Multidrug-Resistant Acinetobacter baumannii in Jordan
Abstract
:1. Introduction
2. Materials and Methods
2.1. A. baumannii Isolates Collection
2.2. Bacterial Identification
2.3. Antimicrobial Susceptibility Testing
2.4. Molecular Analysis
2.5. Statistical Analysis
3. Results
3.1. A. baumannii Isolates Distribution
3.2. A. baumannii MDR Isolates Distribution
3.3. Incidence Rate of A. baumannii Infections
3.4. Antibiotic Susceptibility Pattern for A. baumannii Isolates
3.5. A. baumannii Resistance Phenotype
3.6. Detection of Carbapenem Resistance Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; OlssonLiljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, A.; O’Donoghue, M.; Feeney, A.; Sleator, R.D. Acinetobacter baumannii: An emerging opportunistic pathogen. Virulence 2012, 3, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Manchanda, V.; Sanchaita, S.; Singh, N. Multidrug resistant acinetobacter. J. Glob. Infect. Dis. 2010, 2, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Doughari, H.J.; Ndakidemi, P.A.; Human, I.S.; Benade, S. The Ecology, Biology and Pathogenesis of Acinetobacter spp.: An Overview. Microbes Environ. 2011, 26, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Antunes, L.C.; Visca, P.; Towner, K.J. Acinetobacter baumannii: Evolution of a global pathogen. Pathog. Dis. 2014, 71, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Aguirre-Avalos, G.; Mijangos-Méndez, J.C.; Amaya-Tapia, G. Acinetobacter baumannii bacteremia. Rev. Med. Inst. Mex. Seguro Soc. 2010, 48, 625–634. [Google Scholar]
- Murphy, R.A.; Ronat, J.-B.; Fakhri, R.; Herard, P.; Blackwell, N.; Abgrall, S.; Anderson, D. Multidrug-Resistant Chronic Osteomyelitis Complicating War Injury in Iraqi Civilians. J. Trauma Inj. Infect. Crit. Care 2011, 71, 252–254. [Google Scholar] [CrossRef]
- Zahedi, B.A.; Samadi, K.H.; Ebrahimzadeh, L.H.; Asgharzadeh, M.; Aghazadeh, M. Dissemination of car-bapenemases producing Gram negative bacteria in the Middle East. Iran. J. Microbiol. 2015, 7, 226–246. [Google Scholar]
- Al-Mously, N.; Hakawi, A. Acinetobacter baumannii bloodstream infections in a tertiary hospital: Antimicrobial resistance surveillance. Int. J. Infect. Control 2013, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Goudarzi, H.; Douraghi, M.; Ghalavand, Z.; Goudarzi, M. Assessment of antibiotic resistance pattern in Acinetobacter baumannii carrying blaoxA type genes isolated from hospitalized patients. Nov. Biomed. 2013, 1, 54–61. [Google Scholar]
- Ghulam, N.; Dhabaan, H.H.; Shorman, M.A. Emergence of extensive drug-resistant Acinetobacter baumannii in North of Jordan. Afr. J. Microbiol. Res. 2011, 5, 1070–1075. [Google Scholar]
- Nazer, L.H.; Kharabsheh, A.; Rimawi, D.; Mubarak, S.; Hawari, F. Characteristics and Outcomes of Acinetobacter baumannii In-fections in Critically Ill Patients with Cancer: A Matched Case-Control Study. Microb. Drug Resist. 2015, 21, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Al-Dabaibah, N.; Obeidat, N.M.; Shehab, A.A. Epidemiology Features of Acinetobacter baumannii Colonizing Respiratory Tracts of ICU Patients. Int. Arab. J. Antimicrob. Agents 2012, 2, 1–7. [Google Scholar] [CrossRef]
- Almomani, B.A.; McCullough, A.; Gharaibeh, R.; Samrah, S.; Mahasneh, F. Incidence and predictors of 14-day mortality in multi-drug-resistant Acinetobacter baumannii in ventilator-associated pneumonia. J. Infect. Dev. Ctries. 2015, 9, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
- Obeidat, N.; Jawdat, F.; Al-Bakri, A.G.; Shehabi, A.A. Major biologic characteristics of Acinetobacter baumannii isolates from hos-pital environmental and patients’ respiratory tract sources. Am. J. Infect. Control 2014, 42, 401–404. [Google Scholar] [CrossRef]
- Higgins, P.; Hagen, R.; Kreikemeyer, B.; Warnke, P.; Podbielski, A.; Frickmann, H.; Loderstädt, U. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Isolates from Northern Africa and the Middle East. Antibiotics 2021, 10, 291. [Google Scholar] [CrossRef]
- Turton, J.F.; Ward, M.E.; Woodford, N.; Kaufmann, M.E.; Pike, R.; Livermore, D.M.; Pitt, T.L. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol. Lett. 2006, 258, 72–77. [Google Scholar] [CrossRef] [Green Version]
- The Clinical and Laboratory Standards Institute (CLSI). M100 Performance Standards for Antimicrobial Susceptibility Testing. 30th ed Released 2020. Available online: https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf (accessed on 1 February 2022).
- Yong, D.; Lee, Y.; Jeong, S.H.; Lee, K.; Chong, Y. Evaluation of Double-Disk Potentiation and Disk Potentiation Tests Using Dipicolinic Acid for Detection of Metallo-β-Lactamase-Producing Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 2012, 50, 3227–3232. [Google Scholar] [CrossRef] [Green Version]
- Bradford, P.A.; Bratu, S.; Urban, C.; Visalli, M.; Mariano, N.; Landman, D.; Quale, J.; Brooks, S.; Cebular, S.; Quale, J. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lactamases in New York City. Clin. Infect. Dis. 2004, 39, 55–60. [Google Scholar] [CrossRef]
- Woodford, N.; Ellington, M.J.; Coelho, J.M.; Turton, J.F.; Ward, M.E.; Brown, S.; Amyes, S.G.; Livermore, D.M. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 2006, 27, 351–353. [Google Scholar] [CrossRef]
- Pitout, J.D.; Gregson, D.B.; Poirel, L.; McClure, J.A.; Le, P.; Church, D.L. Detection of Pseudomonas aeruginosa producing metal-lo-β-lactamases in a large centralized laboratory. J. Clin. Microbiol. 2005, 43, 3129–3135. [Google Scholar] [CrossRef] [Green Version]
- Calhoun, J.H.; Murray, C.K.; Manring, M.M. Multidrug-resistant Organisms in Military Wounds from Iraq and Afghanistan. Clin. Orthop. Relat. Res. 2008, 466, 1356–1362. [Google Scholar] [CrossRef] [Green Version]
- Rodloff, A.C.; Leclercq, R.; Debbia, E.A.; Cantón, R.; Oppenheim, B.A.; Dowzicky, M.J. Comparative analysis of antimicrobial suscep-tibility among organisms from France, Germany, Italy, Spain and the UK as part of the tigecycline evaluation and surveil-lance trial. Clin. Microbiol. Infect. 2008, 14, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Souli, M.; Galani, I.; Giamarellou, H. Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. Eurosurveillance 2008, 13, 19045. [Google Scholar] [CrossRef]
- Cai, Y.; Chai, D.; Wang, R.; Liang, B.; Bai, N. Colistin resistance of Acinetobacter baumannii: Clinical reports, mechanisms and antimicrobial strategies. J. Antimicrob. Chemother. 2012, 67, 1607–1615. [Google Scholar] [CrossRef]
- Karakonstantis, S. A systematic review of implications, mechanisms, and stability of in vivo emergent resistance to colistin and tigecycline in Acinetobacter baumannii. J. Chemother. 2020, 33, 1–11. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Saridakis, I. Colistin heteroresistance in Acinetobacter spp.: Systematic review and meta-analysis of the preva-lence and discussion of the mechanisms and potential therapeutic implications. Int. J. Antimicrob. Agents 2020, 56, 106065. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Kritsotakis, E.I.; Gikas, A. Pandrug-resistant Gram-negative bacteria: A systematic review of current epidemi-ology, prognosis and treatment options. J. Antimicrob. Chemother. 2020, 75, 271–282. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Kritsotakis, E.I.; Gikas, A. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: An approach based on the mechanisms of resistance to car-bapenems. Infection 2020, 48, 835–851. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Ioannou, P.; Samonis, G.; Kofteridis, D.P. Systematic Review of Antimicrobial Combination Options for Pandrug-Resistant Acinetobacter Baumannii. Antibiot. 2021, 10, 1344. [Google Scholar] [CrossRef]
- Ozaras, R.; Leblebicioglu, H.; Sunbul, M.; Tabak, F.; Balkan, I.I.; Yemisen, M.; Sencan, I.; Ozturk, R. The Syrian conflict and infectious diseases. Expert Rev. Anti Infect. Ther. 2016, 14, 547–555. [Google Scholar] [CrossRef]
- Reinheimer, C.; Kempf, V.A.; Göttig, S.; Hogardt, M.; Wichelhaus, T.A.; O’Rourke, F.; Brandt, C. Multidrug-resistant organisms de-tected in refugee patients admitted to a University Hospital, Germany June–December 2015. Eurosurveillance 2016, 21, 30110. [Google Scholar] [CrossRef] [Green Version]
- Verhoef, J.; Fluit, A. Surveillance uncovers the smoking gun for resistance emergence. Biochem. Pharmacol. 2006, 71, 1036–1041. [Google Scholar] [CrossRef]
- Bessong, P.O.; Guerrant, R.L. Improving our understanding of antibiotic resistance: The relevance of surveillance at the popula-tion level. S. Afr. Med. J. 2017, 107, 11827. [Google Scholar] [CrossRef] [Green Version]
- Batarseh, A.; Al-Sarhan, A.; Maayteh, M.; Al-Khatirei, S.; Alarmouti, M. Antibiogram of multidrug resistant Acinetobacter baumannii isolated from clinical specimens at King Hussein Medical Centre, Jordan: A retrospective analysis. East. Mediterr. Health J. 2016, 21, 828–834. [Google Scholar] [CrossRef]
- Sanders, C.C.; Peyret, M.; Moland, E.S.; Cavalieri, S.J.; Shubert, C.; Thomson, K.S.; Boeufgras, J.-M.; Sanders, W.E. Potential Impact of the VITEK 2 System and the Advanced Expert System on the Clinical Laboratory of a University-Based Hospital. J. Clin. Microbiol. 2001, 39, 2379–2385. [Google Scholar] [CrossRef] [Green Version]
- Leal, C.A.L.; Buitrago, G.G.; Ovalle, V.; Cortes, J.A.; Alvarez, C.A. Colombian Tigecycline Susceptibility Surveillance Group. Comparing in vitro activity of tigecycline by using the disk diffusion test, the manual microdilution method, and the VITEK 2 automated system. Rev. Argent Microbiol. 2010, 42, 208–211. [Google Scholar]
- Bobenchik, A.M.; Deak, E.; Hindler, J.A.; Charlton, C.L.; Humphries, R.M. Performance of Vitek 2 for Antimicrobial Susceptibility Testing of Enterobacteriaceae with Vitek 2 (2009 FDA) and 2014 CLSI Breakpoints. J. Clin. Microbiol. 2015, 53, 816–823. [Google Scholar] [CrossRef] [Green Version]
- Dimitriadis, P.; Protonotariou, E.; Varlamis, S.; Poulou, A.; Vasilaki, O.; Metallidis, S.; Tsakris, A.; Malisiovas, N.; Skoura, L.; Pournaras, S. Comparative evaluation of minocycline susceptibility testing methods in carbapenem-resistant Acinetobacter baumannii. Int. J. Antimicrob. Agents 2016, 48, 321–323. [Google Scholar] [CrossRef]
- Tan, T.Y.; Ng, L.S.Y.; Poh, K. Susceptibility testing of unconventional antibiotics against multiresistant Acinetobacter spp. by agar dilution and Vitek 2. Diagn. Microbiol. Infect. Dis. 2007, 58, 357–361. [Google Scholar] [CrossRef]
- Kulah, C.; Aktas, E.; Comert, F.; Ozlu, N.; Akyar, I.; Ankarali, H. Detecting imipenem resistance in Acinetobacter baumannii by automated systems (BD Phoenix, Microscan WalkAway, Vitek 2); high error rates with Microscan WalkAway. BMC Infect. Dis. 2009, 9, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafei, R.; Pailhoriès, H.; Hamze, M.; Eveillard, M.; Mallat, H.; Dabboussi, F.; Joly-Guillou, M.L.; Kempf, M. Molecular epidemi-ology of Acinetobacter baumannii in different hospitals in Tripoli, Lebanon using blaOXA-51-like sequence based typing. BMC Microbiology 2015, 15, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ababneh, Q.; Aldaken, N.; Jaradat, Z.; Al Sbei, S.; Alawneh, D.; Al-zoubi, E.; Alhomsi, T.; Saadoun, I. Molecular epidemiology of car-bapenem-resistant Acinetobacter baumannii isolated from three major hospitals in Jordan. Int. J. Clin. Pract. 2021, 75, e14998. [Google Scholar] [CrossRef]
- El-Khatib, L.; Al-Dalain, S.; Al-Matarneh, R.; Al-Bustanji, S.; Al-Dmour, M.; Al-Amarin, Y.; Gaber, Y. Prevalence of Multi-drug Resistant Acinetobacter baumannii (MDRAB) in Amman Jordan During 2018. Infect Disord Drug Targets 2021, 21, 105–111. [Google Scholar] [CrossRef]
- Abouelfetouh, A.; Torky, A.S.; Aboulmagd, E. Phenotypic and genotypic characterization of carbapenem-resistant Acinetobacter baumannii isolates from Egypt. Antimicrob. Resist. Infect. Control 2019, 8, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolain, J.-M.; Loucif, L.; Al-Maslamani, M.; Elmagboul, E.; Al-Ansari, N.; Taj-Aldeen, S.; Shaukat, A.; Ahmedullah, H.; Hamed, M. Emergence of multidrug-resistant Acinetobacter baumannii producing OXA-23 Carbapenemase in Qatar. New Microbes New Infect. 2016, 11, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Al Atrouni, A.; HamzeM, J.T.; Lemarié, C.; Eveillard, M.; Joly-Guillou, M.L.; Kempf, M. Wide spread of OXA-23-producing car-bapenem-resistant Acinetobacter baumannii belonging to clonal complex II in different hospitals in Lebanon. Int. J. Infect. Dis. 2016, 52, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Bocanegra-Ibarias, P.; Peña-López, C.; Camacho-Ortiz, A.; Llaca-Díaz, J.; Silva-Sánchez, J.; Barrios, H.; Garza-Ramos, U.; Rodríguez-Flores, A.M.; Garza-González, E. Genetic characterisation of drug resistance and clonal dynamics of Acinetobacter baumannii in a hospital setting in Mexico. Int. J. Antimicrob. Agents 2015, 45, 309–313. [Google Scholar] [CrossRef]
- Vranić-Ladavac, M.; Bedenić, B.; Minandri, F.; Ištok, M.; Bošnjak, Z.; Frančula-Zaninović, S.; Ladavac, R.; Visca, P. Carbapenem re-sistance and acquired class D beta-lactamases in Acinetobacter baumannii from Croatia 2009-2010. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2014, 33, 471–478. [Google Scholar] [CrossRef]
- Aruhomukama, D.; Najjuka, C.F.; Kajumbula, H.; Okee, M.; Mboowa, G.; Sserwadda, I.; Mayanja, R.; Joloba, M.L.; Kateete, D.P. blaVIM- and blaOXA-mediated carbapenem resistance among Acinetobacter baumannii and Pseudomonas aeruginosa isolates from the Mulago hospital intensive care unit in Kampala, Uganda. BMC Infect. Dis. 2019, 19, 853–858. [Google Scholar] [CrossRef]
- Shanthi, A.M.; Sekar, U.; Kamalanathan, A.; Balaraman, S. blaIMP and blaVIM mediated carbapenem resistance in Pseudomonas and Acinetobacter species in India. J. Infect. Dev. Ctries. 2012, 6, 757–762. [Google Scholar]
- Fallah, F.; Noori, M.; Hashemi, A.; Goudarzi, H.; Karimi, A.; Erfanimanesh, S.; Alimehr, S. Prevalence of bla NDM, bla PER, bla VEB, bla IMP, and bla VIM Genes among Acinetobacter baumannii Isolated from Two Hospitals of Tehran, Iran. Scientifica 2014, 2014, 245162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudarzi, H.; Mirsamadi, E.S.; Ghalavand, Z.; Vala, M.H.; Mirjalali, H.; Hashemi, A. Rapid detection and molecular survey of blaVIM, blaIMP and blaNDM genes among clinical isolates of Acinetobacter baumannii using new multiplex real-time PCR and melting curve analysis. BMC Microbiol. 2019, 19, 122. [Google Scholar] [CrossRef]
- Robledo, I.E.; Aquino, E.E.; Santé, M.I.; Santana, J.L.; Otero, D.M.; León, C.F.; Vázquez, G.J. Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrob. Agents Chemother. 2010, 54, 1354–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Bayssari, C.; Dabboussi, F.; Hamze, M.; Rolain, J.-M. Detection of expanded-spectrum β-lactamases in Gram-negative bacteria in the 21st century. Expert Rev. Anti. Infect. Ther. 2015, 13, 1139–1158. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Liu, L.; Ma, Y.; Zhang, Z.; Li, N.; Zhang, F.; Zhao, S. Molecular Epidemiology of Multi-Drug Resistant Acinetobacter bau-mannii Isolated in Shandong, China. Front. Microbiol. 2016, 7, 1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purohit, M.; Mendiratta, D.K.; Deotale, V.S.; Madhan, M.; Manoharan, A.; Narang, P. Detection of metallo-β-lactamases producing Acinetobacter baumannii using microbiological assay, disc synergy test and PCR. Indian J. Med. Microbiol. 2012, 30, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Silago, V.; Mruma, E.C.; Msemwa, B.; Mtemisika, C.I.; Phillip, S.; Ndagula, R.A.; Said, M.M.; Mushi, M.F.; Mshana, S.E. Predominance of Acinetobacter spp., Harboring the blaIMP Gene, Contaminating the Hospital Environment in a Tertiary Hospital in Mwanza, Tanzania: A Cross-Sectional Laboratory-Based Study. Pathogens 2022, 11, 63. [Google Scholar] [CrossRef]
Number of Isolates | Percentage % | ||
---|---|---|---|
Age | Children <18 years | 66 | 10.6% |
Adults (18–60 years) | 337 | 54.2% | |
Adults above 60 years | 219 | 35.2% | |
Gender | Male | 408 | 65.6% |
Female | 214 | 34.4% | |
Nationality | Jordanian | 282 | 45.3% |
Palestinian | 31 | 5.0% | |
Libyan | 107 | 17.2% | |
Saudi | 44 | 7.1% | |
Sudanese | 34 | 5.5% | |
Syrian | 23 | 3.7% | |
Yemeni | 55 | 8.8% | |
Iraqi | 26 | 4.2% | |
Others | 20 | 3.2% | |
Department | ICU and CCU | 207 | 33.3% |
Outpatients | 134 | 21.5% | |
Medicine | 27 | 4.3% | |
Surgery | 232 | 37.3% | |
Pediatric and prematurity | 22 | 3.6% | |
Identification confidence by Vitek 2 | Excellent | 544 | 87.5% |
Good | 71 | 11.4% | |
low | 7 | 1.1% | |
Specimen source | Blood | 59 | 9.5% |
Sputum | 91 | 14.6% | |
Urine | 98 | 15.8% | |
Wound Pus | 274 | 44.1% | |
Body fluid | 25 | 4.0% | |
Tissue | 15 | 2.4% | |
Others | 60 | 9.6% | |
Year | 2010 | 90 | 14.5% |
2011 | 66 | 10.6% | |
2012 | 91 | 14.6% | |
2013 | 75 | 12.1% | |
2014 | 106 | 17.0% | |
2015 | 126 | 20.3% |
MDR No/Total (%) | Non-MDR No/Total (%) | OR/95% CI/p Value | ||
---|---|---|---|---|
Age | Children <18 (years) | 36/66 (54.5) | 30/66 (45.5) | OR = 0.3095, CI 0.1828–0.5240, p < 0.0001 |
Adults 18–60 (years) | 244/337 (72.4) | 93/337 (27.6) | ||
Adults above 60 (years) | 198/219 (90.4) | 21/219 (9.6) | OR = 4.1418, CI 2.5190–6.8102, p < 0.0001 | |
Gender | Male | 337/408 (82.6) | 71/408 (17.4) | males versus females, OR = 2.45, CI 1.67–3.59, p < 0.0001 |
Female | 141/214 (65.9) | 73/214 (34.1) | ||
Nationality | Jordanian | 202/282 (71.6) | 80/282 (28.4) | Jordanian vs other, OR = 0.5855, CI 0.4022–0.8523, p = 0.0052 |
Palestinian | 28/31 (90.3) | 3/31 (9.7) | ||
Libyan | 89/107 (83.2) | 18/107 (16.8) | ||
Saudi | 34/44 (77.3) | 10/44 (22.7) | ||
Sudanese | 23/34 (67.6) | 11/34 (32.4) | ||
Syrian | 21/23 (91.3) | 2/23 (8.7) | ||
Yemeni | 46/55 (83.6) | 9/55 (16.4) | ||
Iraqi | 17/26 (65.4) | 9/26 (34.6) | ||
Others | 18/20 (90.0) | 2/20 (10) | ||
Department | ICU and CCU | 189/207 (91.3) | 18/207 (8.7) | CCU/ICU vs other units, OR = 9.9876, CI 8.2338–12.1148, p < 0.0001 |
Outpatients | 56/134 (41.8) | 78/134 (58.2) | ||
Medicine | 24/27 (88.9) | 3/27 (11.1) | ||
Surgery | 197/232 (84.9) | 35/232 (15.1) | ||
Pediatric and prematurity | 12/22 (54.5) | 10/22 (45.5) | ||
Specimen source | Blood | 47/59 (79.7) | 12/59 (20.3) | Pus wound had an OR = 7.0304, CI 4.2416–11.658, p < 0.0001 |
Sputum | 85/91 (93.4) | 6/91 (6.6) | ||
Urine | 39/98 (39.8) | 59/98 (60.2) | ||
Wound Pus | 254/274 (92.7) | 20/274 (7.3) | ||
Body fluid | 23/25 (92.0) | 2/25 (8.0) | ||
Tissue | 14/15 (93.3) | 1/15 (6.7) | ||
Others | 16/60 (26.7) | 44/60 (73.3) | ||
Year | 2010 | 66/90 (73.3) | 24/90 (26.7) | p = 0.3933 |
2011 | 53/66 (80.3) | 13/66 (19.7) | ||
2012 | 75/91 (82.4) | 16/91 (17.6) | ||
2013 | 59/75 (78.7) | 16/75 (21.3) | ||
2014 | 87/106 (82.1) | 19/106 (17.9) | ||
2015 | 90/126 (71.4) | 36/126 (28.6) | ||
2016 | 48/68 (70.6) | 20/68 (29.4) |
No of A. baumannii Cases/No of Admission per Year | A. baumannii Isolates Rate/1000 Admissions | No of A. baumannii MDR Cases/No of Admission per Year | A. baumannii MDR Rate/1000 Admissions | ||
---|---|---|---|---|---|
Year | 2010 | 90/17,587 | 5.11 | 66/17,587 | 3.75 |
2011 | 66/18,191 | 3.62 | 53/18,191 | 2.91 | |
2012 | 91/19,856 | 4.58 | 75/19,856 | 3.77 | |
2013 | 75/20,752 | 3.61 | 59/20,752 | 2.84 | |
2014 | 106/21,324 | 4.97 | 87/21,324 | 4.08 | |
2015 | 126/20,174 | 6.24 | 90/20,174 | 4.46 | |
Departments | Surgery | 231/48,680 | 4.75 | 197/48,680 | 4.05 |
ICU/CCU | 207/8855 | 23.38 | 189/8855 | 21.34 | |
Pediatrics | 22/16,992 | 1.29 | 12/16,992 | 0.71 | |
Medical | 27/43,357 | 0.62 | 24/43,357 | 0.55 |
Antibiotic Name | Antibiotic Subclass | %R | %I | %S |
---|---|---|---|---|
Amikacin | Aminoglycosides | 37.1 | 9.7 | 53.2 |
Gentamicin | Aminoglycosides | 62.6 | 7.7 | 29.7 |
Tobramycin | Aminoglycosides | 37.2 | 19.1 | 43.8 |
Imipenem | Carbapenems | 68.9 | 3.2 | 27.9 |
Meropenem | Carbapenems | 75.1 | 5.4 | 19.5 |
Tetracycline | Tetracyclines | 65.4 | 10.3 | 24.3 |
Tigecycline | Tetracyclines | 7.2 | 23.8 | 69 |
Minocycline | Tetracyclines | 23.8 | 20.1 | 56.1 |
Ampicillin | Aminopenicillins | 88.2 | 10.9 | 0.9 |
Ampicillin/Sulbactam | Beta-lactam + Inhibitors | 60 | 15.7 | 24.3 |
Piperacillin/Tazobactam | Beta-lactam + Inhibitors | 80.3 | 1.3 | 18.3 |
Cefazolin | Cephalosporin I | 99.5 | 0 | 0.5 |
Cefoxitin | Cephalosporin II | 99.5 | 0 | 0.5 |
Cefuroxime | Cephalosporin II | 97.7 | 1.5 | 0.8 |
Ceftazidime | Cephalosporin III | 77.9 | 5.1 | 17 |
Cefotaxime | Cephalosporin III | 85.3 | 11.6 | 3.2 |
Ceftriaxone | Cephalosporin III | 83.5 | 15.4 | 1.2 |
Cefepime | Cephalosporin IV | 81.9 | 2.2 | 15.9 |
Aztreonam | Monobactams | 95.5 | 3.7 | 0.7 |
Ciprofloxacin | Fluoroquinolones | 83 | 0.3 | 16.8 |
Levofloxacin | Fluoroquinolones | 62.5 | 23.3 | 14.3 |
Trimethoprim/Sulfamethoxazole | Folate pathway inhibitors | 49.9 | 0 | 50.1 |
Colistin | Polymyxin | 2.3 | 0 | 97.7 |
Resistance (%) | Susceptible (%) | ||
---|---|---|---|
Carbapenemase screening test | imipenem | 100% | 0% |
meropenem | 99.2% | 0.8% | |
Positive (%) | Negative (%) | ||
Carbapenemase Confirmation test | imipenem with EDTA | 97.7% | 2.3% |
meropenem with EDTA | 99.2% | 0.8% |
Positive (%) | Negative (%) | |
---|---|---|
OXA-51 | 100% | 0% |
OXA-23 | 98.5% | 1.5% |
KPC | 0% | 100% |
IMP | 0.8% | 99.2% |
VIM | 26.6% | 73.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Tamimi, M.; Albalawi, H.; Alkhawaldeh, M.; Alazzam, A.; Ramadan, H.; Altalalwah, M.; Alma’aitah, A.; Al Balawi, D.; Shalabi, S.; Abu-Raideh, J.; et al. Multidrug-Resistant Acinetobacter baumannii in Jordan. Microorganisms 2022, 10, 849. https://doi.org/10.3390/microorganisms10050849
Al-Tamimi M, Albalawi H, Alkhawaldeh M, Alazzam A, Ramadan H, Altalalwah M, Alma’aitah A, Al Balawi D, Shalabi S, Abu-Raideh J, et al. Multidrug-Resistant Acinetobacter baumannii in Jordan. Microorganisms. 2022; 10(5):849. https://doi.org/10.3390/microorganisms10050849
Chicago/Turabian StyleAl-Tamimi, Mohammad, Hadeel Albalawi, Mohamd Alkhawaldeh, Abdullah Alazzam, Hassan Ramadan, Majd Altalalwah, Ahmad Alma’aitah, Dua’a Al Balawi, Sharif Shalabi, Jumana Abu-Raideh, and et al. 2022. "Multidrug-Resistant Acinetobacter baumannii in Jordan" Microorganisms 10, no. 5: 849. https://doi.org/10.3390/microorganisms10050849
APA StyleAl-Tamimi, M., Albalawi, H., Alkhawaldeh, M., Alazzam, A., Ramadan, H., Altalalwah, M., Alma’aitah, A., Al Balawi, D., Shalabi, S., Abu-Raideh, J., Khasawneh, A. I., Alhaj, F., & Hijawi, K. (2022). Multidrug-Resistant Acinetobacter baumannii in Jordan. Microorganisms, 10(5), 849. https://doi.org/10.3390/microorganisms10050849