Structure–Function Relationship Studies of Multidomain Levansucrases from Leuconostocaceae Family
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of LevS and Truncated Versions
2.2. Protein Expression of LevS and Truncated Versions
2.3. Activity Assay
2.4. Analysis of the Synthesized Monosaccharide, Oligosaccharide, and Polymer Profile
2.5. Polymer Synthesis
3. Results
3.1. Construction of the LevS and Its Truncated Versions
3.2. Biochemical Characterization and Stability of LevS from L. mesenteroides NRRL B512F and Its Truncated Versions
3.3. Effect of the Deletion of Additional Domains of LevS on the Reaction Rate and H/T Specificity
3.4. Profile of Products Synthesized by LevS and Its Truncated Versions
4. Discussion
4.1. Role of Additional Domains on the Biochemical Properties and Stability of LevS
4.2. Function of the Additional Domains in the Reaction Rate and Polymer Elongation
4.3. Comparison of Additional Domains Role in MD-FNs from the Leuconostocaceae and Lactobacillaceae Families
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel-Fattah, A.M.; Gamal-Eldeen, A.M.; Helmy, W.A.; Esawy, M.A. Antitumor and antioxidant activities of levan and its derivative from the isolate Bacillus subtilis NRC1aza. Carbohydr. Polym. 2012, 89, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Byun, B.Y.; Lee, S.J.; Mah, J.H. Antipathogenic activity and preservative effect of levan (β-2,6-fructan), a multifunctional polysaccharide. Int. J. Food Sci. Technol. 2014, 49, 238–245. [Google Scholar] [CrossRef]
- Kang, S.A.; Hong, K.H.; Jang, K.H.; Kim, S.H.; Lee, K.H.; Chang, B.I.; Kim, C.H.; Choue, R.W. Anti-obesity and hypolipidemic effects of dietary levan in high fat diet-induced obese rats. J. Microbiol. Biotechnol. 2004, 14, 796–804. [Google Scholar]
- Porras-Domínguez, J.R.; Ávila-Fernández, Á.; Rodríguez-Alegría, M.E.; Miranda-Molina, A.; Escalante, A.; González-Cervantes, R.; Olvera, C.; Munguía, A.L. Levan-type FOS production using a Bacillus licheniformis endolevanase. Process Biochem. 2014, 49, 783–790. [Google Scholar] [CrossRef]
- Sedgwick, A.D.; Rutman, A.; Sin, Y.M.; Mackay, A.R.; Willoughby, D.A. The effects of levan on the acute inflammatory response. Br. J. Exp. Pathol. 1984, 65, 215–222. [Google Scholar]
- Sinai, Y.; Leibovici, J.; Wolman, M. Effects of Route and Schedule of Administration of High-Molecular Levan on the Growth of AKR Lymphoma. Cancer Res. 1976, 36, 1593–1597. [Google Scholar]
- Banguela, A.; Hernández, L. Fructans: From natural sources to transgenic plants. Biotecnol. Apl. 2006, 23, 202–210. [Google Scholar]
- Vijn, I.; Smeekens, S. Fructan: More than a reserve carbohydrate? Plant Physiol. 1999, 120, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Raga-Carbajal, E.; Díaz-Vilchis, A.; Rojas-Trejo, S.P.; Rudiño-Piñera, E.; Olvera, C. The molecular basis of the nonprocessive elongation mechanism in levansucrases. J. Biol. Chem. 2021, 296, 100178. [Google Scholar] [CrossRef]
- Meng, G.; Fütterer, K. Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat. Struct. Biol. 2003, 10, 935–941. [Google Scholar] [CrossRef]
- Chambert, R.; Gonzy-Tréboul, G. Levansucrase of Bacillus subtilis: Kinetic and Thermodynamic Aspects of Transfructosylation Processes. Eur. J. Biochem. 1976, 62, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Ozimek, L.K.; Kralj, S.; van der Maarel, M.J.E.C.; Dijhuizen, L. The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. Microbiology 2006, 152, 1187–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raga-Carbajal, E.; Carrillo-Nava, E.; Costas, M.; Porras-Dominguez, J.; López-Munguía, A.; Olvera, C. Size product modulation by enzyme concentration reveals two distinct levan elongation mechanisms in Bacillus subtilis levansucrase. Glycobiology 2016, 26, 377–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Hijum, S.A.F.T.; Kralj, S.; Ozimek, L.K.; Dijkhuizen, L.; van Geel-Schutten, I.G.H. Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria. Microbiol. Mol. Biol. Rev. 2006, 70, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Olivares-Illana, V.; López-Munguía, A.; Olvera, C. Molecular characterization of inulosucrase from Leuconostoc citreum: A fructosyltransferase within a glucosyltransferase. J. Bacteriol. 2003, 185, 3606–3612. [Google Scholar] [CrossRef] [Green Version]
- Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; et al. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA 2006, 103, 15611–15616. [Google Scholar] [CrossRef] [Green Version]
- Morales-Arrieta, S.; Rodríguez, M.E.; Segovia, L.; López-Munguía, A.; Olvera-Carranza, C. Identification and functional characterization of levS, a gene encoding for a levansucrase from Leuconostoc mesenteroides NRRL B-512 F. Gene 2006, 376, 59–67. [Google Scholar] [CrossRef]
- Olvera, C.; Centeno-Leija, S.; López-Munguía, A. Structural and Functional Features of Fructansucrases Present in Leuconostoc mesenteroides ATCC 8293. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2007, 92, 11–20. [Google Scholar] [CrossRef]
- Iliev, I.; Vasileva, T.; Bivolarski, V.; Salim, A.; Morel, S.; Rabier, P.; Gabriel, V. Optimization of the Expression of Levansucrase L17 in Recombinant E. Coli. Biotechnol. Biotechnol. Equip. 2018, 32, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Jadaun, J.S.; Narnoliya, L.K.; Agarwal, N.; Singh, S.P. Catalytic Biosynthesis of Levan and Short-Chain Fructooligosaccharides from Sucrose-Containing Feedstocks by Employing the Levansucrase from Leuconostoc mesenteroides MTCC10508. Int. J. Biol. Macromol. 2019, 127, 486–495. [Google Scholar] [CrossRef]
- van Hijum, S.A.; Bonting, K.; van der Maarel, M.J.; Dijkhuizen, L. Purification of a Novel Fructosyltransferase from Lactobacillus reuteri Strain 121 and characterization of the Levan Produced. FEMS Microbiol. Lett. 2001, 205, 323–328. [Google Scholar] [CrossRef]
- Tieking, M.; Ehrmann, M.A.; Vogel, R.F.; Gänzle, M.G. Molecular and functional characterization of a levansucrase from the sourdough isolate Lactobacillus sanfranciscensis TMW 1.392. Appl. Microbiol. Biotechnol. 2005, 66, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Waldherr, F.W.; Meissner, D.; Vogel, R.F. Genetic and Functional Characterization of Lactobacillus Panis levansucrase. Arch. Microbiol. 2008, 190, 497–505. [Google Scholar] [CrossRef]
- Anwar, M.A.; Kralj, S.; Piqué, A.V.; Leemhuis, H.; Van Der Maarel, M.J.E.C.; Dijkhuizen, L. Inulin and levan synthesis by probiotic Lactobacillus gasseri strains: Characterization of three novel fructansucrase enzymes and their fructan products. Microbiology 2010, 156, 1264–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pijning, T.; Anwar, M.A.; Böger, M.; Dobruchowska, J.M.; Leemhuis, H.; Kralj, S.; Dijkhuizen, L.; Dijkstra, W. Crystal structure of inulosucrase from Lactobacillus: Insights into the substrate specificity and product specificity of GH68 fructansucrases. J. Mol. Biol. 2011, 412, 80–93. [Google Scholar] [CrossRef]
- Ni, D.; Kırtel, O.; Yin, D.; Xu, W.; Chen, Q.; Öner, E.T.; Mu, W. Improving the catalytic behaviors of Lactobacillus-derived fructansucrases by truncation strategies. Enzym. Microb. Technol. 2021, 149, 109857. [Google Scholar] [CrossRef]
- van Hijum, S.A.F.T.; Van Geel-Schutten, G.H.; Rahaoui, H.; Van der Maarel, M.J.E.C.; Dijkhuizen, L. Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Appl. Environ. Microbiol. 2002, 68, 4390–4398. [Google Scholar] [CrossRef] [Green Version]
- Del Moral, S.; Olvera, C.; Rodriguez, M.E.; Munguia, A.L. Functional role of the additional domains in inulosucrase (IslA) from Leuconostoc citreum CW28. BMC Biochem. 2008, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Moulis, C.; Joucla, G.; Harrison, D.; Fabre, E.; Potocki-Veronese, G.; Monsan, P.; Remaud-Simeon, M. Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases. J. Biol. Chem. 2006, 281, 31254–31267. [Google Scholar] [CrossRef] [Green Version]
- Nick Pace, C.; Martin Scholtz, J.; Grimsley, G.R. Forces stabilizing proteins. FEBS Lett. 2014, 588, 2177–2184. [Google Scholar] [CrossRef] [Green Version]
- van Hijum, S.A.F.T.; Van Der Maarel, M.J.E.C.; Dijkhuizen, L. Kinetic properties of an inulosucrase from Lactobacillus reuteri 121. FEBS Lett. 2003, 534, 207–210. [Google Scholar] [CrossRef] [Green Version]
- van Hijum, S.A.F.T.; Szalowska, E.; van der Maarel, M.J.E.C.; Dijkhuizen, L. Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri. Microbiology 2004, 150, 621–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anwar, M.A.; Kralj, S.; Van Der Maarel, M.J.E.C.; Dijkhuizen, L. The probiotic Lactobacillus johnsonii NCC 533 produces high-molecular-mass inulin from sucrose by using an inulosucrase enzyme. Appl. Environ. Microbiol. 2008, 74, 3426–3433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monchois, V.; Reverte, A.; Remaud-Simeon, M.; Monsan, P.; Willemot, R.M. Effect of Leuconostoc mesenteroides NRRL B-512F dextransucrase carboxy- terminal deletions on dextran and oligosaccharide synthesis. Appl. Environ. Microbiol. 1998, 64, 1644–1649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leemhuis, H.; Pijning, T.; Dobruchowska, J.M.; van Leeuwen, S.S.; Kralj, S.; Dijkstra, B.W.; Dijkhuizen, L. Glucansucrases: Three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J. Biotechnol. 2013, 163, 250–272. [Google Scholar] [CrossRef] [Green Version]
- Vujičić-Žagar, A.; Pijning, T.; Kralj, S.; López, C.A.; Eeuwema, W.; Dijkhuizen, L.; Dijkstra, B.W. Crystal structure of a 117 KDa glucansucrase fragment provides insight into evolution and product specificity of GH70 Enzymes. Proc. Natl. Acad. Sci. USA 2010, 107, 21406–21411. [Google Scholar] [CrossRef] [Green Version]
- Korakli, M.; Vogel, R.F. Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesized glycans. Appl. Microbiol. Biotechnol. 2006, 71, 790–803. [Google Scholar] [CrossRef]
- Olvera, C.; Centeno-Leija, S.; Ruiz-Leyva, P.; López-Munguía, A. Design of chimeric levansucrases with improved Transglycosylation activity. Appl. Environ. Microbiol. 2012, 78, 1820–1825. [Google Scholar] [CrossRef] [Green Version]
Microorganism | Enzyme | Mw (kDa) | GenBank Accession | References |
---|---|---|---|---|
Leuconostoc citreum CW28 (IslA) | IS | 170 a | AAO25086 | [15] |
Leuconostoc mesenteroides ATCC 8293 | LS | ND | ABJ62504 | [16] |
Leuconostoc mesenteroides B512-F (LevS) | LS | 130 a | AAY19523 | [17] |
Leuconostoc mesenteroides B512-F (LevC) | LS | 130 a | ABJ62503 | [18] |
Leuconostoc mesenteroides B512-F (LevL) | LS | 113 b | ABJ62504 | [18] |
Leuconostoc mesenteroides Lm17 | LS | 120 a | ALF07532 | [19] |
Leuconostoc mesenteroides LBAE-G15 | LS | 113 b | AMD77912 | [19] |
Leuconostoc mesenteroides MTCC 10,508 (TrLmLevS) | LS | 108 a | QAU55073 | [20] |
Lactobacillus reuteri 121 | LS | 90 a | AAO14618 | [21] |
Lactobacillus sanfranciscensis TMW 1.392 | LS | 105 a | AEN98680 | [22] |
Lactobacillus panis TMW 1.648 | LS | 87 b | WP_082611621 | [23] |
Lactobacillus gasseri DSM 20,077 (LevG) | LS | 84 a | ACZ67287 | [24] |
Lactobacillus johnsonii NCC 533 (InuJ) | IS | 87.2 b | AYN50318 | [25] |
ENZYME | OPTIMAL TEMPERATURE (°C) | OPTIMAL pH | RESIDUAL ACTIVITY (%) ** |
---|---|---|---|
LevS (WT) | 35 | 6 | 96.97 ± 7.96 |
LevSΔC | 35 | 5 | 100.00 ± 1.58 |
LevSΔTnC | 30 | 5 | 98.90 ± 0.06 |
LevSΔN | 25 | 6 | 47.85 ± 0.93 |
LevSΔNC | 25 | 7 | * |
LevS-Cat | 35 | 7 | * |
ENZYME | HMW POLYMER | LMW PRODUCTS | HYDROLYSIS |
---|---|---|---|
LevS (WT) | 73.8 ± 0.38 | 16.2 ± 3.38 | 10.0 ± 0.10 |
LevSΔC | 68.9 ± 1.82 | 2.0 ± 0.33 | 29.1 ± 1.74 |
LevSΔTnC | 5.7 ± 0.36 | 9.3 ± 1.20 | 85.0 ± 0.80 |
LevSΔN | 73.1 ± 2.21 | 1.2 ± 0.32 | 25.7 ± 0.23 |
LevSΔNC * | 0.0 | 0.0 | 100 |
LevS/Cat * | 0.0 | 0.0 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Paz, F.d.M.; Martínez-Bahena, S.; Olvera, C. Structure–Function Relationship Studies of Multidomain Levansucrases from Leuconostocaceae Family. Microorganisms 2022, 10, 889. https://doi.org/10.3390/microorganisms10050889
García-Paz FdM, Martínez-Bahena S, Olvera C. Structure–Function Relationship Studies of Multidomain Levansucrases from Leuconostocaceae Family. Microorganisms. 2022; 10(5):889. https://doi.org/10.3390/microorganisms10050889
Chicago/Turabian StyleGarcía-Paz, Flor de María, Salvador Martínez-Bahena, and Clarita Olvera. 2022. "Structure–Function Relationship Studies of Multidomain Levansucrases from Leuconostocaceae Family" Microorganisms 10, no. 5: 889. https://doi.org/10.3390/microorganisms10050889
APA StyleGarcía-Paz, F. d. M., Martínez-Bahena, S., & Olvera, C. (2022). Structure–Function Relationship Studies of Multidomain Levansucrases from Leuconostocaceae Family. Microorganisms, 10(5), 889. https://doi.org/10.3390/microorganisms10050889