Exploring Viral Metagenomics in Pediatric Patients with Acute Respiratory Infections: Unveiling Pathogens beyond SARS-CoV-2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Sampling Criteria
2.2. Pre-Preparation of Nasopharyngeal Samples, Nucleic Acids Extraction, and NextSeq 2000 Illumina Sequencing
2.3. Bioinformatic Pipeline for Taxonomic Classification of Viral Reads
3. Results
3.1. Sociodemographic Characteristics of the Tested Patients
3.2. Bioinformatic Analysis
3.3. Viral Abundance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mercer, T.R.; Salit, M. Testing at scale during the COVID-19 pandemic. Nat. Rev. Genet. 2021, 22, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Billard, M.; van de Ven, P.M.; Baraldi, B.; Kragten-Tabatabaie, L.; Bont, L.J.; Wildenbeest, J.G. International changes in respiratory syncytial virus (RSV) epidemiology during the COVID-19 pandemic: Association with school closures. Influenza Other Respir. Viruses 2022, 16, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Eldesouki, R.E.; Uhteg, K.; Mostafa, H.H. The circulation of Non-SARS-CoV-2 respiratory viruses and coinfections with SARS-CoV-2 during the surge of the Omicron variant. J. Clin. Virol. 2022, 153, 105215. [Google Scholar] [CrossRef] [PubMed]
- Jarju, S.; Senghore, E.; Brotherton, H.; Affleck, L.; Saidykhan, A.; Jallow, S.; Krubally, E.; Sinjanka, E.; Ndene, M.N.; Bajo, F.; et al. Circulation of respiratory viruses during the COVID-19 pandemic in The Gambia. Gates Open Res. 2023, 6, 148. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Shao, N.; Wang, J.; Zhou, S.; Su, H.; Dong, J.; Sun, L.; Li, L.; Zhang, T.; Yang, F. An Optimized Metagenomic Approach for Virome Detection of Clinical Pharyngeal Samples with Respiratory Infection. Front. Microbiol. 2020, 11, 1552. [Google Scholar] [CrossRef] [PubMed]
- FastQC a Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 31 August 2023).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Cold Spring Harb. Lab. 2019. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 31 August 2023).
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2023; Available online: http://www.rstudio.com/ (accessed on 12 April 2023).
- Wickham, H.; Hester, J.; Bryan, J. Readr: Read Rectangular Text Data. 2023. Available online: https://readr.tidyverse.org (accessed on 12 April 2023).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. 2023. Available online: https://dplyr.tidyverse.org (accessed on 12 April 2023).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. Available online: https://ggplot2.tidyverse.org (accessed on 12 April 2023).
- Xiao, N. ggsci: Scientific Journal and Sci-Fi Themed Color Palettes for ‘ggplot2’. 2023. Available online: https://github.com/nanxstats/ggsci (accessed on 12 April 2023).
- Naganuma, M.; Tominaga, N.; Miyamura, T.; Soda, A.; Moriuchi, M.; Moriuchi, H. TT virus prevalence, viral loads and genotypic variability in saliva from healthy Japanese children. Acta Paediatr. 2008, 97, 1686–1690. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, S.-Y.; Wu, Y.-H.; Ho, Y.-P.; Tsao, K.-C.; Yeh, C.-T.; Liaw, Y.-F. High Prevalence of TT Virus Infection in Healthy Children and Adults and in Patients with Liver Disease in Taiwan. J. Clin. Microbiol. 1999, 37, 1829–1831. [Google Scholar] [CrossRef] [PubMed]
- Davidson, F.; MacDonald, D.; Mokili, J.L.K.; Prescott, L.E.; Graham, S.; Simmonds, P. Early Acquisition of TT Virus (TTV) in an Area Endemic for TTV Infection. J. Infect. Dis. 1999, 179, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- del Rosal, T.; García-García, M.L.; Casas, I.; Iglesias-Caballero, M.; Pozo, F.; Alcolea, S.; Bravo, B.; Rodrigo-Muñoz, J.M.; del Pozo, V.; Calvo, C. Torque Teno Virus in Nasopharyngeal Aspirate of Children with Viral Respiratory Infections. Pediatr. Infect. Dis. J. 2022, 42, 184–188. [Google Scholar] [CrossRef] [PubMed]
- McElvania TeKippe, E.; Wylie, K.M.; Deych, E.; Sodergren, E.; Weinstock, G.; Storch, G.A. Increased Prevalence of Anellovirus in Pediatric Patients with Fever. PLoS ONE 2012, 7, e50937. [Google Scholar] [CrossRef]
- Romero-Espinoza, J.A.; Moreno-Valencia, Y.; Coronel-Tellez, R.H.; Castillejos-Lopez, M.; Hernandez, A.; Dominguez, A.; Miliar-Garcia, A.; Barbachano-Guerrero, A.; Perez-Padilla, R.; Alejandre-Garcia, A.; et al. Virome and bacteriome characterization of children with pneumonia and asthma in Mexico City during winter seasons 2014 and 2015. PLoS ONE 2018, 13, e0192878. [Google Scholar] [CrossRef]
- Low, Y.L.; Wong, S.Y.; Lee, E.K.H.; Muhammed, M.H. Prevalence of respiratory viruses among paediatric patients in acute respiratory illnesses in Malaysia. PLoS ONE 2022, 17, e0265288. [Google Scholar] [CrossRef]
- Tenenbaum, T.; Doenhardt, M.; Diffloth, N.; Berner, R.; Armann, J.P. High burden of RSV hospitalizations in Germany 2021–2022. Infection 2022, 50, 1587–1590. [Google Scholar] [CrossRef]
- Anak, S.; Atay, D.; Unuvar, A.; Garipardic, M.; Agaoglu, L.; Ozturk, G.; Karakas, Z.; Devecioglu, O. Respiratory syncytial virus infection outbreak among pediatric patients with oncologic diseases and/or BMT. Pediatr. Pulmonol. 2010, 45, 307–311. [Google Scholar] [CrossRef]
- Hierholzer, J.C.; Mostow, S.R.; Dowdle, W.R. Prospective study of a mixed coxsackie virus B3 and B4 outbreak of upper respiratory illness in a children’s home. Pediatrics 1972, 49, 744–752. [Google Scholar] [CrossRef]
- Messacar, K.; Abzug, M.J.; Dominguez, S.R. 2014 outbreak of enterovirus D68 in North America. J. Med. Virol. 2015, 88, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gao, H.; Zhang, Q.; Liu, Y.; Tao, R.; Cheng, Y.; Shu, Q.; Shang, S. Large outbreak of herpangina in children caused by enterovirus in summer of 2015 in Hangzhou, China. Sci. Rep. 2016, 6, 35388. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.K.; Simmonds, P.; Harvala, H. The importance of enterovirus surveillance in a post-polio world. Lancet Infect. Dis. 2022, 22, e35–e40. [Google Scholar] [CrossRef] [PubMed]
- Andrés, C.; Vila, J.; Creus-Costa, A.; Piñana, M.; González-Sánchez, A.; Esperalba, J.; Codina, M.G.; Castillo, C.; Martín, M.C.; Fuentes, F.; et al. Enterovirus D68 in Hospitalized Children, Barcelona, Spain, 2014–2021. Emerg. Infect. Dis. 2022, 28, 1327–1331. [Google Scholar] [CrossRef]
- Chuang, Y.-Y.; Huang, Y.-C. Enteroviral infection in neonates. J. Microbiol. Immunol. Infect. 2019, 52, 851–857. [Google Scholar] [CrossRef]
- Deshpande, J.M.; Sharma, D.K.; Saxena, V.K.; Shetty, S.A.; Qureshi, T.H.I.H.; Nalavade, U.P. Genomic characterization of two new enterovirus types, EV-A114 and EV-A121. J. Med. Microbiol. 2016, 65, 1465–1471. [Google Scholar] [CrossRef]
- Lukashev, A.N.; Vakulenko, Y.A.; Turbabina, N.A.; Deviatkin, A.A.; Drexler, J.F. Molecular epidemiology and phylogenetics of human enteroviruses: Is there a forest behind the trees? Rev. Med. Virol. 2018, 28, e2002. [Google Scholar] [CrossRef]
- Fall, A.; Ndiaye, N.; Messacar, K.; Kebe, O.; Jallow, M.M.; Harouna, H.; Kiori, D.E.; Sy, S.; Goudiaby, D.; Dia, M.; et al. Enterovirus D68 Subclade B3 in Children with Acute Flaccid Paralysis in West Africa, 2016. Emerg. Infect. Dis. 2020, 26, 2227–2230. [Google Scholar] [CrossRef]
- Brouwer, L.; Moreni, G.; Wolthers, K.C.; Pajkrt, D. World-Wide Prevalence and Genotype Distribution of Enteroviruses. Viruses 2021, 13, 434. [Google Scholar] [CrossRef]
- Su, S.-B.; Chang, H.-L.; Chen, K.-T. Current Status of Mumps Virus Infection: Epidemiology, Pathogenesis, and Vaccine. Int. J. Environ. Res. Public Health 2020, 17, 1686. [Google Scholar] [CrossRef]
- de Morais Santos, M.P.; de Assis Morais, M.P.L.; Fonseca, D.D.D.; de Faria, A.B.S.; Silva, I.H.M.; Carvalho, A.A.T.; Leão, J.C. Herpesvírus humano: Tipos, manifestações orais e tratamento. Odontol. Clínico-Científica 2012, 11, 191–196. Available online: http://revodonto.bvsalud.org/scielo.php?script=sci_arttext&pid=S1677-38882012000300004 (accessed on 31 August 2023).
- Torres, C. Evolution and molecular epidemiology of polyomaviruses. Infect. Genet. Evol. 2020, 79, 104150. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.S.; de Campos, G.M.; Giovanetti, M.; Zucherato, V.S.; Lima, A.R.J.; Santos, E.V.; Haddad, R.; Ciccozzi, M.; Carlos Júnior Alcantara, L.; Elias, M.C.; et al. Viral metagenomics unveils MW (Malawi) polyomavirus infection in Brazilian pediatric patients with acute respiratory disease. J. Med. Virol. 2023, 95, e28688. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. HPV and Cancer. 2023. Available online: https://www.cancer.gov/about-cancer/causes-prevention/risk/infectious-agents/hpv-and-cancer#does-hpv-infection-cause-symptoms (accessed on 31 August 2023).
- Ardekani, A.; Taherifard, E.; Mollalo, A.; Hemadi, E.; Roshanshad, A.; Fereidooni, R.; Rouholamin, S.; Rezaeinejad, M.; Farid-Mojtahedi, M.; Razavi, M.; et al. Human Papillomavirus Infection during Pregnancy and Childhood: A Comprehensive Review. Microorganisms 2022, 10, 1932. [Google Scholar] [CrossRef] [PubMed]
- Cherry, J.D.; Krogstad, P. Enterovirus and Parechovirus Infections. In Infectious Diseases of the Fetus and Newborn; Elsevier: Amsterdam, The Netherlands, 2011; pp. 756–799. [Google Scholar] [CrossRef]
- Health Alert Network (HAN). Health Alert Network Archive—00469-Recent Reports of Human Parechovirus (PeV) in the United States—2022. 2022. Available online: https://emergency.cdc.gov/han/2022/han00469.asp (accessed on 31 August 2023).
- Principi, N.; Autore, G.; Ramundo, G.; Esposito, S. Epidemiology of Respiratory Infections during the COVID-19 Pandemic. Viruses 2023, 15, 1160. [Google Scholar] [CrossRef] [PubMed]
Pool Number | Number of Raw Reads | Number of Reads after Filtering and Trimming | Unmapped Reads | Bacterial Reads | Viral Reads * |
---|---|---|---|---|---|
1 | 141,414,844 | 50,264,820 | 5,361,942 | 2,348,074 | 426,058 (7.95%) |
2 | 173,501,138 | 50,794,796 | 12,795,706 | 7,737,515 | 107,842 (0.84%) |
3 | 110,099,280 | 41,203,494 | 1,171,004 | 314,263 | 230,229 (19.66%) |
4 | 155,965,396 | 57,456,570 | 1,276,254 | 233,930 | 13,540 (1.06%) |
5 | 157,121,534 | 45,602,648 | 11,980,966 | 11,377,822 | 46,637 (0.39%) |
6 | 133,245,536 | 52,254,492 | 1,792,958 | 726,428 | 67,971 (3.79%) |
7 | 152,975,136 | 55,806,062 | 1,087,668 | 125,481 | 4312 (0.4%) |
8 | 173,144,838 | 67,286,008 | 1,570,629 | 308,187 | 3522 (0.22%) |
9 | 182,336,750 | 70,868,210 | 1,651,346 | 287,555 | 1447 (0.09%) |
10 | 169,962,646 | 61,872,152 | 1,214,222 | 244,324 | 5148 (0.42%) |
11 | 147,440,478 | 51,462,644 | 1,410,016 | 571,614 | 21,120 (1.5%) |
12 | 153,340,198 | 60,556,652 | 24,716,749 | 6,591,749 | 107,425 (0.43%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Campos, G.M.; de La-Roque, D.G.L.; Lima, A.R.J.; Zucherato, V.S.; de Carvalho, E.; de Lima, L.P.O.; de Queiroz Cattony Neto, P.; dos Santos, M.M.; Ciccozzi, M.; Giovanetti, M.; et al. Exploring Viral Metagenomics in Pediatric Patients with Acute Respiratory Infections: Unveiling Pathogens beyond SARS-CoV-2. Microorganisms 2023, 11, 2744. https://doi.org/10.3390/microorganisms11112744
de Campos GM, de La-Roque DGL, Lima ARJ, Zucherato VS, de Carvalho E, de Lima LPO, de Queiroz Cattony Neto P, dos Santos MM, Ciccozzi M, Giovanetti M, et al. Exploring Viral Metagenomics in Pediatric Patients with Acute Respiratory Infections: Unveiling Pathogens beyond SARS-CoV-2. Microorganisms. 2023; 11(11):2744. https://doi.org/10.3390/microorganisms11112744
Chicago/Turabian Stylede Campos, Gabriel Montenegro, Debora Glenda Lima de La-Roque, Alex Ranieri Jerônimo Lima, Victória Simionatto Zucherato, Eneas de Carvalho, Loyze Paola Oliveira de Lima, Pedro de Queiroz Cattony Neto, Murilo Marconi dos Santos, Massimo Ciccozzi, Marta Giovanetti, and et al. 2023. "Exploring Viral Metagenomics in Pediatric Patients with Acute Respiratory Infections: Unveiling Pathogens beyond SARS-CoV-2" Microorganisms 11, no. 11: 2744. https://doi.org/10.3390/microorganisms11112744
APA Stylede Campos, G. M., de La-Roque, D. G. L., Lima, A. R. J., Zucherato, V. S., de Carvalho, E., de Lima, L. P. O., de Queiroz Cattony Neto, P., dos Santos, M. M., Ciccozzi, M., Giovanetti, M., Haddad, R., Alcantara, L. C. J., Elias, M. C., Sampaio, S. C., Covas, D. T., Kashima, S., & Slavov, S. N. (2023). Exploring Viral Metagenomics in Pediatric Patients with Acute Respiratory Infections: Unveiling Pathogens beyond SARS-CoV-2. Microorganisms, 11(11), 2744. https://doi.org/10.3390/microorganisms11112744