Evaluation of a Novel Chromogenic Medium for the Detection of Pseudomonas aeruginosa in Respiratory Samples from Patients with Cystic Fibrosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Media
2.2. Quality Control of Culture Media
2.3. Culture of Clinical Samples
2.4. Identification
2.5. Interpretation of Chromogenic Culture Media
2.6. Statistical Analysis
3. Results
3.1. Detection of P. aeruginosa from Clinical Samples
3.2. Selectivity of the Four Test Media
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UK Cystic Fibrosis Registry Annual Data Report. 2019. Available online: https://www.cysticfibrosis.org.uk/sites/default/files/2020-12/2019%20Registry%20Annual%20Data%20report_Sep%202020.pdf (accessed on 20 December 2021).
- Jurado-Martín, I.; Sainz-Mejías, M.; McClean, S. Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. Int. J. Mol. Sci. 2021, 22, 3128. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.; La Rosa, R.; Bartell, J.A.; Marvig, R.L.; Haagensen, J.A.J.; Sommer, L.M.; Molin, S.; Johansen, H.K. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 2021, 19, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.; Waters, V. Factors influencing the acquisition and eradication of early Pseudomonas aeruginosa infection in cystic fibrosis. J. Cyst. Fibros. 2021, 20, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Marguet, C.; Houdouin, V.; Pin, I.; Reix, P.; Huet, F.; Mittaine, M.; Ramel, S.; Wizla-Derambure, N.; Abely, M.; Dalphin, M.L.; et al. Chest physiotherapy enhances detection of Pseudomonas aeruginosa in nonexpectorating children with cystic fibrosis. ERJ Open Res. 2021, 7, 00513–2020. [Google Scholar] [CrossRef] [PubMed]
- Eyns, H.; Piérard, D.; De Wachter, E.; Eeckhout, L.; Vaes, P.; Malfroot, A. Respiratory bacterial culture sampling in expectorating and non-expectorating patients with cystic fibrosis. Front. Pediatr. 2018, 6, 403. [Google Scholar] [CrossRef] [PubMed]
- Căpățînă, D.; Feier, B.; Hosu, O.; Tertiș, M.; Cristea, C. Analytical methods for the characterization and diagnosis of infection with Pseudomonas aeruginosa: A critical review. Anal. Chim. Acta 2022, 1204, 339696. [Google Scholar] [CrossRef] [PubMed]
- Public Health England. Investigation of Bronchoalveolar Lavage; Sputum and Associated Specimens. UK Standards for Microbiology Investigations. B 57 Issue 3.5. 2019. Available online: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-andconsistency-in-clinical-laboratories (accessed on 20 December 2021).
- Doern, G.V.; Brogden-Torres, B. Optimum use of selective plated media in primary processing of respiratory tract specimens from patients with cystic fibrosis. J. Clin. Microbiol. 1992, 30, 2740–2742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laine, L.; Perry, J.D.; Lee, J.; Oliver, M.; James, A.L.; De La Foata, C.; Halimi, D.; Orenga, S.; Galloway, A.; Gould, F.K. A novel chromogenic medium for isolation of Pseudomonas aeruginosa from the sputa of cystic fibrosis patients. J. Cyst. Fibros. 2009, 8, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Public Health England. Matrix-Assisted Laser Desorption/Ionisation-Time of Flight Mass Spectrometry (MALDI-TOF MS) Test. UK Standards for Microbiology Investigations. TP 40 Issue 1.1. 2019. Available online: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical-laboratories (accessed on 20 October 2021).
- Bedernjak, A.F.; Zaytsev, A.V.; Babolat, M.; Cellier, M.; James, A.L.; Orenga, S.; Perry, J.D.; Groundwater, P.W.; Anderson, R.J. Synthesis and evaluation of novel 7- and 8-aminophenoxazinones for the detection of β-alanine aminopeptidase activity and the reliable identification of Pseudomonas aeruginosa in clinical samples. J. Med. Chem. 2016, 59, 4476–4487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, J.D. A decade of development of chromogenic culture media for clinical microbiology in an era of molecular diagnostics. Clin. Microbiol. Rev. 2017, 30, 449–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaytsev, A.V.; Anderson, R.J.; Bedernjak, A.; Groundwater, P.W.; Huang, Y.; Perry, J.D.; Orenga, S.; Roger-Dalbert, C.; James, A. Synthesis and testing of chromogenic phenoxazinone substrates for beta-alanyl aminopeptidase. Org. Biomol. Chem. 2008, 6, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.E.; Farmer, S.W.; Speert, D.P. New selective medium for Pseudomonas aeruginosa with phenanthroline and 9-chloro-9-[4-(diethyamino)phenyl]-9,10-dihydro-10-phenylacridine hydrochloride (C-390). J. Clin. Microbiol. 1988, 26, 1910–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havelaar, A.H.; During, M.; Delfgou-Van Asch, E.H. Comparative study of membrane filtration and enrichment media for the isolation and enumeration of Pseudomonas aeruginosa from sewage, surface water, and swimming pools. Can. J. Microbiol. 1985, 31, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Hallas, G.; Hepworth, J.D.; Waring, D.R. Extended conjugation in di- and tri-arylmethanes. Part I. Electronic absorption spectra of 9,9-dimethylfluorene analogues of crystal violet and malachite green. J. Chem. Soc. (B) 1970, 975–979. [Google Scholar] [CrossRef]
- Shin, K.J.; Yoo, K.H.; Kim, D.J.; Park, S.W.; Ko, B.S.; Lee, S.J.; Huh, J.D.; Park, S.Y. Synthesis and biological properties of new 1β-methylcarbapenems. Bioorg. Med. Chem. Lett. 1998, 8, 1607–1612. [Google Scholar] [CrossRef]
CHROMagar™ Pseudomonas | CHROMID® P. aeruginosa | PACA | |||||||
---|---|---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | |
Achromobacter species | 2 | 9 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
Acinetobacter species | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Burkholderia multivorans | 0 | 0 | 1 | 0 | 2 | 2 | 0 | 1 | 1 |
Candida albicans | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Candida parapsilosis | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Escherichia coli | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Ochrobactrum anthropi | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Pseudomonas stutzeri | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Pseudomonas fluorescens group | 3 | 5 | 5 | 0 | 3 | 3 | 0 | 0 | 0 |
Pseudomonas oryzihabitans | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 1 |
Pseudomonas putida group | 2 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
Other Pseudomonas species | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
Serratia species | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 0 |
Stenotrophomonas maltophilia | 9 | 13 | 14 | 0 | 0 | 0 | 0 | 1 | 1 |
Total false positives | 22 | 39 | 47 | 2 | 7 | 9 | 3 | 3 | 3 |
Positive predictive value (%) | 61 | 58 | 56 | 93 | 87 | 86 | 92 | 95 | 95 |
CHROMagar™ Pseudomonas | CHROMID® P. aeruginosa | PACA | MacConkey Agar | |
---|---|---|---|---|
No growth | 91 | 82 | 93 | 68 |
Achromobacter species | 18 | 19 | 14 | 16 |
Acinetobacter species | 1 | 1 | 2 | 2 |
Bordetella species | 0 | 1 | 0 | 0 |
Burkholderia multivorans | 1 | 2 | 1 | 1 |
Candida albicans | 1 | 0 | 0 | 0 |
Candida parapsilosis | 1 | 1 | 0 | 5 |
Enterobacter species | 3 | 4 | 7 | 8 |
Enterococcus faecalis | 0 | 0 | 0 | 3 |
Escherichia coli | 3 | 2 | 0 | 6 |
Klebsiella aerogenes | 1 | 1 | 0 | 0 |
Klebsiella oxytoca | 0 | 0 | 4 | 5 |
Klebsiella pneumoniae | 0 | 0 | 0 | 1 |
Klebsiella variicola | 0 | 2 | 0 | 2 |
Morganella morganii | 0 | 0 | 0 | 1 |
Neisseria subflava | 0 | 1 | 0 | 0 |
Ochrobactrum anthropi | 0 | 1 | 0 | 1 |
Pantoea agglomerans | 0 | 0 | 0 | 2 |
Proteus mirabilis | 1 | 1 | 0 | 3 |
Providencia rettgeri | 0 | 0 | 1 | 0 |
Pseudescherichia vulneris | 0 | 0 | 0 | 1 |
Pseudomonas fluorescens group | 5 | 4 | 3 | 3 |
Pseudomonas oryzihabitans | 2 | 2 | 1 | 1 |
Pseudomonas putida group | 5 | 4 | 3 | 2 |
Pseudomonas stutzeri | 1 | 1 | 0 | 1 |
Other Pseudomonas species | 2 | 2 | 0 | 0 |
Ralstonia mannitolilytica | 0 | 1 | 0 | 1 |
Rothia mucilaginosa | 0 | 1 | 0 | 0 |
Serratia species | 3 | 4 | 7 | 10 |
Staphylococcus aureus | 0 | 3 | 0 | 0 |
Stenotrophomonas maltophilia | 15 | 16 | 8 | 14 |
Streptococcus oralis | 0 | 0 | 0 | 1 |
Streptococcus sanguinis | 0 | 0 | 0 | 1 |
Total | 63 | 74 | 51 | 91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truong, T.V.; Twist, A.; Zaytsev, A.; Marrs, E.C.L.; Perry, A.; Turnbull, G.; Orenga, S.; Stanforth, S.P.; Perry, J.D. Evaluation of a Novel Chromogenic Medium for the Detection of Pseudomonas aeruginosa in Respiratory Samples from Patients with Cystic Fibrosis. Microorganisms 2022, 10, 1004. https://doi.org/10.3390/microorganisms10051004
Truong TV, Twist A, Zaytsev A, Marrs ECL, Perry A, Turnbull G, Orenga S, Stanforth SP, Perry JD. Evaluation of a Novel Chromogenic Medium for the Detection of Pseudomonas aeruginosa in Respiratory Samples from Patients with Cystic Fibrosis. Microorganisms. 2022; 10(5):1004. https://doi.org/10.3390/microorganisms10051004
Chicago/Turabian StyleTruong, Thang V., Alexander Twist, Andrey Zaytsev, Emma C. L. Marrs, Audrey Perry, Graeme Turnbull, Sylvain Orenga, Stephen P. Stanforth, and John D. Perry. 2022. "Evaluation of a Novel Chromogenic Medium for the Detection of Pseudomonas aeruginosa in Respiratory Samples from Patients with Cystic Fibrosis" Microorganisms 10, no. 5: 1004. https://doi.org/10.3390/microorganisms10051004