.; Auvray, F. Diversity of Shiga Toxin-Producing Escherichia coli (STEC) O26:H11 Strains Examined via stx Subtypes and Insertion Sites of Stx and EspK Bacteriophages. Appl. Environ. Microbiol. 2015, 81, 3712–3721. [Google Scholar] [CrossRef] [PubMed]
- Tamilmaran, N.; Sankaranarayanan, R.; Selvakumar, A.S.P.; Munavar, M.H. Horizontal transfer of domains in ssrA gene among Enterobacteriaceae. Genes Cells 2021, 26, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Livny, J.; Friedman, D.I. Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system. Mol. Microbiol. 2004, 51, 1691–1704. [Google Scholar] [CrossRef] [PubMed]
- Filipiak, M.; Los, J.M.; Los, M. Efficiency of induction of Shiga-toxin lambdoid prophages in Escherichia coli due to oxidative and antibiotic stress depends on the combination of prophage and the bacterial strain. J. Appl. Genet. 2020, 61, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.Q.; Pham, A.; Du, W.X.; He, X. Differential induction of Shiga toxin in environmental Escherichia coli O145:H28 strains carrying the same genotype as the outbreak strains. Int. J. Food Microbiol. 2021, 339, 109029. [Google Scholar] [CrossRef] [PubMed]
- Skinner, C.; Patfield, S.; Stanker, L.; He, X. Development of monoclonal antibodies and immunoassays for sensitive and specific detection of Shiga toxin Stx2f. PLoS ONE 2013, 8, e76563. [Google Scholar] [CrossRef] [PubMed]
- Hinenoya, A.; Ichimura, H.; Awasthi, S.P.; Yasuda, N.; Yatsuyanagi, J.; Yamasaki, S. Phenotypic and molecular characterization of Escherichia albertii: Further surrogates to avoid potential laboratory misidentification. Int. J. Med. Microbiol. 2019, 309, 108–115. [Google Scholar] [CrossRef]
- National Advisory Committee on Microbiological Criteria for Foods. Response to Questions Posed by the Food and Drug Administration Regarding Virulence Factors and Attributes that Define Foodborne Shiga Toxin-Producing Escherichia coli (STEC) as Severe Human Pathogens (dagger). J. Food Prot. 2019, 82, 724–767. [Google Scholar] [CrossRef]
- Scheutz, F. Taxonomy Meets Public Health: The Case of Shiga Toxin-Producing Escherichia coli. Microbiol. Spectr. 2014, 2, 15–36. [Google Scholar] [CrossRef]
Strains 1 | Sources/ Year of Isolation | Chromosome (bp)/ GenBank Accession # | Plasmids (bp)/ GenBank Accession # | Sequence Type 2 (ST) | stx Genes | References |
---|---|---|---|---|---|---|
E. coli | ||||||
EDL933 | Ground beef/1982 | 5,528,445/ AE005174.2 | 92,077/AF074613.1 | 11 | stx1a + stx2a | [29,30] |
MG1655 | Human/1922 | 4,641,652/ U00096.3 | None | 10 | None | [31] |
E. albertii | ||||||
RM9973 | American crow (Corvus brachyrhynchos)/2009 | 4,648,335/ CP043271.1 | p1, 105,082/CP043273.1; p2, 102,351/CP043272.1 | ST6057 * | stx2f | This study |
RM9974 | American crow (Corvus brachyrhynchos)/2009 | 4,863,808/ CP043266.1 | p1, 132,007/CP043270.1; p2, 99,091/CP043269.1; p3, 96,650/CP043268.1; p4, 27,507/CP043267.1 | ST2682 | stx2f | This study |
RM9976 | American crow (Corvus brachyrhynchos)/2009 | 4,976,140/ CP043262.1 | p1, 200,52/CP043265.1; p2, 85,807/CP043264.1; p3, 84,014/CP043263.1 | ST8692 | stx2f | This study |
RM10507 | Brown-headed cowbird (Molothrus ater)/2009 | 5,007,500/ CP043258.1 | p1, 102,034/CP043261.1; p2, 99,002/CP043260.1; p3, 42,515/CP043259.1 | ST10004 * | stx2f | This study |
RM10705 | Brown-headed cowbird (Molothrus ater)/2009 | 4,904,046/ CP045690.1 | p1, 117,701/CP045688.1; p2, 102,214/CP045689.1 | ST9018 | stx2f | This study |
RM15112 | Oregon Junco (Junco hyemalis)/2011 | 4,712,580/ CP043254.1 | p1, 136,729/CP043257.1; p2, 97,372/CP043256.1; p3, 62,266/CP043255.1 | ST7971 | stx2f | This study |
RM15113 | Oregon Junco (Junco hyemalis)/2011 | 4,712,547/ CP043250.1 | p1, 136,729/CP043253.1; p2, 97,374/CP043252.1; p3, 62,269/CP043251.1 | ST7971 | stx2f | This study |
RM15114 | Oregon Junco (Junco hyemalis)/2011 | 4,712,362/ CP043246.1 | p1, 136,747/CP043249.1; p2, 97,369/CP043248.1; p3, 62,259/CP043247.1 | ST7971 | stx2f | This study |
RM15115 | White-Breasted Nuthatch (Sitta carolinensis)/2011 | 4,712,540/ CP043242.1 | p1, 136,727/CP043245.1; p2, 97,365/CP043244.1; p3, 62,256/CP043243.1 | ST7971 | stx2f | This study |
RM15116 | Oregon Junco (Junco hyemalis)/2011 | 4,712,500/ CP043238.1 | p1, 136,731/CP043241.1; p2, 97,363/CP043240.1; p3, 62,266/CP043239.1 | ST7971 | stx2f | This study |
2014C-4356 | Chicken Carcass/2009 | 4,852,165/ CP024282.1 | p1, 40,461/CP024283.1; p2, 59,626/CP024284.1; p3, 127,606/CP024285.1; p4, 113,727/CP024286.1; p5, 124,142/CP024287.1; p6, 19,118/CP024288.1 | ST7415 | None | [32] |
05-3106 | Human/2005 | 4,719,735/ CP030778.2 | P1, 56,603/CP030779.2; P2, 80,632/CP030780.2 | ST4619 | None | [33] |
07-3866 | Human/2007 | 4,940,006/ CP030781.1 | 104,269/CP030782.1 | ST7414 | None | [33] |
54-2045 (NCTC 9362) | Human/1954 | 4,551,125/ CP034213.1 | 40,180/CP034214.1 | ST413 | None | [33] |
2010C-3449 | Human/2010 | 4,923,641/ CP034212.1 | None | ST5390 | None | [33] |
2011C-4180 | Human/2011 | 4,790,629/ CP126912 | p1, 48,807/CP126913 p2, 98,642/CP126914 p3, 151,845/CP126915 | ST2681 | stx2f | This study |
2012EL-1823B | Human/2012 | 4,809,821/ CP030783.2 | p1, 100,347/CP030784.2; p2, 81,130/CP030785.2; p3, 105,846/CP030786.2 | ST5983 | stx2f | [33] |
2013C-4143 | Human/2013 | 4,659,709/ CP030787.2 | None | ST7960 | None | [33] |
2014C-4015 | Human/2014 | 4,623,903/ CP034166.1 | p1, 63,809/CP034165.1; p2, 96,264/CP034164.1; p3, 136,645/CP034167.1 | ST5992 | stx2f | [33] |
2014EL-1348 | Human/2014 | 4,662,779/ CP126908 | p1, 62,344/CP126909 p2, 96,264/CP126910 p3, 136,695/CP126911 | ST5990 | stx2f | This study |
Strains (Serotype) 1 | Sources | stx Subtype | Stx2f (ng/mL) | Cytotoxicity 2 |
---|---|---|---|---|
E. albertii | ||||
RM9973 | American crow (Corvus brachyrhynchos) | stx2f | 5.6 ± 0.3 | ++ |
RM9974 | American crow (Corvus brachyrhynchos) | stx2f | 28.5 ± 1.6 | ++++ |
RM9976 | American crow (Corvus brachyrhynchos) | stx2f | 0.8 ± 0.2 | + |
RM10507 | Brown-headed cowbird (Molothrus ater) | stx2f | 0.1 ± 0.0 | + |
RM10705 | Brown-headed cowbird (Molothrus ater) | stx2f | 1.1 ± 0.1 | +++ |
RM15112 | Oregon Junco (Junco hyemalis) | stx2f | 0.6 ± 0.0 | ++ |
RM15113 | Oregon Junco (Junco hyemalis) | stx2f | 0.3 ± 0.3 | +++ |
RM15114 | Oregon Junco (Junco hyemalis) | stx2f | 0.4 ± 0.1 | ++ |
RM15115 | Oregon Junco (Junco hyemalis) | stx2f | 0.2 ± 0.0 | ++ |
RM15116 | White-Breasted Nuthatch (Sitta carolinensis) | stx2f | 0.6 ± 0.2 | ++ |
2014C-4356 | Chicken Carcass | stx negative | 0.1 ± 0.1 | - |
2011C-4180 | Human | stx2f | 3.3 ± 0.4 | ++ |
2012EL-1823B | Human | stx2f | 0.0 ± 0.0 | - |
2014EL-1348 | Human | stx2f | 0.3 ± 0.1 | + |
2014C-4015 | Human | stx2f | 0.8 ± 0.6 | + |
05-3106 | Human | stx negative | 0.0 ± 0.0 | - |
07-3866 | Human | stx negative | 0.0 ± 0.0 | - |
54-2045 | Human | stx negative | 0.0 ± 0.0 | - |
2010C-3449 | Human | stx negative | 0.1 ± 0.0 | - |
2013C-4243 | Human | stx negative | 0.0 ± 0.0 | - |
E. coli | ||||
RM7007 | Pigeon (Columba livia) | stx2f | 3.9 ± 0.1 | + |
RM10064 | Water | stx2f | 1.2 ± 0.1 | ++ |
RM16643 | Water | stx2f | 0.0 ± 0.0 | - |
RM5034 (K-12 strain ATCC#29425) | Human | stx negative | 0.0 ± 0.0 | - |
RM4876 (O157:H7) | Water | stx negative | NA | - |
RM1273 (O157:H7) | Human | stx negative | NA | - |
EDL933 (O157:H7) | Ground beef | stx1a + stx2a | NA | +++ |
RM6013 (O157:H7) | Human | stx2a | NA | +++ |
RM12238 (O145:H28) | Human | stx2a | NA | +++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carter, M.Q.; Quiñones, B.; He, X.; Pham, A.; Carychao, D.; Cooley, M.B.; Lo, C.-C.; Chain, P.S.G.; Lindsey, R.L.; Bono, J.L. Genomic and Phenotypic Characterization of Shiga Toxin-Producing Escherichia albertii Strains Isolated from Wild Birds in a Major Agricultural Region in California. Microorganisms 2023, 11, 2803. https://doi.org/10.3390/microorganisms11112803
Carter MQ, Quiñones B, He X, Pham A, Carychao D, Cooley MB, Lo C-C, Chain PSG, Lindsey RL, Bono JL. Genomic and Phenotypic Characterization of Shiga Toxin-Producing Escherichia albertii Strains Isolated from Wild Birds in a Major Agricultural Region in California. Microorganisms. 2023; 11(11):2803. https://doi.org/10.3390/microorganisms11112803
Chicago/Turabian StyleCarter, Michelle Qiu, Beatriz Quiñones, Xiaohua He, Antares Pham, Diana Carychao, Michael B. Cooley, Chien-Chi Lo, Patrick S. G. Chain, Rebecca L. Lindsey, and James L. Bono. 2023. "Genomic and Phenotypic Characterization of Shiga Toxin-Producing Escherichia albertii Strains Isolated from Wild Birds in a Major Agricultural Region in California" Microorganisms 11, no. 11: 2803. https://doi.org/10.3390/microorganisms11112803
APA StyleCarter, M. Q., Quiñones, B., He, X., Pham, A., Carychao, D., Cooley, M. B., Lo, C.-C., Chain, P. S. G., Lindsey, R. L., & Bono, J. L. (2023). Genomic and Phenotypic Characterization of Shiga Toxin-Producing Escherichia albertii Strains Isolated from Wild Birds in a Major Agricultural Region in California. Microorganisms, 11(11), 2803. https://doi.org/10.3390/microorganisms11112803