Host’s Immunity and Candida Species Associated with Denture Stomatitis: A Narrative Review
Abstract
:1. Introduction
2. DRCS and Bacterial—Fungal Dysbiosis of Oral Microbiota
3. Denture Plaque and C. albicans Virulence
3.1. Adhesion of C. Albicans to Prosthetic Abiotic and Epithelial Biotic Surfaces
3.2. Candida Invasion Mechanisms
3.3. Candida Exotoxin Release and Host Damage
3.4. The Immune Evasion of C. Albicans
4. Innate Immune Responses and Denture-Related Candida Stomatitis
- Innate recognition
-
1.
- TLRs, Toll-like receptors.
-
2.
- c -type lectin receptors, CLRs (Dectin 1 and Dectin 2 recognize β-glucans in the cell wall of Candida); Mincle, macrophage-inducible C-type lectin; MR, recognizes mannose receptor; DC-Sign.
-
3.
- Adaptive antifungal responses
4.1. Cytokine Mediators and Denture-Related Candida Stomatitis
4.2. Complement System and Denture-Related Candida Stomatitis
4.3. Antimicrobial Peptides (AMP) and Denture-Related Candida Stomatitis
4.4. Inflammosome
5. Denture-Related Candida Stomatitis and Adaptive Immunity
6. Differences in Microbiology, Proteomics, and Biomarkers between DRCS Classes I, II, and III
6.1. Candida Species and Denture-Related Candida Stomatitis
6.2. Proteomic Analysis of Saliva Reflects the Clinical Aspect of DRCS
6.3. Markers of Denture-Related Candida Stomatitis
7. Saliva and Humoral Immune System
8. Neutrophils and Denture-Related Candida Stomatitis
Host Comorbidity and DRCS
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gendreau, L.; Loewy, Z.G. Epidemiology and etiology of denture stomatitis: Denture stomatitis. J. Prosthodont. 2011, 20, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Adam, R.Z.; Kimmie-Dhansay, F. Prevalence of denture-related stomatitis in edentulous patients at a tertiary dental teaching hospital. Front. Oral Health 2021, 2, 772679. [Google Scholar] [CrossRef] [PubMed]
- Sardari, F.; Khalili, P.; Hakimi, H.; Mahmoudaghaei, S.; Abedi, P. The Prevalence of denture stomatitis in cigarette and hookah smokers and opium addicts: Findings from rafsanjan cohort study. BMC Oral Health 2021, 21, 455. [Google Scholar] [CrossRef] [PubMed]
- Martorano-Fernandes, L.; Dornelas-Figueira, L.M.; Marcello-Machado, R.M.; Silva, R.D.B.; Magno, M.B.; Maia, L.C.; Del Bel Cury, A.A. Oral candidiasis and denture stomatitis in diabetic patients: Systematic review and meta-analysis. Braz. Oral Res. 2020, 34, 113. [Google Scholar] [CrossRef]
- Nakamura, K.; Yamamoto, T.; Ema, R.; Nakai, K.; Sato, Y.; Yamamoto, K.; Adachi, K.; Oseko, F.; Yamamoto, Y.; Kanamura, N. Effects of mechanical stress on human oral mucosa-derived cells. Oral Dis. 2021, 27, 1184–1192. [Google Scholar] [CrossRef]
- Morse, D.J.; Smith, A.; Wilson, M.J.; Marsh, L.; White, L.; Posso, R.; Bradshaw, D.J.; Wei, X.; Lewis, M.A.O.; Williams, D.W. Molecular community profiling of the bacterial microbiota associated with denture-related stomatitis. Sci. Rep. 2019, 9, 10228. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.; Wu, T.; McLean, J.; Edlund, A.; Young, Y.; He, X.; Lv, H.; Zhou, X.; Shi, W.; Li, H.; et al. The denture-associated oral microbiome in health and stomatitis. mSphere 2016, 1, e00215–e00216. [Google Scholar] [CrossRef]
- Gazdeck, R.K.; Fruscione, S.R.; Adami, G.R.; Zhou, Y.; Cooper, L.F.; Schwartz, J.L. Diversity of the oral microbiome between dentate and edentulous individuals. Oral Dis. 2019, 25, 911–918. [Google Scholar] [CrossRef]
- Theilade, E.; Budtz-Jørgensen, E.; Theilade, J. Predominant cultivable microflora of plaque on removable dentures in patients with healthy oral mucosa. Arch. Oral Biol. 1983, 28, 675–680. [Google Scholar] [CrossRef]
- Latib, Y.; Owen, C.; Patel, M. Viability of Candida albicans in denture base resin after disinfection: A preliminary study. Int. J. Prosthodont. 2018, 31, 436–439. [Google Scholar] [CrossRef]
- Jacobsen, I.D.; Wilson, D.; Wächtler, B.; Brunke, S.; Naglik, J.R.; Hube, B. Candida albicans dimorphism as a therapeutic target. Expert Rev. Anti-Infect. Ther. 2012, 10, 85–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Primers 2018, 4, 18026. [Google Scholar] [CrossRef]
- Hongal, B.; Kulkarni, V.; Joshi, P.; Karande, P.; Shroff, A.; Deshmukh, R. Prevalence of fungal hyphae in potentially malignant lesions and conditions-does its occurrence play a role in epithelial dysplasia? J. Oral Maxillofac. Pathol. 2015, 19, 10. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Astekar, M.; Sapra, G.; Chitlangia, R.; Raj, N. Evaluation of candidal species among individuals with oral potentially malignant disorders and oral squamous cell carcinoma. J. Oral Maxillofac. Pathol. 2019, 23, 302. [Google Scholar] [PubMed]
- Di Cosola, M.; Cazzolla, A.P.; Charitos, I.A.; Ballini, A.; Inchingolo, F.; Santacroce, L. Candida albicans and oral carcinogenesis. a brief review. J. Fungi 2021, 7, 476. [Google Scholar] [CrossRef]
- Newton, A.V. Denture sore mouth. A Possible Etiology. Br. Dent. J. 1962, 112, 357–360. [Google Scholar]
- Salerno, C.; Pascale, M.; Contaldo, M.; Esposito, V.; Busciolano, M.; Milillo, L.; Guida, A.; Petruzzi, M.; Serpico, R. Candida-associated denture stomatitis. Med. Oral. 2011, 16, e139–e143. [Google Scholar] [CrossRef]
- Perić, M.; Živković, R.; Milić Lemić, A.; Radunović, M.; Miličić, B.; Arsić Arsenijević, V. The severity of denture stomatitis as related to risk factors and different Candida spp. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 126, 41–47. [Google Scholar] [CrossRef]
- Bhat, V.; Sharma, S.M.; Shetty, V.; Shastry, C.S.; Rao, V.; Shenoy, S.M.; Saha, S.; Balaji, S. Prevalence of candida associated denture stomatitis (CADS) and speciation of candida among complete denture wearers of south-west coastal region of karnataka. NUJHS 2013, 3, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Nikawa, H.; Hamada, T.; Yamamoto, T. Denture plaque--past and recent concern. J. Dent. 1998, 26, 299–304. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Li, H.; Ni, C.; Du, Z.; Yan, F. Human oral microbiota and its modulation for oral health. BioMed. Pharmacother. 2018, 99, 883–893. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, L.E.; Robertson, D.; Nile, C.J.; Cross, L.J.; Riggio, M.; Sherriff, A.; Bradshaw, D.; Lambert, M.; Malcolm, J.; Buijs, M.J.; et al. The oral microbiome of denture wearers is influenced by levels of natural dentition. PLoS ONE 2015, 10, e0137717. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.A.; Toledo, B.C.; Santos, C.T.; Pereira Costa, A.C.B.; Back-Brito, G.N.; Kaminagakura, E.; Jorge, A.O.C. Opportunistic microorganisms in individuals with lesions of denture stomatitis. Diagn. Microbiol. Infect. Dis. 2013, 76, 419–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorocka-Bobkowska, B.; Zozulinska-Ziolkiewicz, D.; Wierusz-Wysocka, B.; Hedzelek, W.; Szumala-Kakol, A.; Budtz-Jörgensen, E. Candida-associated denture stomatitis in type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2010, 90, 81–86. [Google Scholar] [CrossRef]
- Mishra, K.; Bukavina, L.; Ghannoum, M. Symbiosis and dysbiosis of the human mycobiome. Front. Microbiol. 2021, 12, 636131. [Google Scholar] [CrossRef]
- Huang, M.Y.; Woolford, C.A.; May, G.; McManus, C.J.; Mitchell, A.P. Circuit diversification in a biofilm regulatory network. PLoS Pathog. 2019, 15, e1007787. [Google Scholar] [CrossRef]
- Klinke, T.; Kneist, S.; de Soet, J.J.; Kuhlisch, E.; Mauersberger, S.; Förster, A.; Klimm, W. Acid production by oral strains of Candida albicans and lactobacilli. Caries Res. 2009, 43, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Cruz, M.R.; Graham, C.E.; Gagliano, B.C.; Lorenz, M.C.; Garsin, D.A. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of candida albicans. Infect. Immun. 2013, 81, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Bamford, C.V.; Nobbs, A.H.; Barbour, M.E.; Lamont, R.J.; Jenkinson, H.F. Functional regions of Candida albicans hyphal cell wall protein ALS3 that determine interaction with the oral bacterium streptococcus gordonii. Microbiology 2015, 161, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.-L.; Lee, R.T.H.; Fang, H.-M.; Wang, Y.-M.; Li, R.; Zou, H.; Zhu, Y.; Wang, Y. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 2008, 4, 28–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Sobue, T.; Bertolini, M.; Thompson, A.; Dongari-Bagtzoglou, A. Streptococcus oralis and Candida albicans synergistically activate μ-calpain to degrade e-cadherin from oral epithelial junctions. J. Infect. Dis. 2016, 214, 925–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coco, B.J.; Bagg, J.; Cross, L.J.; Jose, A.; Cross, J.; Ramage, G. Mixed Candida albicans and Candida glabrata populations associated with the pathogenesis of denture stomatitis. Oral Microbiol. Immunol. 2008, 23, 377–383. [Google Scholar] [CrossRef]
- Todd, O.A.; Peters, B.M. Candida albicans and staphylococcus aureus pathogenicity and polymicrobial interactions: Lessons beyond koch’s postulates. J. Fungi 2019, 5, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Saraswat, D.; Tati, S.; Edgerton, M. Novel aggregation properties of Candida albicans secreted aspartyl proteinase SAP6 mediate virulence in oral candidiasis. Infect. Immun. 2015, 83, 2614–2626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danhof, H.A.; Vylkova, S.; Vesely, E.M.; Ford, A.E.; Gonzalez-Garay, M.; Lorenz, M.C. Robust extracellular PH modulation by Candida albicans during growth in carboxylic acids. mBio 2016, 7, e01646-16. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Sengupta, A.; Niepa, T.H.R.; Lee, B.-H.; Weljie, A.; Freitas-Blanco, V.S.; Murata, R.M.; Stebe, K.J.; Lee, D.; Koo, H. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Sci. Rep. 2017, 7, 41332. [Google Scholar] [CrossRef]
- Tati, S.; Davidow, P.; McCall, A.; Hwang-Wong, E.; Rojas, I.G.; Cormack, B.; Edgerton, M. Candida glabrata binding to Candida albicans hyphae enables its development in oropharyngeal candidiasis. PLoS Pathog. 2016, 12, e1005522. [Google Scholar] [CrossRef] [Green Version]
- Yano, J.; Yu, A.; Fidel, P.L.; Noverr, M.C. Candida glabrata has no enhancing role in thepathogenesis of Candida -associated denture stomatitis in a rat model. mSphere 2019, 4, e00191-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparoto, T.H.; Dionísio, T.J.; de Oliveira, C.E.; Porto, V.C.; Gelani, V.; Santos, C.F.; Campanelli, A.P.; Lara, V.S. Isolation of candida dubliniens is from denture wearers. J. Med. Microbiol. 2009, 58, 959–962. [Google Scholar] [CrossRef]
- Kraneveld, E.A.; Buijs, M.J.; Bonder, M.J.; Visser, M.; Keijser, B.J.F.; Crielaard, W.; Zaura, E. The relation between oral candida load and bacterial microbiome profiles in dutch older adults. PLoS ONE 2012, 7, e42770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujinami, W.; Nishikawa, K.; Ozawa, S.; Hasegawa, Y.; Takebe, J. Correlation between the relative abundance of oral bacteria and Candida albicans in denture and dental plaques. J. Oral Biosci. 2021, 63, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.K.; Tóth, R.; Gácser, A. Mechanisms of pathogenic candida species to evade the host complement attack. Front. Cell. Infect. Microbiol. 2020, 10, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böttcher, B.; Pöllath, C.; Staib, P.; Hube, B.; Brunke, S. Candida species rewired hyphae developmental programs for chlamydospore formation. Front. Microbiol. 2016, 7, 1697. [Google Scholar] [CrossRef] [Green Version]
- Chanda, W.; Joseph, T.P.; Wang, W.; Padhiar, A.A.; Zhong, M. The potential management of oral candidiasis using anti-biofilm therapies. Med. Hypotheses 2017, 106, 15–18. [Google Scholar] [CrossRef]
- Ene, I.V.; Farrer, R.A.; Hirakawa, M.P.; Agwamba, K.; Cuomo, C.A.; Bennett, R.J. Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen. Proc. Natl. Acad. Sci. USA 2018, 115, E8688–E8697. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Du, H.; Guan, G.; Dai, Y.; Nobile, C.J.; Liang, W.; Cao, C.; Zhang, Q.; Zhong, J.; Huang, G. Discovery of a “white-gray-opaque” tristable phenotypic switching system in candida albicans: Roles of non-genetic diversity in host adaptation. PLoS Biol. 2014, 12, e1001830. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Cao, C.; Jia, W.; Tao, L.; Guan, G.; Huang, G. PH regulates white-opaque switching and sexual mating in candida albicans. Eukaryot Cell 2015, 14, 1127–1134. [Google Scholar] [CrossRef] [Green Version]
- Mukaremera, L.; Lee, K.K.; Mora-Montes, H.M.; Gow, N.A.R. Candida albicans yeast, pseudohyphal, and hyphal morphogenesis differentially affects immune recognition. Front. Immunol. 2017, 8, 629. [Google Scholar] [CrossRef] [Green Version]
- Sudbery, P.; Gow, N.; Berman, J. The distinct morphogenic states of Candida albicans. Trends Microbiol. 2004, 12, 317–324. [Google Scholar] [CrossRef]
- Staib, P.; Morschhäuser, J. Chlamydospore formation in Candida albicans and candida dubliniensis? an enigmatic developmental programme. Mycoses 2007, 50, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Caza, M.; Kronstad, J.W. The camp/protein kinase a pathway regulates virulence and adaptation to host conditions in cryptococcus neoformans. Front. Cell. Infect. Microbiol. 2019, 9, 212. [Google Scholar] [CrossRef]
- Yano, J.; Yu, A.; Fidel, P.L.; Noverr, M.C. Transcription factors efg1 and bcr1 regulate biofilm formation and virulence during candida albicans-associated denture stomatitis. PLoS ONE 2016, 11, e0159692. [Google Scholar]
- Solis, N.V.; Wakade, R.S.; Glazier, V.E.; Ollinger, T.L.; Wellington, M.; Mitchell, A.P.; Filler, S.G.; Krysan, D.J. Systematic genetic interaction analysis identifies a transcription factor circuit required for oropharyngeal candidiasis. mBio 2022, 13, e03447-21. [Google Scholar] [CrossRef] [PubMed]
- Chow, E.W.L.; Pang, L.M.; Wang, Y. From Jekyll to Hyde: The yeast-hyphal transition of candida albicans. Pathogens 2021, 10, 859. [Google Scholar] [CrossRef]
- Villa, S.; Hamideh, M.; Weinstock, A.; Qasim, M.N.; Hazbun, T.R.; Sellam, A.; Hernday, D.; Thangamani, S. Transcriptional control of hyphal morphogenesis in Candida albicans. FEMS Yeast Res. 2020, 20, foaa005. [Google Scholar] [CrossRef]
- Saville, S.P.; Lazzell, A.L.; Monteagudo, C.; Lopez-Ribot, J.L. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2003, 2, 1053–1060. [Google Scholar] [CrossRef] [Green Version]
- Gow, N.A.R.; Brown, A.J.P.; Odds, F.C. Fungal morphogenesis, and host invasion. Curr. Opin. Microbiol. 2002, 5, 366–371. [Google Scholar] [CrossRef]
- Lohse, M.B.; Gulati, M.; Johnson, A.D.; Nobile, C.J. Development, and regulation of single- and multi-species Candida albicans biofilms. Nat. Rev. Microbiol. 2018, 16, 19–31. [Google Scholar] [CrossRef] [Green Version]
- De Groot, P.W.J.; Bader, O.; de Boer, A.D.; Weig, M.; Chauhan, N. Adhesins in human fungal pathogens: Glue with plenty of stick. Eukaryot Cell 2013, 12, 470–481. [Google Scholar] [CrossRef] [Green Version]
- Kumamoto, C.A. Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nat. Rev. Microbiol. 2008, 6, 667–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, D.A.; Feldmann, P.J.; Bovey, M.; Gow, N.A.; Brown, A.J. The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J. Bacteriol. 1996, 178, 5353–5360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granger, B.L. Insight into the antiadhesive effect of yeast wall protein 1 of Candida albicans. Eukaryot Cell 2012, 11, 795–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klotz, S.A.; Drutz, D.J.; Zajic, J.E. Factors governing adherence of candida species to plastic surfaces. Infect. Immun. 1985, 50, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Seong, S.-Y.; Matzinger, P. Hydrophobicity: An ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 2004, 4, 469–478. [Google Scholar] [CrossRef]
- Dalle, F.; Wãchtler, B.; L’Ollivier, C.; Holland, G.; Bannert, N.; Wilson, D.; Labruère, C.; Bonnin, A.; Hube, B. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol. 2010, 12, 248–271. [Google Scholar] [CrossRef]
- Moyes, D.L.; Wilson, D.; Richardson, J.P.; Mogavero, S.; Tang, S.X.; Wernecke, J.; Höfs, S.; Gratacap, R.L.; Robbins, J.; Runglall, M.; et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 2016, 532, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.; Mora-Montes, H.; Challacombe, S.J.; Naglik, J.R. A Biphasic innate immune mapk response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 2010, 8, 225–235. [Google Scholar]
- Moyes, D.L.; Murciano, C.; Runglall, M.; Islam, A.; Thavaraj, S.; Naglik, J.R. Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells. PLoS ONE 2011, 6, e26580. [Google Scholar] [CrossRef] [Green Version]
- Moyes, D.L.; Shen, C.; Murciano, C.; Runglall, M.; Richardson, J.P.; Arno, M.; Aldecoa-Otalora, E.; Naglik, J.R. Protection against epithelial damage during Candida albicans infection is mediated by PI3K/AKT and mammalian target of rapamycin signaling. J. Infect. Dis. 2014, 209, 1816–1826. [Google Scholar] [CrossRef] [Green Version]
- Moyes, D.L.; Richardson, J.P.; Naglik, J.R. Candida albicans-epithelial interactions and pathogenicity mechanisms: Scratching the surface. Virulence 2015, 6, 338–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wibawa, T. The role of virulence factors in Candida albicans pathogenicity. J. Med. Sci. 2016, 48, 58–68. [Google Scholar]
- Naglik, J.R.; Challacombe, S.J.; Hube, B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 2003, 67, 400–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wächtler, B.; Citiulo, F.; Jablonowski, N.; Förster, S.; Dalle, F.; Schaller, M.; Wilson, D.; Hube, B. Candida albicans-epithelial interactions: Dissecting the roles of active penetration, induced endocytosis, and host factors on the infection process. PLoS ONE 2012, 7, e36952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, J.P.; Mogavero, S.; Moyes, D.L.; Blagojevic, M.; Krüger, T.; Verma, A.H.; Coleman, B.M.; De La Cruz Diaz, J.; Schulz, D.; Ponde, N.O.; et al. Processing of Candida albicans ECE1P is critical for candidalysin maturation and fungal virulence. mBio 2018, 9, e02178-17. [Google Scholar] [CrossRef] [Green Version]
- Schönherr, F.A.; Sparber, F.; Kirchner, F.R.; Guiducci, E.; Trautwein-Weidner, K.; Gladiator, A.; Sertour, N.; Hetzel, U.; Le, G.T.T.; Pavelka, N.; et al. The Intraspecies Diversity of C. albicans triggers qualitatively and temporally distinct host responses that determine the balance between commensalism and pathogenicity. Mucosal Immunol. 2017, 10, 1335–1350. [Google Scholar] [CrossRef]
- Gasparoto, T.H.; Oliveira, C.E.; Vieira, N.A.; Porto, V.C.; Cunha, F.Q.; Garlet, G.P.; Campanelli, A.P.; Lara, V.S. Activation pattern of neutrophils from blood of elderly individuals with candida-related denture stomatitis. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1271–1277. [Google Scholar] [CrossRef]
- Kubinak, J.L.; Round, J.L. Toll-like receptors promote mutually beneficial commensal host interactions. PLoS Pathog. 2012, 8, e1002785. [Google Scholar] [CrossRef] [Green Version]
- Lenardon, M.D.; Sood, P.; Dorfmueller, H.C.; Brown, A.J.P.; Gow, N.A.R. Scalar nanostructure of the Candida albicans cell wall; a molecular, cellular and ultrastructural analysis and interpretation. Cell Surf. 2020, 6, 100047. [Google Scholar] [CrossRef]
- Song, B.; Zhang, Y.; Chen, L.; Zhou, T.; Huang, W.; Zhou, X.; Shao, L. The role of toll-like receptors in periodontitis. Oral Dis. 2017, 23, 168–180. [Google Scholar] [CrossRef]
- Faot, F.; Cavalcanti, Y.W.; e Bertolini, M.D.M.; Pinto, L.D.R.; da Silva, W.J.; Del Bel Cury, A.A. Efficacy of citric acid denture cleanser on the Candida albicans biofilm formed on poly (methyl methacrylate): Effects on residual biofilm and recolonization process. BMC Oral Health 2014, 14, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, J.P.; Moyes, D.L.; Ho, J.; Naglik, J.R. Candida innate immunity at the mucosa. Semin. Cell Dev. Biol. 2019, 89, 58–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikou, S.-A.; Kichik, N.; Brown, R.; Ponde, N.; Ho, J.; Naglik, J.; Richardson, J. Candida albicans interactions with mucosal surfaces during health and disease. Pathogens 2019, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.H.; Richardson, J.P.; Zhou, C.; Coleman, B.M.; Moyes, D.L.; Ho, J.; Huppler, A.R.; Ramani, K.; McGeachy, M.J.; Mufazalov, I.A.; et al. Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin. Sci. Immunol. 2017, 2, eaam8834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertolini, M.M.; Xu, H.; Sobue, T.; Nobile, C.J.; Del Bel Cury, A.A.; Dongari-Bagtzoglou, A. Candida-streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes. Mol. Oral Microbiol. 2015, 30, 307–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roh, J.S.; Sohn, D.H. Damage-associated molecular patterns in inflammatory diseases. Immune Netw. 2018, 18, e27. [Google Scholar] [CrossRef] [PubMed]
- Ptasiewicz, M.; Grywalska, E.; Mertowska, P.; Korona-Głowniak, I.; Poniewierska-Baran, A.; Niedźwiedzka-Rystwej, P.; Chałas, R. Armed to the teeth-the oral mucosa immunity system and microbiota. IJMS 2022, 23, 882. [Google Scholar] [CrossRef]
- Swidergall, M.; Solis, N.V.; Lionakis, M.S.; Filler, S.G. EphA2 Is an Epithelial Cell Pattern Recognition Receptor for Fungal β-Glucans. Nat. Microbiol. 2018, 3, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Swidergall, M. Candida albicans at host barrier sites: Pattern recognition receptors and beyond. Pathogens 2019, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Conti, H.R.; Shen, F.; Nayyar, N.; Stocum, E.; Sun, J.N.; Lindemann, M.J.; Ho, A.W.; Hai, J.H.; Yu, J.J.; Jung, J.W.; et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 2009, 206, 299–311. [Google Scholar] [CrossRef]
- Conti, H.R.; Bruno, V.M.; Childs, E.E.; Daugherty, S.; Hunter, J.P.; Mengesha, B.G.; Saevig, D.L.; Hendricks, M.R.; Coleman, B.M.; Brane, L.; et al. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host Microbe 2016, 20, 606–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucey, T.M.; Verma, J.; Olivier, F.A.B.; Lo, T.L.; Robertson, A.A.B.; Naderer, T.; Traven, A. Metabolic competition between host and pathogen dictates inflammasome responses to fungal infection. PLoS Pathog. 2020, 16, e1008695. [Google Scholar] [CrossRef] [PubMed]
- Westman, J.; Grinstein, S. Determinants of phagosomal PH during host-pathogen interactions. Front. Cell Dev. Biol. 2021, 8, 624958. [Google Scholar] [CrossRef]
- Schaller, M.; Sander, C.A.; Korting, H.C.; Mailhammer, R.; Grassl, G.; Hube, B. Infection of human oral epithelia with candida species induces cytokine expression correlated to the degree of virulence. J. Investig. Dermatol. 2002, 118, 652–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dongari-Bagtzoglou, A.; Fidel, P.L. The host cytokine responses and protective immunity in oropharyngeal candidiasis. J. Dent. Res. 2005, 84, 966–977. [Google Scholar] [CrossRef]
- Gasparoto, T.H.; Sipert, C.R.; de Oliveira, C.E.; Porto, V.C.; Santos, C.F.; Campanelli, A.P.; Lara, V.S. Salivary immunity in elderly individuals presented with candida-related denture stomatitis: Salivary defences in oral candida infection. Gerodontology 2012, 29, e331–e339. [Google Scholar] [CrossRef] [Green Version]
- Gasparoto, T.H.; Vieira, N.A.; Porto, V.C.; Campanelli, A.P.; Lara, V.S. Differences between salivary and blood neutrophils from elderly and young denture wearers: Neutrophils from elderly and young denture wearers. J. Oral Rehabil. 2011, 38, 41–51. [Google Scholar] [CrossRef]
- Pietruski, J.K.; Pietruska, M.D.; Jabłońska, E.; Sacha, P.; Zaremba, M.; Stokowska, W. Interleukin 6, tumor necrosis factor alpha and their soluble receptors in the blood serum of patients with denture stomatitis and fungal infection. Arch. Immunol. Ther. Exp. 2000, 48, 101–105. [Google Scholar]
- Cavalcanti, Y.W.; Morse, D.J.; da Silva, W.J.; Del-Bel-Cury, A.A.; Wei, X.; Wilson, M.; Milward, P.; Lewis, M.; Bradshaw, D.; Williams, D.W. Virulence and pathogenicity of Candida albicans is enhanced in biofilms containing oral bacteria. Biofouling 2015, 31, 27–38. [Google Scholar] [CrossRef]
- Morse, D.J.; Wilson, M.J.; Wei, X.; Lewis, M.A.O.; Bradshaw, D.J.; Murdoch, C.; Williams, D.W. Denture-associated biofilm infection in three-dimensional oral mucosal tissue models. J. Med. Microbiol. 2018, 67, 364–375. [Google Scholar] [CrossRef] [Green Version]
- Rogers, H.; Williams, D.W.; Feng, G.-J.; Lewis, M.A.O.; Wei, X.-Q. Role of bacterial lipopolysaccharide in enhancing host immune response to Candida albicans. Clin. Dev. Immunol. 2013, 2013, 320168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciąg, J.; Mikołajczyk, T.; Matusik, P.; Nosalski, R.; Sagan, A.; Maciąg, A.; Nowakowski, D.; Wilk, G.; Osmenda, G.; Guzik, T.; et al. Systemic T cells and monocyte characteristics in patients with denture stomatitis: Denture stomatitis and peripheral immune system. J. Prosthodont. 2017, 26, 19–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pesee, S.; Arpornsuwan, T. Salivary cytokine profile in elders with Candida-related denture stomatitis. Gerodontology 2015, 32, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Keşoğlu, A.; Bural, C.; Genç, G.; Erturan, Z.; Çınar Kekik, Ç.; Oğuz, F.; Bilgin, T.; Bilhan, H. Cytokine gene polymorphism in denture stomatitis patients: A clinical study. Oral Dis. 2018, 24, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Barbeau, J.; Séguin, J.; Goulet, J.P.; de Koninck, L.; Avon, S.L.; Lalonde, B.; Rompré, P.; Deslauriers, N. Reassessing the presence of Candida albicans in denture-related stomatitis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2003, 95, 51–59. [Google Scholar] [CrossRef]
- Leigh, J.E.; Steele, C.; Wormley, F.; Fidel, P.L. Salivary cytokine profiles in the immunocompetent individual with Candida-associated denture stomatitis: Salivary cytokines in denture stomatitis. Oral Microbiol. Immunol. 2002, 17, 311–314. [Google Scholar] [CrossRef]
- Kirchner, F.R.; Littringer, K.; Altmeier, S.; Tran, V.D.T.; Schönherr, F.; Lemberg, C.; Pagni, M.; Sanglard, D.; Joller, N.; LeibundGut-Landmann, S. Persistence of Candida albicans in the oral mucosa induces a curbed inflammatory host response that is independent of immunosuppression. Front. Immunol. 2019, 10, 330. [Google Scholar] [CrossRef] [Green Version]
- Webb, B.C.; Thomas, C.J.; Willcox, M.D.P.; Harty, D.W.S.; Knox, K.W. Candida-associated denture stomatitis. Aetiology and management: A review. Part 2. Oral diseases caused by candida species. Aust. Dent. J. 1998, 43, 160–166. [Google Scholar] [CrossRef]
- Webb, B.C.; Thomas, C.J.; Willcox, M.D.P.; Harty, D.W.S.; Knox, K.W. Candida-associated denture stomatitis. aetiology and management: A review: Part 1. Factors influencing distribution of candida species in the oral cavity. Aust. Dent. J. 1998, 43, 45–50. [Google Scholar] [CrossRef]
- Webb, B.C.; Thomas, C.J.; Willcox, M.D.P.; Harty, D.W.S.; Knox, K.W. Candida-associated denture stomatitis. aetiology and management: A review. Part 3. Treatment of oral candidosis. Aust. Dent. J. 1998, 43, 244–249. [Google Scholar] [CrossRef]
- Zipfel, P.F.; Skerka, C. Complement, candida, and cytokines: The role of c5a in host response to fungi: Highlights. Eur. J. Immunol. 2012, 42, 822–825. [Google Scholar] [CrossRef] [PubMed]
- Hostetter, M.K.; Lorenz, J.S.; Preus, L.; Kendrick, K.E. The IC3b receptor on candida albicans: Subcellular localization and modulation of receptor expression by glucose. J. Infect. Dis. 1990, 161, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, G.E.; Moffatt, B.E.; Sim, R.B.; Morgan, B.P.; Dwek, R.A.; Rudd, P.M. Glycosylation and the complement system. Chem. Rev. 2002, 102, 305–320. [Google Scholar] [CrossRef]
- Zipfel, P.F.; Hallström, T.; Riesbeck, K. Human complement control and complement evasion by pathogenic microbes-tipping the balance. Mol. Immunol. 2013, 56, 152–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef] [Green Version]
- Davidopoulou, S.; Diza, E.; Sakellari, D.; Menexes, G.; Kalfas, S. Salivary concentration of free ll-37 in edentulism, chronic periodontitis and healthy periodontium. Arch. Oral Biol. 2013, 58, 930–934. [Google Scholar] [CrossRef]
- Briard, B.; Malireddi, R.K.S.; Kanneganti, T.-D. Role of inflammasomes/pyroptosis and panoptosis during fungal infection. PLoS Pathog. 2021, 17, e1009358. [Google Scholar] [CrossRef]
- Hise, A.G.; Tomalka, J.; Ganesan, S.; Patel, K.; Hall, B.A.; Brown, G.D.; Fitzgerald, K.A. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen candida albicans. Cell Host Microbe 2009, 5, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Tomalka, J.; Ganesan, S.; Azodi, E.; Patel, K.; Majmudar, P.; Hall, B.A.; Fitzgerald, K.A.; Hise, A.G. A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen candida albicans. PLoS Pathog. 2011, 7, e1002379. [Google Scholar] [CrossRef]
- Rogiers, O.; Frising, U.C.; Kucharíková, S.; Jabra-Rizk, M.A.; van Loo, G.; Van Dijck, P.; Wullaert, A. Candidalysin crucially contributes to NLRP3 inflammasome activation by Candida albicans hyphae. mBio 2019, 10, e02221-18. [Google Scholar] [CrossRef] [Green Version]
- Man, S.M.; Kanneganti, T.-D. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol. 2016, 16, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Lanternier, F.; Cypowyj, S.; Picard, C.; Bustamante, J.; Lortholary, O.; Casanova, J.-L.; Puel, A. Primary immunodeficiencies underlying fungal infections. Curr. Opin. Pediatr. 2013, 25, 736–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millet, N.; Solis, N.V.; Swidergall, M. Mucosal IgA prevents commensal Candida albicans dysbiosis in the oral cavity. Front. Immunol. 2020, 11, 555363. [Google Scholar] [CrossRef] [PubMed]
- Cornejo Ulloa, P.; van der Veen, M.H.; Krom, B.P. Review: Modulation of the oral microbiome by the host to promote ecological balance. Odontology 2019, 107, 437–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Archilla, A.; Urquia, M.; Cutando, A.; Asencio, R. Denture stomatitis: Quantification of interleukin-2 production by mononuclear blood cells cultured with candida albicans. J. Prosthet. Dent. 1996, 75, 426–431. [Google Scholar] [CrossRef]
- Kirchner, F.R.; LeibundGut-Landmann, S. Tissue-resident memory TH17 cells maintain stable fungal commensalism in the oral mucosa. Mucosal Immunol. 2021, 14, 455–467. [Google Scholar] [CrossRef]
- Patrayu, T.; Pimporn, J. Palatal inflammation and the presence of candida in denture-wearing patients. J. Int. Soc. Prev. Community Dent. 2021, 11, 272–280. [Google Scholar]
- Li, L.; Dongari-Bagtzoglou, A. Oral epithelium? Candida glabrata interactions in vitro. Oral Microbiol. Immunol. 2007, 22, 182–187. [Google Scholar] [CrossRef]
- Byrd, W.C.; Schwartz-Baxter, S.; Carlson, J.; Barros, S.; Offenbacher, S.; Bencharit, S. Role of salivary and candidal proteins in denture stomatitis: An exploratory proteomic analysis. Mol. BioSyst. 2014, 10, 2299–2304. [Google Scholar] [CrossRef] [Green Version]
- Border, M.B.; Schwartz, S.; Carlson, J.; Dibble, C.F.; Kohltfarber, H.; Offenbacher, S.; Buse, J.B.; Bencharit, S. Exploring salivary proteomes in edentulous patients with type 2 diabetes. Mol. BioSyst. 2012, 8, 1304. [Google Scholar] [CrossRef]
- Gauch, L.M.R.; Pedrosa, S.S.; Silveira-Gomes, F.; Esteves, R.A.; Marques-da-Silva, S.H. Isolation of Candida spp. from denture-related stomatitis in Pará, Brazil. Braz. J. Microbiol. 2018, 49, 148–151. [Google Scholar] [CrossRef]
- Bencharit, S.; Altarawneh, S.K.; Baxter, S.S.; Carlson, J.; Ross, G.F.; Border, M.B.; Mack, C.R.; Byrd, W.C.; Dibble, C.F.; Barros, S.; et al. Elucidating role of salivary proteins in denture stomatitis using a proteomic approach. Mol. BioSyst. 2012, 8, 3216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altarawneh, S.; Bencharit, S.; Mendoza, L.; Curran, A.; Barrow, D.; Barros, S.; Preisser, J.; Loewy, Z.G.; Gendreau, L.; Offenbacher, S. Clinical and histological findings of denture stomatitis as related to intraoral colonization patterns of Candida albicans, salivary flow, and dry mouth: Role of C. albicans in saliva, mucosal and denture surfaces in DS. J. Prosthodont. 2013, 22, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Jin, L.; Chen, T. The effects of secretory IgA in the mucosal immune system. BioMed. Res. Int. 2020, 2020, 2032057. [Google Scholar] [CrossRef] [PubMed]
- Brandtzaeg, P. Secretory immunity with special reference to the oral cavity. J. Oral Microbiol. 2013, 5, 20401. [Google Scholar] [CrossRef] [PubMed]
- Brandtzaeg, P. Secretory IgA: Designed for anti-microbial defense. Front. Immunol. 2013, 4, 222. [Google Scholar] [CrossRef] [Green Version]
- Mantis, N.J.; Rol, N.; Corthésy, B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011, 4, 603–611. [Google Scholar] [CrossRef]
- Moor, K.; Diard, M.; Sellin, M.E.; Felmy, B.; Wotzka, S.Y.; Toska, A.; Bakkeren, E.; Arnoldini, M.; Bansept, F.; Co, A.D.; et al. High-avidity IgA protects the intestine by enchaining growing bacteria. Nature 2017, 544, 498–502. [Google Scholar] [CrossRef]
- Egbuniwe, I.U.; Karagiannis, S.N.; Nestle, F.O.; Lacy, K.E. Revisiting the role of B cells in skin immune surveillance. Trends Immunol. 2015, 36, 102–111. [Google Scholar] [CrossRef]
- Corthésy, B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front. Immunol. 2013, 4, 185. [Google Scholar] [CrossRef] [Green Version]
- Panda, S.; Ding, J.L. Natural antibodies bridge innate and adaptive immunity. J. Immunol. 2015, 194, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macpherson, A.J.; Geuking, M.B.; McCoy, K.D. Immunoglobulin A: A bridge between innate and adaptive immunity. Curr. Opin. Gastroenterol. 2011, 27, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Mathias, A.; Pais, B.; Favre, L.; Benyacoub, J.; Corthésy, B. Role of secretory IgA in the mucosal sensing of commensal bacteria. Gut Microbes 2014, 5, 688–695. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.W.; Potts, A.J.C.; Wilson, M.J.; Matthews, J.B.; Lewis, M.A.O. Characterisation of the inflammatory cell infiltrate in chronic hyperplastic candidosis of the oral mucosa. J. Oral Pathol. Med. 1997, 26, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Williams, D.; Rogers, H.; Wei, X.; Lewis, M.; Wozniak, S.; Farnell, D.; Jones, A. Immunohistochemical expression patterns of inflammatory cells involved in chronic hyperplastic candidosis. Pathogens 2019, 8, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, J.; Yang, X.; Nikou, S.-A.; Kichik, N.; Donkin, A.; Ponde, N.O.; Richardson, J.P.; Gratacap, R.L.; Archambault, L.S.; Zwirner, C.P.; et al. Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nat. Commun. 2019, 10, 2297. [Google Scholar] [CrossRef] [Green Version]
- Kaminishi, H.; Miyaguchi, H.; Tamaki, T.; Suenaga, N.; Hisamatsu, M.; MihaG, I.; Matsumoto, H.; Maeda, H.; Hagihara, Y. Degradation of humoral host defense by Candida albicans proteinase. Infect. Immun. 1995, 63, 984–988. [Google Scholar] [CrossRef] [Green Version]
- Panagio, L.A.; Felipe, I.; Vidotto, M.C.; Gaziri, L.C.J. Early membrane exposure of phosphatidylserine followed by late necrosis in murine macrophages induced by Candida albicans from an HIV-infected individual. J. Med. Microbiol. 2002, 51, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Pellon, A.; Sadeghi Nasab, S.D.; Moyes, D.L. New insights in Candida albicans innate immunity at the mucosa: Toxins, epithelium, metabolism, and beyond. Front. Cell. Infect. Microbiol. 2020, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Rijkschroeff, P.; Loos, B.G.; Nicu, E.A. Oral polymorphonuclear neutrophil contributes to oral health. Curr. Oral Health Rep. 2018, 5, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Stockfelt, M.; Christenson, K.; Andersson, A.; Björkman, L.; Padra, M.; Brundin, B.; Ganguly, K.; Asgeirsdottir, H.; Lindén, S.; Qvarfordt, I.; et al. Increased CD11b and decreased CD62L in blood and airway neutrophils from long-term smokers with and without COPD. J. Innate Immun. 2020, 12, 480–489. [Google Scholar] [CrossRef]
- Gasparoto, T.H.; de Oliveira, C.E.; Vieira, N.A.; Porto, V.C.; Gasparoto, C.T.; Campanelli, A.P.; Lara, V.S. The pattern recognition receptors expressed on neutrophils and the associated cytokine profile from different aged patients with candida-related denture stomatitis. Exp. Gerontol. 2012, 47, 741–748. [Google Scholar] [CrossRef]
- Gasparoto, T.H.; Dalboni, T.M.; Amôr, N.G.; Abe, A.E.; Perri, G.; Lara, V.S.; Vieira, N.A.; Gasparoto, C.T.; Campanelli, A.P. Fcγ receptors on aging neutrophils. J. Appl. Oral Sci. 2021, 29, e20200770. [Google Scholar] [CrossRef] [PubMed]
- Björkman, L.; Christenson, K.; Davidsson, L.; Mårtensson, J.; Amirbeagi, F.; Welin, A.; Forsman, H.; Karlsson, A.; Dahlgren, C.; Bylund, J. Neutrophil recruitment to inflamed joints can occur without cellular priming. J. Leukoc. Biol. 2019, 105, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Gleiznys, A.; Zdanavičienė, E.; Žilinskas, J. Candida albicans importance to denture wearers. A literature review. Stomatologija 2015, 17, 54–66. [Google Scholar] [PubMed]
- Maciąg, J.; Osmenda, G.; Nowakowski, D.; Wilk, G.; Maciąg, A.; Mikołajczyk, T.; Nosalski, R.; Sagan, A.; Filip, M.; Dróżdż, M.; et al. Denture-related stomatitis is associated with endothelial dysfunction. BioMed. Res. Int. 2014, 2014, 370621. [Google Scholar] [CrossRef]
- Jawale, B.A.; Redasani, R.; Chaudhari, L.; Chopde, N.; Pharande, A.; Hiremath, V. Microbial colonization and their relation with potential cofactors in patients with denture stomatitis. J. Contemp. Dent. Pract. 2012, 13, 456–459. [Google Scholar] [CrossRef]
- Cassone, A.; Cauda, R. Candida and candidiasis in hiv-infected patients: Where commensalism, opportunistic behavior and frank pathogenicity lose their borders. AIDS 2012, 26, 1457–1472. [Google Scholar] [CrossRef]
- Silk, H. Diseases of the mouth. Prim. Care 2014, 41, 75–90. [Google Scholar] [CrossRef]
- Falsetta, M.L.; Klein, M.I.; Colonne, P.M.; Scott-Anne, K.; Gregoire, S.; Pai, C.-H.; Gonzalez-Begne, M.; Watson, G.; Krysan, D.J.; Bowen, W.; et al. Symbiotic relationship between streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect. Immun. 2014, 82, 1968–1981. [Google Scholar] [CrossRef] [Green Version]
- Muzyka, B.C.; Epifanio, R.N. Update on oral fungal infections. Dent. Clin. N. Am. 2013, 57, 561–581. [Google Scholar] [CrossRef] [PubMed]
- Millsop, J.W.; Fazel, N. Oral candidiasis. Clin. Dermatol. 2016, 34, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Senpuku, H.; Sogame, A.; Inoshita, E.; Tsuha, Y.; Miyazaki, H.; Hanada, N. Systemic diseases in association with microbial species in oral biofilm from elderly requiring care. Gerontology 2003, 49, 301–309. [Google Scholar] [CrossRef] [PubMed]
- D’Enfert, C.; Kaune, A.-K.; Alaban, L.-R.; Chakraborty, S.; Cole, N.; Delavy, M.; Kosmala, D.; Marsaux, B.; Fróis-Martins, R.; Morelli, M.; et al. The impact of the fungus-host-microbiota interplay upon Candida albicans infections: Current knowledge and new perspectives. FEM Microbiol. Rev. 2021, 45, fuaa060. [Google Scholar] [CrossRef]
- Oever, J.T.; Netea, M.G. The bacteriome-mycobiome interaction and antifungal host defense: Highlights. Eur. J. Immunol. 2014, 44, 3182–3191. [Google Scholar] [CrossRef]
Yeast-To-Hyphae Transition Chlamydospores | Polymorphism of C. albicans Fitness-Design-Plasticity | Dissemination to Invasion | Commensalism to Pathogens | References |
---|---|---|---|---|
Yeast (white, gray, opaque, 10 μm) | Unicellular round or ellipsoid | Colonization and dissemination | White (commensalism), gray (infectious), opaque (mating) | [47,48] |
Hyphae (filaments), 10 μm–20 μm | Multicellular | Invasion (the host can recognize the invasive form of C. albicans) | Penetrating form of C. albicans in epithelial cells | [12,49] |
Pseudohyphae (filaments), 10 μm | Multicellular separate septa | Infection | Infectious tissue (the host can use the yeast to hypha passage to distinguish between commensalism and infection) | [50] |
Chlamydospores Suspensor cell 10 μm | Thick-walled cells, suspensor cell with round cell at extremity | Not determined currently | Biological significance: survive under nutrient limitation, low θ | [44,45,46,51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Bars, P.; Kouadio, A.A.; Bandiaky, O.N.; Le Guéhennec, L.; de La Cochetière, M.-F. Host’s Immunity and Candida Species Associated with Denture Stomatitis: A Narrative Review. Microorganisms 2022, 10, 1437. https://doi.org/10.3390/microorganisms10071437
Le Bars P, Kouadio AA, Bandiaky ON, Le Guéhennec L, de La Cochetière M-F. Host’s Immunity and Candida Species Associated with Denture Stomatitis: A Narrative Review. Microorganisms. 2022; 10(7):1437. https://doi.org/10.3390/microorganisms10071437
Chicago/Turabian StyleLe Bars, Pierre, Alain Ayepa Kouadio, Octave Nadile Bandiaky, Laurent Le Guéhennec, and Marie-France de La Cochetière. 2022. "Host’s Immunity and Candida Species Associated with Denture Stomatitis: A Narrative Review" Microorganisms 10, no. 7: 1437. https://doi.org/10.3390/microorganisms10071437
APA StyleLe Bars, P., Kouadio, A. A., Bandiaky, O. N., Le Guéhennec, L., & de La Cochetière, M.-F. (2022). Host’s Immunity and Candida Species Associated with Denture Stomatitis: A Narrative Review. Microorganisms, 10(7), 1437. https://doi.org/10.3390/microorganisms10071437