2-Fucosyllactose Metabolism by Bifidobacteria Promotes Lactobacilli Growth in Co-Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Media and Conditions
2.2. Isolation of Potential 2′FL-Degrader Microorganisms
2.3. Co-Culture of B. bifidum IPLA20048 and L. gasseri IPLA20136 in the Presence of 2′FL and Its Moieties
2.4. Quantification of B. bifidum and L. gasseri Species by qPCR
2.5. Quantification of Carbohydrates and Metabolites by HPLC
2.6. Screening of Co-Cultures from Different Strains of Bifidobacteria and Lactobacilli in the Presence of 2′FL
2.7. Statistical Analyses
3. Results
3.1. Isolation and Identification of Microorganisms from Infant Gut Microbiota Associated with 2′FL Degradation
3.2. Characterization of 2′FL -Consumption and Its Moieties in Co-Cultures of B. bifidum IPLA20048 and L. gasseri IPLA20136
3.3. Screening and Clustering of Bifidobacteria Strains by Their Ability to Use 2′FL and Behavior in Co-Cultures with Lactobacilli
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. The Optimal Duration of Exclusive Breastfeeding: A Systematic Review: Report of an Expert Consultation; World Health Organization: Geneva, Switzerland, 2001.
- Zhang, S.; Li, T.; Xie, J.; Zhang, D.; Pi, C.; Zhou, L.; Yang, W. Gold Standard for Nutrition: A Review of Human Milk Oligosaccharide and Its Effects on Infant Gut Microbiota. Microb. Cell Fact. 2021, 20, 108. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.; Lane, J.A.; van Sinderen, D.; Hickey, R.M. From Lab Bench to Formulated Ingredient: Characterization, Production, and Commercialization of Human Milk Oligosaccharides. J. Funct. Foods 2020, 72, 104052. [Google Scholar] [CrossRef]
- Selma-Royo, M.; González, S.; Gueimonde, M.; Chang, M.; Fürst, A.; Martínez-Costa, C.; Bode, L.; Collado, M.C. Maternal Diet Is Associated with Human Milk Oligosaccharide Profile. Mol. Nutr. Food Res. 2022, 66, 2200058. [Google Scholar] [CrossRef] [PubMed]
- Bode, L. Human Milk Oligosaccharides: Every Baby Needs a Sugar Mama. Glycobiology 2012, 22, 1147–1162. [Google Scholar] [CrossRef]
- Masi, A.C.; Stewart, C.J. Untangling Human Milk Oligosaccharides and Infant Gut Microbiome. iScience 2022, 25, 103542. [Google Scholar] [CrossRef]
- Moro, E. Morphologische Und Biologische Untersuchung Über Die Darmbakterien Des Säuglings. Jahrb Kinderh 1905, 61, 687–734. [Google Scholar]
- Lawson, M.A.E.; O’Neill, I.J.; Kujawska, M.; Gowrinadh Javvadi, S.; Wijeyesekera, A.; Flegg, Z.; Chalklen, L.; Hall, L.J. Breast Milk-Derived Human Milk Oligosaccharides Promote Bifidobacterium Interactions within a Single Ecosystem. ISME J. 2020, 14, 635–648. [Google Scholar] [CrossRef]
- Salli, K.; Hirvonen, J.; Siitonen, J.; Ahonen, I.; Anglenius, H.; Maukonen, J. Selective Utilization of the Human Milk Oligosaccharides 2′-Fucosyllactose, 3-Fucosyllactose, and Difucosyllactose by Various Probiotic and Pathogenic Bacteria. J. Agric. Food Chem. 2021, 69, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.-T.; Chen, C.; Newburg, D.S. Utilization of Major Fucosylated and Sialylated Human Milk Oligosaccharides by Isolated Human Gut Microbes. Glycobiology 2013, 23, 1281–1292. [Google Scholar] [CrossRef]
- He, Z.; Yang, B.; Liu, X.; Ross, R.P.; Stanton, C.; Zhao, J.; Zhang, H.; Chen, W. Short Communication: Genotype-Phenotype Association Analysis Revealed Different Utilization Ability of 2′-Fucosyllactose in Bifidobacterium genus. J. Dairy Sci. 2021, 104, 1518–1523. [Google Scholar] [CrossRef]
- Ruiz-Moyano, S.; Totten, S.M.; Garrido, D.A.; Smilowitz, J.T.; German, J.B.; Lebrilla, C.B.; Mills, D.A. Variation in Consumption of Human Milk Oligosaccharides by Infant Gut-Associated Strains of Bifidobacterium breve. Appl. Environ. Microbiol. 2013, 79, 6040–6049. [Google Scholar] [CrossRef]
- Sakanaka, M.; Gotoh, A.; Yoshida, K.; Odamaki, T.; Koguchi, H.; Xiao, J.; Kitaoka, M.; Katayama, T. Varied Pathways of Infant Gut-Associated Bifidobacterium to Assimilate Human Milk Oligosaccharides: Prevalence of the Gene Set and Its Correlation with Bifidobacteria-Rich Microbiota Formation. Nutrients 2019, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Kostopoulos, I.; Elzinga, J.; Ottman, N.; Klievink, J.T.; Blijenberg, B.; Aalvink, S.; Boeren, S.; Mank, M.; Knol, J.; de Vos, W.M.; et al. Akkermansia Muciniphila Uses Human Milk Oligosaccharides to Thrive in the Early Life Conditions in Vitro. Sci. Rep. 2020, 10, 14330. [Google Scholar] [CrossRef] [PubMed]
- Asakuma, S.; Hatakeyama, E.; Urashima, T.; Yoshida, E.; Katayama, T.; Yamamoto, K.; Kumagai, H.; Ashida, H.; Hirose, J.; Kitaoka, M. Physiology of Consumption of Human Milk Oligosaccharides by Infant Gut-Associated Bifidobacteria. J. Biol. Chem. 2011, 286, 34583–34592. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, A.; Katoh, T.; Sakanaka, M.; Ling, Y.; Yamada, C.; Asakuma, S.; Urashima, T.; Tomabechi, Y.; Katayama-Ikegami, A.; Kurihara, S.; et al. Sharing of Human Milk Oligosaccharides Degradants within Bifidobacterial Communities in Faecal Cultures Supplemented with Bifidobacterium bifidum. Sci. Rep. 2018, 8, 13958. [Google Scholar] [CrossRef]
- Tannock, G.W.; Lawley, B.; Munro, K.; Gowri Pathmanathan, S.; Zhou, S.J.; Makrides, M.; Gibson, R.A.; Sullivan, T.; Prosser, C.G.; Lowry, D.; et al. Comparison of the Compositions of the Stool Microbiotas of Infants Fed Goat Milk Formula, Cow Milk-Based Formula, or Breast Milk. Appl. Environ. Microbiol. 2013, 79, 3040–3048. [Google Scholar] [CrossRef]
- Walsh, C.; Lane, J.A.; van Sinderen, D.; Hickey, R.M. Human Milk Oligosaccharide-Sharing by a Consortium of Infant Derived Bifidobacterium Species. Sci. Rep. 2022, 12, 4143. [Google Scholar] [CrossRef]
- Cheng, L.; Kiewiet, M.B.G.; Logtenberg, M.J.; Groeneveld, A.; Nauta, A.; Schols, H.A.; Walvoort, M.T.C.; Harmsen, H.J.M.; de Vos, P. Effects of Different Human Milk Oligosaccharides on Growth of Bifidobacteria in Monoculture and Co-Culture with Faecalibacterium prausnitzii. Front. Microbiol. 2020, 11, 569700. [Google Scholar] [CrossRef]
- Dedon, L.R.; Hilliard, M.A.; Rani, A.; Daza-Merchan, Z.T.; Story, G.; Briere, C.; Sela, D.A. Fucosylated Human Milk Oligosaccharides Drive Structure-Specific Syntrophy between Bifidobacterium infantis and Eubacterium hallii within a Modeled Infant Gut Microbiome. Mol. Nutr. Food Res. 2023, 67, e2200851. [Google Scholar] [CrossRef]
- Schwab, C.; Ruscheweyh, H.-J.; Bunesova, V.; Pham, V.T.; Beerenwinkel, N.; Lacroix, C. Trophic Interactions of Infant Bifidobacteria and Eubacterium hallii during L-Fucose and Fucosyllactose Degradation. Front. Microbiol. 2017, 8, 95. [Google Scholar] [CrossRef]
- Nogacka, A.; Arboleya, S.; Nikpoor, N.; Auger, J.; Salazar, N.; Cuesta, I.; Mantecón, L.; Solís, G.; Gueimonde, M.; Tompkins, T.A.; et al. Influence of 2′-Fucosyllactose on the Microbiota Composition and Metabolic Activity of Fecal Cultures from Breastfed and Formula-Fed Infants at Two Months of Age. Microorganisms 2021, 9, 1478. [Google Scholar] [CrossRef]
- O’Donnell, M.M.; Forde, B.M.; Neville, B.; Ross, P.R.; O’Toole, P.W. Carbohydrate Catabolic Flexibility in the Mammalian Intestinal Commensal Lactobacillus ruminis Revealed by Fermentation Studies Aligned to Genome Annotations. Microb. Cell Fact. 2011, 10, S12. [Google Scholar] [CrossRef]
- Vinderola, C.G.; Reinheimer, J.A. Enumeration of Lactobacillus Casei in the Presence of L. acidophilus, Bifidobacteria and Lactic Starter Bacteria in Fermented Dairy Products. Int. Dairy J. 2000, 10, 271–275. [Google Scholar] [CrossRef]
- Arboleya, S.; Salazar, N.; Solís, G.; Fernández, N.; Hernández-Barranco, A.M.; Cuesta, I.; Gueimonde, M.; de los Reyes-Gavilán, C.G. Assessment of Intestinal Microbiota Modulation Ability of Bifidobacterium Strains in in Vitro Fecal Batch Cultures from Preterm Neonates. Anaerobe 2013, 19, 9–16. [Google Scholar] [CrossRef]
- Kullen, M.J.; Sanozky-Dawes, R.B.; Crowell, D.C.; Klaenhammer, T.R. Use of the DNA Sequence of Variable Regions of the 16S RRNA Gene for Rapid and Accurate Identification of Bacteria in the Lactobacillus acidophilus Complex. J. Appl. Microbiol. 2000, 89, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Derriche, I.; Nogacka, A.M.; Salazar, N.; Ruas-Madiedo, P.; Gueimonde, M.; Bensalah, F.; de los Reyes-Gavilán, C.G. Effect of Inulin-Type Fructans and Galactooligosaccharides on Cultures of Lactobacillus Strains Isolated in Algeria from Camel’s Milk and Human Colostrum. Food Sci. Technol. Int. 2021, 27, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Byun, R.; Nadkarni, M.A.; Chhour, K.-L.; Martin, F.E.; Jacques, N.A.; Hunter, N. Quantitative Analysis of Diverse Lactobacillus Species Present in Advanced Dental Caries. J. Clin. Microbiol. 2004, 42, 3128–3136. [Google Scholar] [CrossRef] [PubMed]
- Nogacka, A.; de los Reyes-Gavilán, C.G.; Arboleya, S.; Ruas-Madiedo, P.; Martínez-Faedo, C.; Suarez, A.; He, F.; Harata, G.; Endo, A.; Salazar, N.; et al. In Vitro Selection of Probiotics for Microbiota Modulation in Normal-Weight and Severely Obese Individuals: Focus on Gas Production and Interaction with Intestinal Epithelial Cells. Front. Microbiol. 2021, 12, 630572. [Google Scholar] [CrossRef] [PubMed]
- Salli, K.; Anglenius, H.; Hirvonen, J.; Hibberd, A.A.; Ahonen, I.; Saarinen, M.T.; Tiihonen, K.; Maukonen, J.; Ouwehand, A.C. The Effect of 2′-Fucosyllactose on Simulated Infant Gut Microbiome and Metabolites; a Pilot Study in Comparison to GOS and Lactose. Sci. Rep. 2019, 9, 13232. [Google Scholar] [CrossRef] [PubMed]
- Borewicz, K.; Gu, F.; Saccenti, E.; Arts, I.C.W.; Penders, J.; Thijs, C.; Leeuwen, S.S.; Lindner, C.; Nauta, A.; Leusen, E.; et al. Correlating Infant Fecal Microbiota Composition and Human Milk Oligosaccharide Consumption by Microbiota of 1-Month-Old Breastfed Infants. Mol. Nutr. Food Res. 2019, 63, 1801214. [Google Scholar] [CrossRef] [PubMed]
- Thongaram, T.; Hoeflinger, J.L.; Chow, J.; Miller, M.J. Human Milk Oligosaccharide Consumption by Probiotic and Human-Associated Bifidobacteria and Lactobacilli. J. Dairy Sci. 2017, 100, 7825–7833. [Google Scholar] [CrossRef] [PubMed]
- Zúñiga, M.; Monedero, V.; Yebra, M.J. Utilization of Host-Derived Glycans by Intestinal Lactobacillus and Bifidobacterium Species. Front. Microbiol. 2018, 9, 1917. [Google Scholar] [CrossRef] [PubMed]
- Garrido, D.; Barile, D.; Mills, D.A. A Molecular Basis for Bifidobacterial Enrichment in the Infant Gastrointestinal Tract. Adv. Nutr. 2012, 3, 415S–421S. [Google Scholar] [CrossRef] [PubMed]
- Sela, D.A.; Mills, D.A. Nursing Our Microbiota: Molecular Linkages between Bifidobacteria and Milk Oligosaccharides. Trends Microbiol. 2010, 18, 298–307. [Google Scholar] [CrossRef]
- Jackson, P.P.J.; Wijeyesekera, A.; Rastall, R.A. Determining the Metabolic Fate of Human Milk Oligosaccharides: It May Just Be More Complex than You Think? Gut Microbiome 2022, 3, e9. [Google Scholar] [CrossRef]
- Kitaoka, M. Bifidobacterial Enzymes Involved in the Metabolism of Human Milk Oligosaccharides. Adv. Nutr. 2012, 3, 422S–429S. [Google Scholar] [CrossRef]
- Ward, R.E.; Niñonuevo, M.; Mills, D.A.; Lebrilla, C.B.; German, J.B. In Vitro Fermentability of Human Milk Oligosaccharides by Several Strains of Bifidobacteria. Mol. Nutr. Food Res. 2007, 51, 1398–1405. [Google Scholar] [CrossRef]
- Egan, M.; O’Connell Motherway, M.; Kilcoyne, M.; Kane, M.; Joshi, L.; Ventura, M.; van Sinderen, D. Cross-Feeding by Bifidobacterium breve UCC2003 during Co-Cultivation with Bifidobacterium bifidum PRL2010 in a Mucin-Based Medium. BMC Microbiol. 2014, 14, 282. [Google Scholar] [CrossRef]
- Bunesova, V.; Lacroix, C.; Schwab, C. Mucin Cross-Feeding of Infant Bifidobacteria and Eubacterium hallii. Microb. Ecol. 2018, 75, 228–238. [Google Scholar] [CrossRef]
- Chia, L.W.; Mank, M.; Blijenberg, B.; Bongers, R.S.; van Limpt, K.; Wopereis, H.; Tims, S.; Stahl, B.; Belzer, C.; Knol, J. Cross-Feeding between Bifidobacterium infantis and Anaerostipes caccae on Lactose and Human Milk Oligosaccharides. Benef. Microbes 2021, 12, 69–83. [Google Scholar] [CrossRef]
- Centanni, M.; Ferguson, S.A.; Sims, I.M.; Biswas, A.; Tannock, G.W. Bifidobacterium bifidum ATCC 15696 and Bifidobacterium breve 24b Metabolic Interaction Based on 2′-O-Fucosyl-Lactose Studied in Steady-State Cultures in a Freter-Style Chemostat. Appl. Environ. Microbiol. 2019, 85, e02783-18. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, A.; Ojima, M.N.; Katayama, T. Minority Species Influences Microbiota Formation: The Role of Bifidobacterium with Extracellular Glycosidases in Bifidus Flora Formation in Breastfed Infant Guts. Microb. Biotechnol. 2019, 12, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Zabel, B.; Yde, C.C.; Roos, P.; Marcussen, J.; Jensen, H.M.; Salli, K.; Hirvonen, J.; Ouwehand, A.C.; Morovic, W. Novel Genes and Metabolite Trends in Bifidobacterium longum Subsp. Infantis Bi-26 Metabolism of Human Milk Oligosaccharide 2′-Fucosyllactose. Sci. Rep. 2019, 9, 7983. [Google Scholar] [CrossRef] [PubMed]
Infant | Feeding | Gender | Birth | Age (Months) | First Identification | Second Identification | 2′FL Consumption | OD600 nm | pH |
---|---|---|---|---|---|---|---|---|---|
1 | Exclusive Formula | Male | Vaginal | 2 | Lactobacillus para/gasseri | Lactobacillus para/gasseri | 0.31 | 0.53 | 5.89 |
Lactobacillus para/gasseri | Bifidobacterium bifidum | −100.00 | 1.70 | 4.65 | |||||
2 | Exclusive Formula | Male | Vaginal | 2 | Lactobacillus para/gasseri | Lactobacillus para/gasseri | 2.88 | 0.60 | 5.80 |
Lactobacillus para/gasseri | Lactobacillus para/gasseri | 1.58 | 0.60 | 5.84 | |||||
Lacticaseibacillus rhamnosus/casei/ | Lacticaseibacillus rhamnosus | 9.78 | 0.98 | 6.00 | |||||
Limosilactobacillus reuteri/balticus/agrestis | Limosilactobacillus balticus/agrestis/reuteri | −0.59 | 1.01 | 6.27 | |||||
3 | Formula Breast milk | Male | Vaginal | 2 | Lactobacillus vaginalis | Bifidobacterium longum | −99.93 | 3.94 | 4.16 |
Lactobacillus spp. | Bifidobacterium bifidum | −100.00 | 2.68 | 4.54 |
Parameters | Carbon Source | B. bifidum | L. gasseri | Co-Culture | p-Value | |
---|---|---|---|---|---|---|
Microbial growth | OD600 nm | 2′FL | 0.99 ± 0.32 ab | 0.57 ± 0.08 a | 1.68 ± 0.12 b | 0.024 |
Fucose | 0.13 ± 0.12 a | 0.42 ± 0.10 b | 0.51 ± 0.10 b | 0.028 | ||
Galactose | 0.37 ± 0.26 a | 1.91 ± 0.13 b | 1.92 ± 0.02 b | 0.009 | ||
Glucose | 1.01 ± 0.19 a | 1.61 ± 0.11 b | 1.68 ± 0.10 b | 0.035 | ||
Lactose | 1.15 ± 0.23 a | 1.89 ± 0.03 b | 1.91 ± 0.03 b | 0.001 | ||
Control | 0.23 ± 0.10 a | 0.73 ± 0.10 b | 0.79 ± 0.08 b | 0.016 | ||
∆ pH | 2′FL | −1.09 ± 0.11 a | −0.23 ± 0.12 b | −1.12 ± 0.15 a | 0.016 | |
Fucose | −0.02 ± 0.06 | −0.16 ± 0.08 | −0.26 ± 0.04 | 0.252 | ||
Galactose | −0.21 ± 0.26 b | −1.27 ± 0.06 b | −1.26 ± 0.06 b | 0.006 | ||
Glucose | −1.32 ± 0.08 | −1.38 ± 0.04 | −1.35 ± 0.02 | 0.704 | ||
Lactose | −0.96 ± 0.53 | −1.40 ± 0.11 | −1.37 ± 0.08 | 0.896 | ||
Control | 0.11 ± 0.18 | −0.32 ± 0.10 | −0.30 ± 0.03 | 0.056 | ||
Microbial levels Log (UFC/mL) | ∆ B. bifidum | 2′FL | 1.74 ± 0.16 b | 0.29 ± 0.41 a | 1.64 ± 0.08 b | 0.019 |
Fucose | −0.34 ± 0.64 | 0.18 ± 0.25 | 0.36 ± 0.14 | 0.335 | ||
Galactose | 0.86 ± 0.50 b | 0.00 ± 0.00 a | 0.64 ± 0.10 b | 0.001 | ||
Glucose | 2.72 ± 0.86 b | 0.00 ± 0.00 a | 0.78 ± 0.56 a | 0.041 | ||
Lactose | 1.96 ± 0.49 b | 0.00 ± 0.00 a | 1.62 ± 0.30 b | 0.019 | ||
∆ L. gasseri | 2′FL | −0.05 ± 0.10 a | −0.08 ± 0.21 a | 2.35 ± 0.03 b | 0.001 | |
Fucose | −0.14 ± 0.19 a | −0.09 ± 0.21 a | 0.75 ± 0.25 b | 0.044 | ||
Galactose | −0.14 ± 0.19 a | 1.17 ± 0.57 b | 2.33 ± 0.14 c | 0.014 | ||
Glucose | −0.14 ± 0.19 a | 1.35 ± 0.14 b | 2.28 ± 0.36 c | 0.005 | ||
Lactose | −0.14 ± 0.19 a | 1.43 ± 0.55 b | 2.20 ± 0.13 b | 0.014 |
Phenotype | Origin | B.bif | B.long | B.adol | B.brev | B.anim | B.p/cate | Total |
---|---|---|---|---|---|---|---|---|
2′FL-degrader | Infants | 5 | 4 | 19 | ||||
Adults | 1 | |||||||
Obese | 1 | |||||||
Elderly | 4 | 2 | ||||||
Commercial | 2 | |||||||
Non-degrader | Infants | 1 | 3 | 4 | 2 | 3 | 19 | |
Adults | 1 | |||||||
Obese | 1 | |||||||
Elderly | 1 | 3 | ||||||
Commercial |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogacka, A.M.; Cuesta, I.; Gueimonde, M.; de los Reyes-Gavilán, C.G. 2-Fucosyllactose Metabolism by Bifidobacteria Promotes Lactobacilli Growth in Co-Culture. Microorganisms 2023, 11, 2659. https://doi.org/10.3390/microorganisms11112659
Nogacka AM, Cuesta I, Gueimonde M, de los Reyes-Gavilán CG. 2-Fucosyllactose Metabolism by Bifidobacteria Promotes Lactobacilli Growth in Co-Culture. Microorganisms. 2023; 11(11):2659. https://doi.org/10.3390/microorganisms11112659
Chicago/Turabian StyleNogacka, Alicja M., Isabel Cuesta, Miguel Gueimonde, and Clara G. de los Reyes-Gavilán. 2023. "2-Fucosyllactose Metabolism by Bifidobacteria Promotes Lactobacilli Growth in Co-Culture" Microorganisms 11, no. 11: 2659. https://doi.org/10.3390/microorganisms11112659
APA StyleNogacka, A. M., Cuesta, I., Gueimonde, M., & de los Reyes-Gavilán, C. G. (2023). 2-Fucosyllactose Metabolism by Bifidobacteria Promotes Lactobacilli Growth in Co-Culture. Microorganisms, 11(11), 2659. https://doi.org/10.3390/microorganisms11112659