Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery
Abstract
:1. Introduction
2. Bioactive Metabolites from Endophytic Fungi as Novel Drug Candidates
3. Molecular Mechanisms of Plant–Endophytic Fungi Interactions
4. Scientific Approaches for Natural Product-Based Drug Discovery
5. Traditional Scientific Methods
6. Deep Learning Approaches
7. High-Throughput Strategies
8. Pharmacological Metabolites: Case Studies, Mechanism of Action, and Commercial Success
9. Taxol Production
10. CPT Production
11. Vinca Alkaloids (Vincristine/Vinblastine) Production
12. Podophyllotoxin Production
13. Existing/Potential Bottlenecks in Biotechnological Applications
14. Strategies for Yield Enhancement of Pharmacologically Important Metabolites
15. Metabolic Engineering of Endophytic Fungi
16. Mutagenesis of Endophytic Fungi
17. Co-Culture of Different Endophyte Strains
18. Optimization of Culture Conditions
19. Epigenetic Modifiers
20. Translational Success and Outcome of Endophyte Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Staniek, A.; Woerdenbag, J.; Kayser, O. Endophytes exploiting biodiversity for the improvement of natural product-based drug discovery. J. Plant Interact. 2008, 3, 75–98 doiorg/101080/17429140801886293. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, P.; Srivastava, Y.; Bae, H. Endophytes: Trend of pharmaceutical design of Endophytes as anti-infective. Curr Top. Med. Chem. 2021, 21, 1572–1586. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, M.; Venkateswara, S.V. Secondary metabolite production by Endophytic fungi: The gene clusters, nature, and expression. In Endophytes and Secondary Metabolites Reference Series in Phytochemistry; Jha, S., Ed.; 2019; pp. 475–490. ISBN 978-3-319-90483-2. [Google Scholar]
- Tiwari, P.; Katyal, A.; Khan, M.F.; Ashraf, G.M.; Ahmed, K. Lead optimization resources in drug discovery studies. Endocr. Metab. Immune Disord.-Drug Targets 2019, 19, 754–774. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Khare, T.; Shriram, V.; Bae, H.; Kumar, V. Exploring synthetic biology strategies for producing potent antimicrobial phytochemicals. Biotechnol. Adv. 2021, 48, 107729. [Google Scholar] [CrossRef]
- Tiwari, P.; Srivastava, Y.; Kumar, V. Antimicrobial peptides as effective agents against drug-resistant pathogens. In Antimicrobial Resistance; Kumar, V., Shriram, V., Paul, A., Thakur, M., Eds.; Springer: Singapore, 2022; pp. 289–322. [Google Scholar] [CrossRef]
- Tiwari, P.; Srivastava, Y.; Bajpai, M.; Sharma, A. Bioactive metabolites from natural sources: Prospects and significance in drug discovery and research. Bioingene PSJ 2021, 1, 1–14. [Google Scholar]
- Singh, S.B.; Ondeyka, J.G.; Tsipouras, N.; Ruby, C.; Sardana, V.; Schulman, M.; Sanchez, M.; Pelaez, F.; Stahlhut, M.W.; Munshi, S.; et al. Hinnuliquinone, a C2-symmetric dimeric non-peptide fungal metabolite inhibitor of HIV-1 protease. Biochem. Biophys. Res. Commun. 2004, 324, 108–113. [Google Scholar] [CrossRef]
- Guo, B.; Dai, J.; Ng, S.; Huang, Y.; Leong, C.; Ong, W.; Carte, B.K. Cytonic acids A & B: Novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J. Nat. Prod. 2000, 63, 602–604. [Google Scholar] [CrossRef]
- Strobel, G.A.; Ford, E.; Worapong, J.; Harper, J.K.; Arif, A.M.; Grant, D.M.; Fung, P.C.; Chan, K. Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 2002, 60, 179–183. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, P.P.; Yu, L.J. An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr. Microbiol. 2009, 59, 227–232. [Google Scholar] [CrossRef]
- Matsumoto, A.; Takahashi, Y. Endophytic actinomycetes: Promising source of novel bioactive compounds. J. Antibiot. 2017, 70, 514–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croteau, R.; Ketchum, R.E.B.; Long, R.M.; Kaspera, R.; Wildung, M.R. Taxol biosynthesis and molecular genetics. Phytochem Rev. 2006, 5, 75–97. [Google Scholar] [CrossRef] [Green Version]
- Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993, 260, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Venieraki, A.; Dimou, M.; Katinakis, P. Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Hell. Plant Protect. J. 2017, 10, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Ludwig-Müller, J. Plants and endophytes: Equal partners in secondary metabolite production? Biotechnol. Lett. 2015, 37, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Sabat, J.; Parida, R.; Kerkatta, D. Solubilization of tricalcium phosphate and rock phosphate by microbes isolated from chromite, iron and manganese mines. Acta Bot. Croat. 2007, 66, 197–204. [Google Scholar]
- Nath, R.; Sharma, G.; Barooah, M. Efficiency of tricalcium phosphate solubilization by two different endophytic Penicillium sp. isolated from tea (Camellia sinensis L.). Eur. J Exp. Biol. 2012, 2, 1354–1358. [Google Scholar]
- Rinu, K.; Sati, P.; Pandey, A. Trichoderma gamsii (NFCCI 2177): A newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J. Basic Microbiol. 2014, 54, 408–417. [Google Scholar] [CrossRef]
- Chadha, N.; Prasad, R.; Varma, A. Plant promoting activities of fungal endophytes associated with tomato roots from central Himalaya, India and their interaction with Piriformospora indica. Int. J. Pharm. Bio Sci. 2015, 6, 333–343. [Google Scholar]
- Spagnoletti, F.; Tobar, N.; Di Pardo, A.F.; Chiocchio, V.; Lavado, R. Dark septate endophytes present different potential to solubilize calcium, iron and aluminium phosphates. Appl. Soil Ecol. 2017, 111, 25–32. [Google Scholar] [CrossRef]
- Hamayun, M.; Khan, S.A.; Ahmad, N.; Tang, D.-S.; Kang, S.-M.; Na, C.-I.; Sohn, E.-Y.; Hwang, Y.-H.; Shin, D.-H.; Lee, B.-H. Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J. Microbiol. Biotechnol. 2009, 25, 627–632. [Google Scholar] [CrossRef]
- Khan, A.R.; Ullah, I.; Waqas, M.; Shahzad, R.; Hong, S.J.; Park, G.S.; Jung, B.K.; Lee, I.J.; Shin, J.H. Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J. Microbiol. Biotechnol. 2015, 31, 1461–1466. [Google Scholar] [CrossRef]
- Johnson, L.J.; de Bonth, A.C.; Briggs, L.R.; Caradus, J.R.; Finch, S.C.; Fleetwood, D.J.; Fletcher, L.R.; Hume, D.E.; Johnson, R.D.; Popay, A.J.; et al. The exploitation of Epichloae endophytes for agricultural benefit. Fungal Diver. 2013, 60, 171–188. [Google Scholar] [CrossRef]
- Sane, S.; Mehta, S. Isolation and evaluation of rock phosphate solubilizing fungi as potential biofertilizer. J Fertil Pestic. 2015, 6, 156–160. [Google Scholar] [CrossRef]
- Šišić, A.; Baćanović, J.; Finckh, M.R. Endophytic Fusarium equiseti stimulates plant growth and reduces root rot disease of pea (Pisum sativum L.) caused by Fusarium avenaceum and Peyronellaea pinodella. Eur. J Plant Pathol. 2017, 148, 271–282. [Google Scholar] [CrossRef]
- Xia, Y.; Sahib, M.R.; Amna, A.; Opiyo, S.O.; Zhao, Z.; Gao, Y.G. Culturable endophytic fungal communities associated with plants in organic and conventional farming systems and their effects on plant growth. Sci. Rep. 2019, 9, 1669. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F., Jr.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef] [PubMed]
- Abro, M.A.; Sun, X.; Li, X.; Jatoi, G.H.; Guo, L.D. Biocontrol potential of Fungal endophytes against Fusarium oxysporum f. sp. cucumerinum causing Wilt in Cucumber. Plant Pathol. J. 2019, 35, 598–608. [Google Scholar] [CrossRef]
- Kord, H.; Fakheri, B.; Ghabooli, M.; Solouki, M.; Emamjomeh, A.; Khatabi, B.; Sepehri, M.; Salekdeh, G.H.; Ghaffari, M.R. Root endophytic fungus Piriformospora indica improves drought stress adaptation in barley by metabolic and proteomic reprogramming. Environ. Exp. Bot. 2019, 157, 197–210. [Google Scholar] [CrossRef]
- Sun, C.; Johnson, J.M.; Cai, D.; Sherameti, I.; Oelmüller, R.; Lou, B. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J. Plant Physiol. 2010, 167, 1009–1017. [Google Scholar] [CrossRef]
- Zahoor, M.; Irshad, M.; Rahman, H.; Qasim, M.; Afridi, S.G.; Qadir, M.; Hussain, A. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Ecotoxicol. Environ. Safety 2017, 142, 139–149. [Google Scholar] [CrossRef]
- Bibi, S.; Hussain, A.; Hamayun, M.; Rahman, H.; Iqbal, A.; Shah, M.; Irshad, M.; Qasim, M.; Islam, B. Bioremediation of hexavalent chromium by endophytic fungi; safe and improved production of Lactuca sativa L. Chemosphere 2018, 211, 653–663. [Google Scholar] [CrossRef]
- Soldi, E.; Casey, C.; Murphy, B.R.; Hodkinson, T.R. Fungal endophytes for Grass based bioremediation: An endophytic consortium isolated from Agrostis stolonifera stimulates the growth of Festuca arundinacea in lead contaminated soil. J. Fungi 2020, 6, 254. [Google Scholar] [CrossRef]
- Soleimani, M.; Afyuni, M.; Hajabbasi, M.A.; Nourbakhsh, F.; Sabzalian, M.R.; Christensen, J.H. Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 2010, 81, 1084–1090. [Google Scholar] [CrossRef]
- Marín, F.; Navarrete, H.; Narvaez-Trujillo, A. Total petroleum hydrocarbon degradation by endophytic fungi from the Ecuadorian Amazon. Advan. Microbiol. 2018, 8, 1029–1053. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.bard.edu. (accessed on 12 July 2021).
- Ling, O.M.; Teen, L.P.; Mujahid, A.; Proksch, P.; Müller, M. Initial screening of Mangrove endophytic fungi for antimicrobial compounds and heavy metal biosorption potential. Sains Malaysiana 2016, 45, 1063–1071. [Google Scholar]
- Gao, T.; Qin, D.; Zuo, S.; Peng, Y.; Xu, J.; Yu, B.; Song, H.; Dong, J. Decolorization and detoxification of triphenylmethane dyes by isolated endophytic fungus, Bjerkandera adusta SWUSI4 under non-nutritive conditions. Bioresour. Bioprocess. 2020, 7, 53. [Google Scholar] [CrossRef]
- Aishwarya, S.A.N.I.; Nagam, N.; Vijaya, T.; Netala, R.V. Screening and identification of heavy metal-tolerant endophytic fungi Lasiodiplodia theobromae from Boswellia ovalifoliolata an endemic plant of Tirumala hills. Asian J Pharm. Clin. Res. 2017, 10, 488–491. [Google Scholar] [CrossRef] [Green Version]
- Pietro-Souza, W.; Pereira, F.C.; Mello, I.S.; Stachack, F.F.F.; Terezo, A.J.; da Cunha, C.N.; White, J.F.; Li, H.; Soares, M.A. Mercury resistance and bioremediation mediated by endophytic fungi. Chemosphere 2020, 240, 124874. [Google Scholar] [CrossRef]
- Kusari, S.; Hertweck, C.; Spiteller, M. Chemical ecology of endophytic funSgi: Origins of secondary metabolites. Chem. Biol. 2012, 19, 792–798. [Google Scholar] [CrossRef] [Green Version]
- Strobel, G.A.; Pliam, N.B. Immuno suppressants diterpene compounds. Google Patents 1997. [Google Scholar]
- Puri, S.C.; Nazir, A.; Chawla, R.; Arora, R.; Riyaz-ul-Hasan, S.; Amna, T.; Ahmed, B.; Verma, V.; Singh, S.; Sagar, R.; et al. The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J. Biotechnol. 2006, 122, 494–510. [Google Scholar] [CrossRef] [PubMed]
- Mir, R.A.; Kaushik, P.S.; Chowdery, R.A.; Anuradha, M. Elicitation of forskolin in cultures of Rhizactonia bataticola-a phytochemical synthesizing endophytic fungi. Int. Pharm. Pharmaceut. Sci. 2015, 7, 185–189. [Google Scholar]
- Wang, X.J.; Min, C.L.; Ge, M.; Zuo, R.H. An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. Curr. Microbiol. 2014, 68, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Kaul, S.; Ahmed, M.; Zargar, K.; Sharma, P.; Dhar, M.K. Prospecting endophytic fungal assemblage of Digitalis lanata Ehrh. (foxglove) as a novel source of digoxin: A cardiac glycoside. 3 Biotech 2013, 3, 335–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maehara, S.; Simanjuntak, P.; Ohashi, K.; Shibuya, H. Composition of endophytic fungi living in Cinchona ledgeriana (Rubiaceae). J Nat. Med. 2010, 64, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Devari, S.; Jaglan, S.; Kumar, M.; Deshidi, R.; Guru, S.; Bhushan, S.; Kushwaha, M.; Gupta, A.P.; Gandhi, S.G.; Sharma, J.P.; et al. Capsaicin production by Alternaria alternata, an endophytic fungus from Capsicum annum; LC–ESI–MS/MS analysis. Phytochemistry 2014, 98, 183–189. [Google Scholar] [CrossRef]
- Meshram, V.; Gupta, M. Endophytic fungi: A quintessential source of potential bioactive compounds. In Endophytes for a Growing World; Hodkinson, T.R., Doohan, F.M., Saunders, M.J., Murphy, B.R., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 277–309. [Google Scholar] [CrossRef]
- Zazopoulos, E.; Huang, K.; Staffa, A.; Liu, W.; Bachmann, B.O.; Nonaka, K.; Ahlert, J.; Thorson, J.S.; Shen, B.; Farnet, C.M. A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat Biotech. 2003, 21, 187–190. [Google Scholar] [CrossRef]
- Lautru, S.; Deeth, R.J.; Bailey, L.M.; Challis, G.L. Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat. Chem. Biol. 2005, 1, 265–269. [Google Scholar] [CrossRef]
- Tyo, K.E.; Alper, H.S.; Stephanopoulos, G.N. Expanding the metabolic engineering toolbox: More options to engineer cells. Trends Biotechnol. 2007, 25, 132–137. [Google Scholar] [CrossRef]
- Tan, R.X.; Zou, W.X. Endophytes: A rich source of functional metabolites. Nat. Prod. Rep. 2000, 18, 448–459. [Google Scholar] [CrossRef]
- Tiwari, P.; Bae, H. Horizontal gene transfer and endophytes: An implication for the acquisition of novel traits. Plants 2020, 9, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, S.Y.; Zhou, S.F.; Gao, S.H.; Yu, Z.L.; Zhang, S.F.; Tang, M.K.; Sun, J.N.; Ma, D.L.; Han, Y.F.; Fong, W.F.; et al. New perspectives on how to discover drugs from Herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid. Based Complement. Altern. Med. 2013, 2, 627375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Zhang, Q.Y.; Jia, M.; Ming, Q.L.; Yue, W.; Rahman, K.; Qin, L.-P.; Han, T. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds. Crit. Rev. Microbiol. 2016, 42, 454–473. [Google Scholar] [CrossRef] [PubMed]
- Berdy, J. Bioactive microbial metabolites. J. Antibiot. 2005, 58, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Mousa, W.K.; Shearer, C.; Limay-Rios, V.; Ettinger, C.L.; Eisen, J.A.; Raizada, M.N. Roothair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nat. Microbiol. 2016, 1, 16167. [Google Scholar] [CrossRef] [Green Version]
- Soliman, S.S.M.; Greenwood, J.S.; Bombarely, A.; Mueller, L.A.; Tsao, R.; Mosser, D.D.; Raizada, M.N. An endophyte constructs fungicide-containing extracellular barriers for its host plant. Curr. Biol. 2015, 25, 2570–2576. [Google Scholar] [CrossRef] [Green Version]
- Hamayun, M.; Hussain, A.; Khan, S.A.; Kim, H.Y.; Khan, A.L.; Waqas, M.; Irshad, M.; Iqbal, A.; Rehman, G.; Jan, S.; et al. Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front. Microbiol. 2017, 8, 686. [Google Scholar] [CrossRef] [Green Version]
- Panaccione, D.G.; Beaulieu, W.T.; Cook, D. Bioactive alkaloids in vertically transmitted fungal endophytes. Funct. Ecol. 2014, 28, 299–314. [Google Scholar] [CrossRef] [Green Version]
- Jamwal, V.L.; Gandhi, S.G. Endophytes as a source of High-value phytochemicals: Present scenario and future outlook. In Endophytes and Secondary Metabolites; Reference Series in Phytochemistry; Jha, S., Ed.; Springer Nature: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, B.Y.; Yang, X.L. Antifungal monoterpene derivatives from the plant endophytic fungus Pestalotiopsis foedan. Chem. Biodivers. 2016, 13, 1422–1425. [Google Scholar] [CrossRef]
- Deshmukh, S.K.; Prakash, V.; Ranjan, N. Recent advances in the discovery of bioactive metabolites from Pestalotiopsis. Phytochem. Rev. 2017, 16, 883–920. [Google Scholar] [CrossRef]
- Wu, L.S.; Jia, M.; Chen, L.; Zhu, B.; Dong, H.X.; Si, J.P.; Peng, W.; Han, T. Cytotoxic and antifungal constituents isolated from the metabolites of endophytic fungus DO14 from Dendrobium officinale. Molecules 2016, 21, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanney, J.B.; McMullin, D.R.; Green, B.D.; Miller, J.D.; Seifert, K.A. Production of antifungal and anti-insect an metabolites by the Picea endophyte Diaporthe maritima sp. nov. Fungal Biol. 2016, 120, 1448–1457. [Google Scholar] [CrossRef] [PubMed]
- Morandini, L.M.B.; Neto, A.T.; Pedroso, M.; Antoniolli, Z.I.; Burrow, R.A.; Bortoluzzi, A.J.; Mostardeiro, M.A.; da Silva, U.F.; Dalcol, I.I.; Morel, A.F. Lanostane-type triterpenes from the fungal endophyte Scleroderma UFSMSc1 (Persoon) Fries. Bioorg. Med. Chem. Lett. 2016, 26, 1173–1176. [Google Scholar] [CrossRef] [PubMed]
- Mousa, W.K.; Schwan, A.L.; Raizada, M.N. Characterization of antifungal natural products isolated from endophytic fungi of finger millet (Eleusine coracana). Molecules 2016, 21, 1171. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yang, Y.; Miao, C.P.; Zheng, Y.K.; Chen, J.L.; Chen, Y.W.; Xu, L.H.; Guang, H.L.; Ding, Z.T.; Zhao, L.X. Koningiopisins A-H, polyketides with synergistic antifungal activities from the endophytic fungus Trichoderma koningiopsis. Planta Med. 2016, 82, 371–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shentu, X.; Zhan, X.; Ma, Z.; Yu, X.; Zhang, C. Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic. Braz. J. Microbiol. 2014, 45, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Budhiraja, A.; Nepali, K.; Sapra, S.; Gupta, S.; Kumar, S.; Dhar, K.L. Bioactive metabolites from an endophytic fungus of Aspergillus species isolated from seeds of Gloriosa superba Linn. Med. Chem. Res. 2013, 22, 323–329. [Google Scholar] [CrossRef]
- Ma, Y.M.; Qiao, K.; Kong, Y.; Li, M.Y.; Guo, L.X.; Miao, Z.; Fan, C. A new isoquinolone alkaloid from an endophytic fungus R22 of Nerium indicum. Nat. Prod. Res. 2017, 31, 951–958. [Google Scholar] [CrossRef]
- Li, W.; Xu, J.; Li, F.; Xu, L.; Li, C. A new antifungal isocoumarin from the endophytic fungus Trichoderma sp.09 of Myoporum bontioides A. Gray. Pharmacogn. Mag. 2016, 12, 259–261. [Google Scholar] [CrossRef]
- Ibrahim, S.R.M.; Elkhayat, E.S.; Mohamed, G.A.A.; Fat’hi, S.M.; Ross, S.A. Fusarithioamide A, a new antimicrobial and cytotoxic benzamide derivative from the endophytic fungus Fusarium chlamydosporium. Biochem. Biophys. Res. Commun. 2016, 479, 211–216. [Google Scholar] [CrossRef]
- Mondol, M.A.M.; Farthouse, J.; Islam, M.T.; Schueffler, A.; Laatsch, H. Metabolites from the endophytic fungus Curvularia sp. M12 act as motility inhibitors against Phytophthora capsici Zoospores. J. Nat. Prod. 2017, 80, 347–355. [Google Scholar] [CrossRef]
- Ibrahim, S.R.M.; Abdallah, H.M.; Elkhayat, E.S.; Al Musayeib, N.M.; Asfour, H.Z.; Zayed, M.F.; Mohamed, G.A. Fusaripeptide A: New antifungal and anti-malarial cyclodepsipeptide from the endophytic fungus Fusarium sp. J. Asian Nat. Prod. Res. 2018, 20, 75–85. [Google Scholar] [CrossRef]
- Taware, R.; Abnave, P.; Patil, D.; Rajamohananan, P.R.; Raja, R.; Soundararajan, G.; Kundu, G.C.; Ahmad, A. Isolation, purification and characterization of Trichothecinol-A produced by endophytic fungus Trichothecium sp. and its antifungal, anticancer and antimetastatic activities. Sustain. Chem. Process. 2014, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Hussain, H.; Kock, I.; Al-Harras, A.; Al-Rawahi, A.; Abbas, G.; Green, I.R.; Shah, A.; Badshah, A.; Saleem, M.; Draeger, S.; et al. Antimicrobial chemical constituents from endophytic fungus Phoma sp. Asian. Pac. J. Trop. Med. 2014, 7, 699–702. [Google Scholar] [CrossRef] [Green Version]
- Lai, D.; Wang, A.; Cao, Y.; Zhou, K.; Mao, Z.; Dong, X.; Tian, J.; Xu, D.; Dai, J.; Peng, Y.; et al. Bioactive dibenzo-α-pyrone derivatives from the endophytic fungus Rhizopycnis vagum Nitaf22. J. Nat. Prod. 2016, 79, 2022–2031. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Root, N.; Jabeen, F.; Al-Harras, A.; Al-Rawahi, A.; Ahmad, M.; Hassan, Z.; Abba, G.; Mabood, F.; Shah, A.; et al. Seimatoric acid and colletonoic acid: Two new compounds from the endophytic fungi, Seimatosporium sp. and Colletotrichum sp. Chin. Chem. Lett. 2014, 25, 1577–1579. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, J.; Sun, Q.Q.; Qin, J.C.; Pescitelli, G.; Gao, J.M. Characterization of cytochalasins from the endophytic Xylaria sp. and their biological functions. J. Agric. Food Chem. 2014, 62, 10962–10969. [Google Scholar] [CrossRef]
- Lin, Z.; Wen, J.; Zhu, T.; Fang, Y.; Gu, Q.; Zhu, W. Chrysogenamide A from an endophytic fungus associated with Cistanche deserticola and its neuroprotective effect on SH-SY5Y cells. J. Antibiot. 2008, 61, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.S.; Zhang, Y.Y.; Yan, W.; Cao, L.L.; Xiao, Y.; Ye, Y.H.; Zhao, S.S.; Zhang, Y.Y.; Yan, W.; Cao, L.L.; et al. Chaetomium globosum CDW7, a potential biological control strain and its antifungal metabolites. FEMS Microbiol. Lett. 2017, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, P.; Huo, J.; Kurtan, T.; Mandi, A.; Antus, S.; Tang, H.; Draeger, S.; Schulz, B.; Hussain, H.; Krohn, K.; et al. Structural and stereochemical studies of hydroxyanthraquinone derivatives from the endophytic fungus Coniothyrium sp. Chirality 2013, 25, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Liu, X.; Guo, L.; Che, Y.; Liu, L. 2H-Pyran-2-one and2H-Furan-2-one derivatives from the plant endophytic fungus Pestalotiopsis fici. Chem. Biodivers. 2013, 10, 2007–2013. [Google Scholar] [CrossRef] [PubMed]
- Rukachaisirikul, V.; Buadam, S.; Sukpondma, Y.; Phongpaichit, S.; Sakayaroj, J.; Hutadilok-Towatana, N. Indanone and mellein derivatives from the Garcinia-derived fungus Xylaria sp. PSU-G12. Phytochem. Lett. 2013, 6, 135–138. [Google Scholar] [CrossRef]
- Sica, V.P.; Rees, E.R.; Tchegnon, E.; Bardsley, R.H.; Raja, H.A.; Oberlies, N.H. Spatial and temporal profiling of griseofulvin production in Xylaria cubensis using mass spectrometry mapping. Front. Microbiol. 2016, 7, 544. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.H.; Zeraik, M.L.; de Oliveira, C.M.; Teles, H.L.; Trevisan, H.C.; Pfenning, L.H.; Nicolli, C.P.; Young, M.C.M.; Mascarenhas, Y.P.; Abreu, L.M.; et al. Lactone derivatives produced by a Phaeoacremonium sp., an endophytic fungus from Senna spectabilis. J. Nat. Prod. 2017, 80, 1674–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, S.R.M.; Elkhayat, E.S.; Mohamed, G.A.; Khedr, A.I.M.; Fouad, M.A.; Kotb, M.H.R.; Ross, S.A. Aspernolides F and G, new butyrolactones from the endophytic fungus Aspergillus terreus. Phytochem. Lett. 2015, 14, 84–90. [Google Scholar] [CrossRef]
- Kajula, M.; Ward, J.M.; Turpeinen, A.; Tejesvi, M.V.; Hokkanen, J.; Tolonen, A.; Hakkanen, H.; Picart, P.; Ihalainen, J.; Sahl, H.G.; et al. Bridged epipolythiodiketopiperazines from Penicillium raciborskii, an endophytic fungus of Rhododendron tomentosum Harmaja. J. Nat. Prod. 2016, 79, 685–690. [Google Scholar] [CrossRef]
- Pereira, C.B.; de Oliveira, D.M.; Hughes, A.F.S.; Kohlhoff, M.; Vieira, M.L.A.; Martins Vaz, A.B.; Ferreira, M.C.; Carvalho, C.R.; Rosa, L.H.; Rosa, C.A.; et al. Endophytic fungal compounds active against Cryptococcus neoformans and C. gattii. J. Antibiot. 2015, 68, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Li, T.X.; Yang, M.H.; Wang, X.B.; Wang, Y.; Kong, L.Y. Synergistic antifungal meroterpenes and dioxolanone derivatives from the endophytic fungus Guignardia sp. J. Nat. Prod. 2015, 78, 2511–2520. [Google Scholar] [CrossRef]
- Meng, X.; Mao, Z.; Lou, J.; Xu, L.; Zhong, L.; Peng, Y.; Zhou, L.; Wang, M. Benzopyranones from the endophytic fungus Hyalodendriella sp. Ponipodef12 and their bioactivities. Molecules 2012, 17, 11303–11314. [Google Scholar] [CrossRef]
- Mao, Z.; Lai, D.; Liu, X.; Fu, X.; Meng, J.; Wang, A.; Wang, X.; Sun, W.; Liu, Z.L.; Zhou, L.; et al. Dibenzo-α-pyrones: A new class of larvicidal metabolites against Aedes aegypti from the endophytic fungus Hyalodendriella sp. Ponipodef12. Pest Manag. Sci. 2017, 73, 1478–1485. [Google Scholar] [CrossRef]
- Liang, X.A.; Ma, Y.M.; Zhang, H.C.; Liu, R. A new helvolic acid derivative from an endophytic Fusarium sp. of Ficus carica. Nat. Prod. Res. 2016, 30, 2407–2412. [Google Scholar] [CrossRef] [PubMed]
- McMullin, D.R.; Green, B.D.; Miller, J.D. Antifungal sesquiterpenoids and macrolides from an endophytic Lophodermium species of Pinus strobus. Phytochem. Lett. 2015, 14, 148–152. [Google Scholar] [CrossRef]
- Talontsi, F.M.; Dittrich, B.; Schueffler, A.; Sun, H.; Laatsch, H. Epicoccolides: Antimicrobial and antifungal polyketides from an endophytic fungus Epicoccum sp. associated with Theobroma cacao. Eur. J. Org. Chem. 2013, 2013, 3174–3180. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, Q.; Gao, Y.Q.; Tang, J.J.; Zhang, A.L.; Gao, J.M. Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. J. Agric. Food Chem. 2014, 62, 3584–3590. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.; Yang, Y.H.; Li, X.N.; Zou, C.; Zhao, P.J. Diterpenoids from the endophytic fungus Botryosphaeria sp. P483 of the Chinese herbal medicine Huperzia serrata. Molecules 2015, 20, 16924–16932. [Google Scholar] [CrossRef] [Green Version]
- Chapla, V.M.; Zeraik, M.L.; Leptokarydis, I.H.; Silva, G.H.; Bolzani, V.S.; Young, M.C.M.; Pfenning, L.H.; Araujo, A.R. Antifungal compounds produced by Colletotrichum gloeosporioides, an endophytic fungus from Michelia champaca. Molecules 2014, 19, 19243–19252. [Google Scholar] [CrossRef] [Green Version]
- Mousa, W.K.; Schwan, A.; Davidson, J.; Auzanneau, F.I.; Strange, P.; Liu, H.; Zhou, T.; Raizada, M.N. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products. Front. Microbiol. 2015, 6, 1157. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, Y.Y.; Ding, D.D.; Yu, S.P.; Wang, L.W. A study on the secondary metabolites of endophytic fungus Chaetomium cupreum ZJWCF079 in Macleaya cordata. Health Res. 2013, 33, 94–96. [Google Scholar]
- Hussain, H.; Root, N.; Jabeen, F.; Al-Harrasi, A.; Ahmad, M.; Mabood, F.; Hassan, Z.; Shah, A.; Green, I.R.; Schulz, B.; et al. Microsphaerol and seimatorone: Two new compounds isolated from the endophytic fungi, Microsphaeropsis sp. and Seimatosporium sp. Chem. Biodivers. 2015, 12, 289–294. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Zhang, Y.; Zheng, B.; Zhang, C.; Wang, L. Isolation and identification of an endophytic fungus Pezicula sp. in Forsythia viridissima and its secondary metabolites. World. J. Microbiol. Biotechnol. 2014, 30, 2639–2644. [Google Scholar] [CrossRef]
- Cao, L.L.; Zhang, Y.Y.; Liu, Y.J.; Yang, T.T.; Zhang, J.L.; Zhang, Z.G.; Shen, L.; Liu, J.Y.; Ye, Y.H. Anti-phytopathogenic activity of sporothriolide, a metabolite from endophyte Nodulisporium sp. A21 in Ginkgo biloba. Pestic. Biochem. Physiol. 2016, 129, 7–13. [Google Scholar] [CrossRef]
- Carvalho, C.R.; Wedge, D.E.; Cantrell, C.L.; Silva-Hughes, A.F.; Pan, Z.; Moraes, R.M.; Madoxx, V.L.; Rosa, L.H. Molecular phylogeny, diversity, and bioprospecting of endophytic fungi associated with wild ethnomedicinal North American plant Echinacea purpurea (Asteraceae). Chem. Biodivers. 2016, 13, 918–930. [Google Scholar] [CrossRef]
- Nalli, Y.; Mirza, D.N.; Wani, Z.A.; Wadhwa, B.; Mallik, F.A.; Raina, C.; Chaubey, A.; Riyaz-Ul-Hassan, S.; Ali, A. Phialomustin A-D, new antimicrobial and cytotoxic metabolites from an endophytic fungus, Phialophora mustea. RSC Adv. 2015, 5, 95307–95312. [Google Scholar] [CrossRef]
- Hussain, H.; Kliche-Spory, C.; Al-Harrasi, A.; Al-Rawahi, A.; Abbas, G.; Green, I.R.; Schulz, B.; Krohn, K.; Shah, A. Antimicrobial constituents from three endophytic fungi. Asian Pac. J. Trop. Med. 2014, 7, S224–S227. [Google Scholar] [CrossRef]
- Shan, T.; Tian, J.; Wang, X.; Mou, Y.; Mao, Z.; Lai, D.; Dai, J.; Peng, Y.; Zhou, L.; Wang, M. Bioactive spirobisnaphthalenes from the endophytic fungus Berkleasmium sp. J. Nat. Prod. 2014, 77, 2151–2160. [Google Scholar] [CrossRef]
- Ola, A.R.B.; Debb, A.; Kurtán, T.; Brötz-Oesterhelt, H.; Aly, A.H.; Proksch, P. Dihydroanthracenone metabolites from the endophytic fungus Diaporthe melonis isolated from Annona squamosa. Tetrahedron Lett. 2014, 55, 3147–3150. [Google Scholar] [CrossRef]
- Strobel, G.A.; Miller, R.V.; Miller, C.; Condron, M.; Teplow, D.B.; Hess, W.M. Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 1999, 145, 1919–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, W.X.; Meng, J.C.; Lu, H.; Chen, G.X.; Shi, G.X.; Zhang, T.Y.; Tan, R.X. Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J. Nat. Prod. 2000, 63, 1529–1530. [Google Scholar] [CrossRef]
- Cota, B.B.; Rosa, L.H.; Caligiorne, R.B.; Rabello, A.L.T.; Alves, T.M.A.; Rosa, C.A.; Zani, C.L. Altenusin, a biphenyl isolated from the endophytic fungus Alternaria sp., inhibits trypanothione reductase from Trypanosoma cruzi. FEMS Microbiol. Lett. 2008, 285, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Song, Y.C.; Liu, J.Y.; Ma, Y.M.; Tan, R.X. Anti-Helicobacter pylori substances from endophytic fungal cultures. World J. Microbiol. Biotechnol. 2005, 21, 553–558. [Google Scholar] [CrossRef]
- Shu, R.G.; Wang, F.W.; Yang, Y.M.; Liu, Y.X.; Tan, R.X. Antibacterial and xanthine oxidase inhibitory cerebrosides from Fusarium sp. IFB-121, and endophytic fungus in Quercus variabilis. Lipids 2004, 39, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Shin, D.S.; Lee, T.; Oh, K.B. Periconicins, two new fusicoccane diterpenes produced by an endophytic fungus Periconia sp. with antibacterial activity. J. Nat. Prod. 2004, 67, 448–450. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, M.; Kopcke, B.; Weber, R.W.S.; Sterner, O.; Anke, H. 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 2004, 65, 2239–2245. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Cai, Y.-Z.; Hyde, K.D.; Corke, H.; Sun, M. Endophytic fungi from Nerium oleander L (Apocynaceae): Main constituents and antioxidant activity. World J. Microbiol. Biotechnol. 2007, 23, 1253–1263 101007/s11274. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.B.; Zeng, Q.G.; Yan, R.M.; Wang, Y.; Zou, Z.R.; Zhu, D. Endophytic fungus Cladosporium cladosporioides LF70 from Huperzia serrata produces Huperzine, A. World J. Microbiol. Biotechnol. 2011, 27, 479–486. [Google Scholar] [CrossRef]
- Martìnez-Luis, S.; Della-Togna, G.; Coley, P.D.; Kursar, T.A.; Gerwick, W.H.; Cubilla-Rios, L. Antileishmanial constituents of the Panamanian endophytic fungus Edenia sp. J. Nat. Prod. 2008, 71, 2011–2014. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Krohn, K.; Draeger, S.; Schulz, B. New Naphthalene-chroman coupling products from the endophytic fungus, Nodulisporium sp. from Erica arborea. Eur. J. Org. Chem. 2009, 2009, 1564–1569. [Google Scholar] [CrossRef]
- Lösgen, S.; Magull, J.; Schulz, B.; Draeger, S.; Zeeck, A. Isofusidienols: Novel chromone-3-oxepines produced by the endophytic fungus Chalara sp. Eur. J. Org. Chem. 2008, 2008, 698–703. [Google Scholar] [CrossRef]
- Aly, A.H.; Edrada-Ebel, R.; Wray, V.; Müller, W.E.G.; Kozytska, S.; Hentschel, U.; Proksch, P.; Ebel, R. Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry 2008, 69, 1716–1725. [Google Scholar] [CrossRef] [PubMed]
- Kjer, J.; Wray, V.; Edrada-Ebel, R.A.; Ebel, R.; Pretsch, A.; Lin, W.H.; Proksch, P. Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J. Nat. Prod. 2009, 72, 2053–2057. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Tian, R.; Liu, S.; Chen, X.; Guo, L.; Che, Y. Pestalotheols AD, bioactive metabolites from the plant endophytic fungus Pestalotiopsis theae. J. Nat. Prod. 2008, 71, 664–668. [Google Scholar] [CrossRef]
- Debbab, A.; Aly, A.H.; Edrada-Ebel, R.A.; Wray, V.; Müller, W.E.G.; Totzke, F.; Zirrgiebel, U.; Schächtele, C.; Kubbutat, M.H.G.; Lin, W.H.; et al. Bioactive metabolites from the endophytic fungus Stemphylium globuliferum isolated from Mentha pulegium. J. Nat. Prod. 2009, 72, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.H.; Debbab, A.; Edrada-Ebel, R.; Wray, V.; Müller, W.E.; Lin, W.; Ebel, R.; Proksch, P. A new tetrahydrofuran derivative from the endophytic fungus Chaetomium sp. isolated from Otanthus maritimus. Z Naturforsch C. 2009, 64, 350–354. [Google Scholar] [CrossRef]
- Ouyang, J.; Mao, Z.; Guo, H.; Xie, Y.; Cui, Z.; Sun, J.; Wu, H.; Wen, X.; Wang, J.; Shan, T. Mollicellins O⁻R, four new Depsidones isolated from the endophytic fungus Chaetomium sp. Eef-10. Molecules 2018, 23, 3218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aly, A.H.; Edrada-Ebel, R.; Indriani, I.D.; Wray, V.; Müller, W.E.G.; Frank, T.; Zirrgiebel, U.; Schächtele, C.; Kubbutat, M.H.G.; Lin, W.H.; et al. Cytotoxic metabolites from the fungal endophyte Alternaria sp. and their subsequent detection in its host plant Polygonum senegalense. J. Nat. Prod. 2008, 71, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Wijeratne, E.M.K.; Paranagama, P.A.; Marron, M.T.; Gunatilaka, M.K.; Arnold, A.E.; Gunatilaka, A.A.L. Sesquiterpene quinones and related metabolites from Phyllosticta spinarum, a fungal strain endophytic in Platycladus orientalis of the Sonoran desert. J. Nat. Prod. 2008, 71, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.A.; Longden, J.; Avery, V.M.; Healy, P.C. The isolation, structure determination and cytotoxicity of the new fungal metabolite, trichodermamide C. Bioorg. Med. Chem. Lett. 2008, 18, 2836–2839. [Google Scholar] [CrossRef]
- Xu, J.; Kjer, J.; Sendker, J.; Wray, V.; Guan, H.; Edrada, R.A.; Müller, W.E.G.; Bayer, M.; Lin, W.H.; Wu, J.; et al. Cytosporones, coumarins, and an alkaloid from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. Bioorg Med. Chem. 2009, 17, 7362–7367. [Google Scholar] [CrossRef]
- Xu, J.; Kjer, J.; Sendker, J.; Wray, V.; Guan, H.; Edrada, R.A.; Lin, W.H.; Wu, J.; Proksch, P. Chromones from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. J. Nat. Prod. 2009, 72, 662–665. [Google Scholar] [CrossRef]
- Singh, A.; Singh, D.K.; Kharwar, R.N.; White, J.F.; Gond, S.K. Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: Insights, avenues, and challenges. Microorganisms 2021, 9, 197. [Google Scholar] [CrossRef]
- Zeilinger, S.; García-Estrada, C.; Martín, J.F. Fungal secondary metabolites in the “OMICS” Era. In Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites; Zeilinger, S., Martín, J.F., García-Estrada, C., Eds.; Springer: New York, NY, USA, 2015; pp. 1–12. [Google Scholar]
- Li, S.J.; Zhang, X.; Wang, X.H.; Zhao, C.Q. Novel natural compounds from endophytic fungi with anticancer activity. Eur. J. Med. Chem. 2018, 156, 316–343. [Google Scholar] [CrossRef]
- Rosa, L.H.; Vieira, M.L.A.; Cota, B.B.; Johann, S.; Alves, T.M.A.; Zani, C.L.; Rosa, C.A. Endophytic fungi of tropical forests: A promising source of bioactive prototype molecules for the treatment of neglected diseases. In Drug Development-a case study based insight into modern strategies, Chris Rundfeldt L. (eds), Intech Open, London, United Kingdom, 2011; pp. 469–486. ISBN 978-953-307-257-9.
- Mohammed, S.I.; Patil, M.P.; Patil, R.H.; Maheshwari, V.L. Endophytes: Potential source of therapeutically important secondary metabolites of plant origin. In Endophytes: Crop Productivity and Protection; Springer: Berlin/Heidelberg, Germany, 2017; pp. 95–110. [Google Scholar] [CrossRef]
- Kusari, S.; Pandey, S.P.; Spiteller, M. Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 2013, 91, 81–87. [Google Scholar] [CrossRef]
- Porras-Alfaro, A.; Bayman, P. Hidden fungi, emergent properties: Endophytes and microbiomes. Annu. Rev. Phytopathol. 2011, 49, 291–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicoletti, R.; Fiorentino, A. Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 2015, 5, 918–970. [Google Scholar] [CrossRef] [Green Version]
- Aly, A.H.; Debbab, A.; Kjer, J.; Proksch, P. Fungal endophytes from higher plants: A prolific source of phytochemicals and other bioactive natural products. Fungal Divers. 2010, 41, 1–16. [Google Scholar] [CrossRef]
- George, T.S.; Guru, K.S.S.; Vasanthi, N.S.; Kannan, K.P. Extraction, purification and characterization of chitosan from endophytic fungi isolated from medicinal plants. World J. Sci. Technol. 2011, 1, 43–48. [Google Scholar]
- Soliman, S.S.; Trobacher, C.P.; Tsao, R.; Greenwood, J.S.; Raizada, M.N. A fungal endophyte induces transcription of genes encoding a redundant fungicide pathway in its host plant. BMC Plant Biol. 2013, 13, 93. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.L.; Hamayun, M.; Hussain, J.; Kang, S.-M.; Lee, I.-J. The newly isolated endophytic fungus Paraconiothyrium sp. LK1 produces ascotoxin. Molecules 2012, 17, 1103–1112. [Google Scholar] [CrossRef]
- Harper, J.K.; Barich, D.H.; Hu, J.Z.; Strobel, G.A.; Grant, D.M. Stereochemical analysis by solid-state NMR: structural predictions in Ambuic acid. J. Org. Chem. 2003, 68, 12, 4609–4614. [Google Scholar] [CrossRef]
- Nakayama, J.; Uemura, Y.; Nishiguchi, K.; Yoshimura, N.; Igarashi, Y.; Sonomoto, K. Ambuic acid inhibits the biosynthesis of cyclic peptide quormones in gram-positive bacteria. Antimicrob. Agents Chemother. 2009, 53, 580–586. [Google Scholar] [CrossRef] [Green Version]
- Saxena, S.; Strobel, G.A. Marvellous Muscodor spp.: Update on their biology and applications. Microb. Ecol. 2021, 82, 5–20. [Google Scholar] [CrossRef]
- Devi, P.; Rodrigues, C.; Naik, C.G.; D’Souza, L. Isolation and characterization of antibacterial compound from a Mangrove-endophytic fungus, Penicillium chrysogenum MTCC 5108. Indian J. Microbiol. 2012, 52, 617–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wang, H.; Liu, T.; Xin, Z. A PKS I gene-based screening approach for the discovery of a new polyketide from Penicillium citrinum Salicorn 46. Appl. Microbiol. Biotechnol. 2014, 98, 4875–4885. [Google Scholar] [CrossRef]
- Redecker, D.; Kodner, R.; Graham, L.E. Glomalean fungi from the Ordovician. Science 2000, 289, 1920–1921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Q.Y.; Fang, L.; Yun, M.Q.; Ji, G.W.; Rong, S.H.; Liang, B.L. Endophytic fungi harbored in the root of Sophora tonkinensis Gapnep: Diversity and biocontrol potential against phytopathogens. Microbiol. Open 2017, 6, e437. [Google Scholar] [CrossRef]
- Schulz, B.; Rommert, A.K.; Dammann, U.; Aust, H.J.; Strack, D. The endophyte-host interaction: A balanced antagonism? Mycol. Res. 1999, 103, 1275–1283. [Google Scholar] [CrossRef]
- Schulz, B.; Haas, S.; Junker, C.; Andrée, N.; Schobert, M. Fungal endophytes are involved in multiple balanced antagonisms. Curr. Sci. 2015, 109, 39–45. [Google Scholar]
- Yan, L.; Zhao, H.; Zhao, X.; Xu, X.; Di, Y.; Jiang, C.; Jin, M. Production of bioproducts by endophytic fungi: Chemical ecology, biotechnological applications, bottlenecks, and solutions. Appl. Microbiol. Biotechnol. 2018, 102, 6279–6298. [Google Scholar] [CrossRef] [PubMed]
- Zamioudis, C.; Pieterse, C.M. Modulation of host immunity by beneficial microbes. Mol. Plant Microbe Interact. 2012, 25, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Wawra, S.; Fesel, P.; Widmer, H.; Timm, M.; Seibel, J.; Leson, L.; Kesseler, L.; Nostadt, R.; Hilbert, M.; Langen Zuccaro, A.G. The fungal specific β-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants. Nat. Commun. 2016, 7, 13188. [Google Scholar] [CrossRef]
- Schulz, B.; Boyle, C.; Draeger, S.; Römmert, A.-K.; Krohn, K. Endophytic fungi: A source of novel biologically active secondary metabolites. Mycol. Res. 2002, 106, 996–1004. [Google Scholar] [CrossRef]
- Xiong, Z.Q.; Yang, Y.Y.; Na, Z.; Yong, W. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiol. 2013, 13, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Zhao, H.; Barrero, R.A.; Zhang, B.; Sun, G.; Wilson, I.W.; Xie, F.; Walker, K.D.; Parks, J.W.; Robert, B. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genom. 2014, 15, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusari, S.; Zühlke, S.; Spiteller, M. Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on Camptothecin biosynthesis. J. Nat. Prod. 2011, 74, 764–775. [Google Scholar] [CrossRef]
- Strobel, G.; Daisy, B.; Castillo, U.; Harper, J. Natural products from endophytic microorganisms. J. Nat. Prod. 2004, 67, 257–268. [Google Scholar] [CrossRef]
- Gunatilaka, A.A. Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence. J. Nat. Prod. 2006, 69, 509–526. [Google Scholar] [CrossRef] [Green Version]
- Aghdam, S.A.; Brown, A.M.V. Deep learning approaches for natural product discovery from plant endophytic microbiomes. Environ. Microbiome 2021, 16, 6. [Google Scholar] [CrossRef]
- Kusari, P.; Kusari, S.; Spiteller, M.; Kayser, O. Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology. Appl. Microbiol. Biotechnol. 2015, 99, 5383–5390. [Google Scholar] [CrossRef]
- Pan, R.; Bai, X.; Chen, J.; Zhang, H.; Wang, H. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: A literature review. Front. Microbiol. 2019, 10, 294. [Google Scholar] [CrossRef] [Green Version]
- Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [Green Version]
- Baral, B.; Akhgari, A.; Metsä-Ketelä, M. Activation of microbial secondary metabolic pathways: Avenues and challenges. Synth. Syst. Biotechnol. 2018, 3, 163–178. [Google Scholar] [CrossRef]
- Akone, S.H.; Pham, C.-D.; Chen, H.; Ola, A.R.B.; Ntie-Kang, F.; Proksch, P. Epigenetic modification, co-culture and genomic methods for natural product discovery. Phys. Sci. Rev. 2018, 4, 1–13. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Mohamed, N.Z.; Safan, S.; Yassin, M.A.; Shaban, L.; Shindia, A.A.; Ali, G.S.; Sitohy, M.Z. Restoring the taxol biosynthetic machinery of Aspergillus terreus by Podocarpus gracilior pilger microbiome, with retrieving the ribosome biogenesis proteins of WD40 superfamily. Sci. Rep. 2019, 9, 11534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corre, C.; Song, L.; O’Rourke, S.; Chater, K.F.; Challis, G.L. 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc. Natl. Acad. Sci. USA 2008, 105, 17510–17515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anyaogu, D.C.; Mortensen, U.H. Heterologous production of fungal secondary metabolites in Aspergilli. Front. Microbiol. 2015, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Xiang, S.; Li, L.; Wang, B.; Rajasärkkä, J.; Gröndahl-Yli-Hannuksela, K.; Ai, G.; Metsä-Ketelä, M.; Yang, K. Targeted activation of silent natural product biosynthesis pathways by reporter-guided mutant selection. Metab. Eng. 2015, 28, 134–142. [Google Scholar] [CrossRef]
- Xu, F.; Wu, Y.; Zhang, C.; Davis, K.M.; Moon, K.; Bushin, L.B.; Seyedsayamdost, M.R. A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat. Chem. Biol. 2019, 15, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeister, D.; Keller, N.P. Natural products of filamentous fungi: Enzymes, genes, and their regulation. Nat. Prod. Rep. 2007, 24, 393–416. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.; Lee, J.; Hwang, S. Development of an interspecies interaction model: An experiment on Clostridium cadaveris and Clostridium sporogenes under anaerobic condition. J. Environ. Manag. 2019, 237, 247–254. [Google Scholar] [CrossRef]
- Ravikrishnan, A.; Nasre, M.; Raman, K. Enumerating all possible biosynthetic pathways in metabolic networks. Sci. Rep. 2018, 8, 9932. [Google Scholar] [CrossRef] [Green Version]
- Toju, H.; Tanabe, A.S.; Sato, H. Network hubs in root-associated fungal metacommunities. Microbiome 2018, 6, 116. [Google Scholar] [CrossRef] [Green Version]
- Hannigan, G.D.; Prihoda, D.; Palicka, A.; Soukup, J.; Klempir., O.; Rampula, L.; Durcak, J.; Wurst, M.; Kotowski, J.; Chang, D.; et al. A deep learning genome-mining strategy for biosynthetic gene cluster prediction. Nucleic Acids Res. 2019, 47, e110. [Google Scholar] [CrossRef]
- Ichikawa, N.; Sasagawa, M.; Yamamoto, M.; Komaki, H.; Yoshida, Y.; Yamazaki, S.; Fujita, N. DoBISCUIT: A database of secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. 2013, 41, 408–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starcevic, A.; Zucko, J.; Simunkovic, J.; Long, P.F.; Cullum, J.; Hranueli, D. ClustScan: An integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res. 2008, 36, 6882–6892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conway, K.R.; Boddy, C.N. ClusterMine360: A database of microbial PKS/NRPS biosynthesis. Nucleic Acids Res. 2013, 41, 402–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, S.C.; Charkoudian, L.K.; Medema, M.H. A standardized workflow for submitting data to the minimum information about a biosynthetic gene cluster (MIBiG) repository: Prospects for research-based educational experiences. Stand. Genomic Sci. 2018, 13, 16. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Marcišauskas, S.; Sánchez, B.J.; Domenzain, I.; Hermansson, D.; Agren, R.; Nielsen, J.; Kerkhoven, E.J. RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Comput. Biol. 2018, 14, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S.Y.; Medema, M.H.; Weber, T. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019, 47, W81–W87. [Google Scholar] [CrossRef] [Green Version]
- Latendresse, M.; Krummenacker, M.; Trupp, M.; Karp, P.D. Construction and completion of flux balance models from pathway databases. Bioinformatics 2012, 28, 388–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faust, K.; Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef]
- Stolyar, S.; Van Dien, S.; Hillesland, K.L.; Pinel, N.; Lie, T.J.; Leigh, J.A.; Stahl, D.A. Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 2007, 3, 92. [Google Scholar] [CrossRef]
- Ravikrishnan, A.; Blank, L.M.; Srivastava, S.; Raman, K. Investigating metabolic interactions in a microbial co-culture through integrated modelling and experiments. Comput. Struct. Biotechnol J. 2020, 18, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Cahn, J.K.B.; Wilson, M.C.; Meoded, R.A.; Wiebach, V.; Martinez, A.F.C.; Helfrich, E.J.N.; Albersmeier, A.; Wibberg, D.; Dätwyler, S.; et al. Single-bacterial genomics validates rich and varied specialized metabolism of uncultivated Entotheonella sponge symbionts. Proc. Natl. Acad. Sci. USA 2018, 115, 1718–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuang, X.; Sun, S.; Wei, J.; Li, Y.; Sun, C. Iso-Seq analysis of the Taxus cuspidata transcriptome reveals the complexity of Taxol biosynthesis. BMC Plant Biol. 2019, 19, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://dtp.cancer.gov/timeline/flash/success_stories/s2_taxol (accessed on 12 July 2021).
- Available online: https://en.wikipedia.org/wiki/Paclitaxel (accessed on 12 July 2021).
- Puri, S.C.; Verma, V.; Amna, T.; Qazi, G.N.; Spiteller, M. An endophytic fungus from Nothapodytes foetida that produces camptothecin. J. Nat. Prod. 2005, 68, 1717–1719. [Google Scholar] [CrossRef]
- Shweta, S.; Gurumurthy, B.R.; Ravikanth, G.; Ramanan, U.S.; Shivanna, M.B. Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid, camptothecine. Phytomedicine 2013, 20, 337–342. [Google Scholar] [CrossRef]
- Guo, B.; Li, H.; Zhang, L. Isolation of a fungus producing vinblastine. J. Yunnan Univ. 1998, 20, 214–215. [Google Scholar]
- Lingqi, Z.; Bo, G.; Haiyan, L.; Songrong, Z.; Hua, S.; Su, G.; Rongcheng, W. Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Zhong Cao Yao 2000, 31, 805–807. [Google Scholar]
- Eyberger, A.L.; Dondapati, R.; Porter, J.R. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J. Nat. Prod. 2006, 69, 1121–1124. [Google Scholar] [CrossRef]
- Kumara, P.M.; Zuehlke, S.; Priti, V.; Ramesha, B.T.; Shweta, S.; Ravikanth, G.; Vasudeva, R.; Santhoshkumar, T.R.; Spiteller, M.; Shaanker, R.U. Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook. f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Anton. Leeuw. 2012, 101, 323–329. [Google Scholar] [CrossRef]
- Verma, V.C.; Lobkovsky, E.; Gange, A.C.; Singh, S.K.; Prakash, S. Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L. J. Antibiot. 2011, 64, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Pompeng, P.; Sommit, D.; Sriubolmas, N.; Ngamrojanavanich, N.; Matsubara, K.; Pudhom, K. Antiangiogenetic effects of anthranoids from Alternaria sp.; an endophytic fungus in a Thai medicinal plant Erythrina variegata. Phytomedicine 2013, 20, 918–922. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Liu, H.; Guo, K.; Chen, L.; Yang, M.; Chen, Q. Research advances and detection methodologies for microbe-derived acetylcholinesterase inhibitors: A systemic review. Molecules 2017, 22, 176. [Google Scholar] [CrossRef] [PubMed]
- Isaka, M.; Jaturapat, A.; Rukseree, K.; Danwisetkanjana, K.; Tanticharoen, M.; Thebtaranonth, Y. Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J. Nat. Prod. 2001, 64, 1015–1018. [Google Scholar] [CrossRef]
- Maehara, S.; Simanjuntak, P.; Kitamura, C.; Ohashi, K.; Shibuya, H. Cinchona alkaloids are also produced by an endophytic filamentous fungus living in cinchona plant. Chem. Pharm. Bull. 2011, 59, 1073–1074. [Google Scholar] [CrossRef] [Green Version]
- El-Elimat, T.; Raja, H.A.; Graf, T.N.; Faeth, S.H.; Cech, N.B.; Oberlies, N.H. Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). J. Nat. Prod. 2014, 77, 193–199. [Google Scholar] [CrossRef]
- Malik, S.; Cusidó, R.M.; Mirjalili, M.H.; Moyano, E.; Palazón, J.; Bonfill, M. Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review. Process Biochem. 2011, 46, 23–34. [Google Scholar] [CrossRef]
- Strobel, G.; Stierle, A.; Hess, W.M. Taxol formation in yew-Taxus. Plant Sci. 1993, 92, 1–12. [Google Scholar] [CrossRef]
- Available online: https://menafn.com/1100419587/Global-Paclitaxel-Sales-Market-Report-2020 (accessed on 12 July 2021).
- Schiff, P.B.; Horwitz, S.B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. USA 1980, 77, 1561–1565. [Google Scholar] [CrossRef] [Green Version]
- Strobel, G.A.; Stierle, A.; Stierle, D.; Hess, W.M. Taxomyces andreanae a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew. Mycotaxon 1993, 47, 71–78. [Google Scholar]
- Garyali, S.; Kumar, A.; Reddy, M.S. Enhancement of taxol production from endophytic fungus Fusarium redolens. Biotechnol. Bioprocess Eng. 2014, 19, 908–915. [Google Scholar] [CrossRef]
- Garyali, S.; Kumar, A.; Reddy, M.S. Diversity and antimitotic activity of taxol-producing endophytic fungi isolated from Himalayan yew. Ann. Microbiol. 2014, 64, 1413–1422. [Google Scholar] [CrossRef]
- Kharwar, N.R.; Mishra, A.; Gond, K.; Stierle, S.; Stierle, A. Anticancer compounds derived from fungal endophytes: Their importance and future challenges. Nat. Prod. Rep. 2011, 28, 1208–1228. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Pan, J.; Zhu, X. Taxol producing fungi. In Natural products; Ramawat, K.G., Merillon, J.M., Eds.; Springer: Berlin, Germany, 2013; pp. 2797–2812. [Google Scholar]
- Shankar Naik, B. Functional roles of fungal endophytes in host fitness during stress conditions. Symbiosis 2019, 79, 99–115. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, G.L.; Lu, H.Y.; Zheng, Z.; Huang, Y.; Su, W. Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol. Lett. 2000, 193, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.F.; Ran, X.Q.; Wang, J.F. Isolation and identification of a taxol-producing endophytic fungus from Podocarpus. Acta Microbiol. Sin. 2008, 48, 589–595. [Google Scholar]
- Zhou, X.; Zhu, H.; Liu, L.; Lin, J.; Tang, K. A review: Recent advances and future prospects of taxol-producing endophytic fungi. Appl. Microbiol. Biotechnol. 2010, 86, 1707–1717. [Google Scholar] [CrossRef]
- Zhao, K.; Sun, L.; Wang, X.; Li, X.; Wang, X.; Zhou, D. Screening of high taxol producing fungi by mutagenesis and construction of subtracted cDNA library by Suppression substracted hybridization for differentially expressed genes. Acta Microbiol. Sin. 2011, 51, 923–PMID: 22043793. [Google Scholar] [PubMed]
- Zhao, K.; Lu, Y.; Jin, Y.; Ma, X.; Liu, D.; Wang, X.; Wang, X. Advances and prospects of taxol biosynthesis by endophytic fungi. Chin. J. Biotech. 2016, 2532, 1039–1051. [Google Scholar] [CrossRef]
- Flores-Bustamante, Z.; Rivera-Orduña, F.N.; Martinez-Cárdenas, A.; Flores-Cotera, L.B. Microbial paclitaxel: Advances and perspectives. J. Antibiot. 2010, 63, 460–467. [Google Scholar] [CrossRef] [Green Version]
- Soliman, S.S.M.; Raizada, M.N. Interactions between co-habitating fungi elicit synthesis of taxol from an endophytic fungus in host Taxus plants. Front. Microbiol. 2013, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Beltrametti, F.; Barucco, D.; Rossi, R.; Selva, E.; Marinelli, F. Protoplast fusion and gene recombination in the uncommon Actinomycete Planobispora rosea producing GE2270. J. Antibiot. 2007, 60, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Michielse, C.B.; Hooykaas, P.J.J.; van den Hodel, C.; Ram, A. Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nat. Protocol. 2008, 3, 1671–1678. [Google Scholar] [CrossRef]
- Meyer, V. Genetic engineering of filamentous fungi-progress, obstacles and future trends. Biotechnol. Adv. 2008, 26, 177–185. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Abdel Ghany, S.E.; Ali, G.S. Genome editing approaches: Manipulating of lovastatin and taxol synthesis of filamentous fungi by CRISPR/Cas9 system. Appl. Microbiol. Biotechnol. 2017, 101, 3953–3976. [Google Scholar] [CrossRef]
- Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.I.; Sim, G.A. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J. Am. Chem. Soc. 1966, 88, 3888–3890. [Google Scholar] [CrossRef]
- Samuelsson, G. Drugs of Natural Origin: A Textbook of Pharmacognosy, 5 ed.; Pharmaceutical Press: Stokkholm, Sweden, 2004; ISBN 91-974318-4-2. [Google Scholar]
- Kusari, S.; Zühlke, S.; Spiteller, M. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J. Nat. Prod. 2009, 72, 2–7. [Google Scholar] [CrossRef]
- Pizzolato, J.F.; Saltz, L.B. The camptothecins. Lancet 2003, 361, 2235–2242. [Google Scholar] [CrossRef]
- Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov. 2017, 12, 583–597. [Google Scholar] [CrossRef]
- Isah, T.; Mujib, A. Camptothecin from Nothapodytes nimmoniana: Review on biotechnology applications. Acta Physiol. Plant. 2015, 37, 106. [Google Scholar] [CrossRef]
- Watase, I.; Sudo, H.; Yamazaki, M.; Saito, K. Regeneration of transformed Ophiorrhiza pumila plants producing camptothecin. Plant Biotechnol. 2004, 21, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Pu, X.; Qu, X.; Chen, F.; Bao, J.; Zhang, G.; Luo, Y. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: Isolation, identification, and fermentation conditions optimization for camptothecin production. Appl. Microbiol. Biotechnol. 2013, 97, 9365–9375. [Google Scholar] [CrossRef]
- Clarance, P.; Khusro, A.; Lalitha, J.; Sales, J.; Paul, A. Optimization of camptothecin production and biomass yield from endophytic fungus Fusarium solani strain ATLOY-8. J. Appl. Pharm. Sci. 2019, 9, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.; Shawl, A.S.; Kour, A.; Andrabi, R.; Sudan, P.; Sultan, P.; Verma, V.; Qazi, G.N. An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl. Biochem. Microbiol. 2008, 44, 203–209. [Google Scholar] [CrossRef]
- Mohinudeen, I.A.H.K.; Kanumuri, R.; Soujanya, K.N.; Soujanya, K.N.; Shaanker, R.U.; Srivastava, S. Sustainable production of camptothecin from an Alternaria sp. isolated from Nothapodytes nimmoniana. Sci. Rep. 2021, 11, 1478. [Google Scholar] [CrossRef]
- Ruan, Q.; Patel, G.; Wang, J.; Luo, E.; Zhou, W.; Sieniawska, E.; Hao, X.; Kai, G. Current advances of endophytes as a platform for production of anti-cancer drug camptothecin. Food Chem. Toxicol. 2021, 151, 112113. [Google Scholar] [CrossRef]
- World Health Organization. Model List of Essential Medicines. 2019. Available online: https://www.who.int/groups/expert-committee-on-selection-and-use-of-essential-medicines/essential-medicines-lists (accessed on 23 July 2021).
- Venugopalan, A.; Srivastava, S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol. Adv. 2015, 33, 873–887. [Google Scholar] [CrossRef]
- Balandrin, M.J.; Klocke, J.A. Medicinal, aromatic and industrial materials from plants. In Biotechnology in Agriculture and Forestry: Medicinal and Aromatic Plant; Bajaj, Y.P.S., Ed.; Springer: Berlin, Germany, 1988; Volume 4, pp. 1–36. [Google Scholar]
- Palem, P.P.; Kuriakose, G.C.; Jayabaskaran, C. An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS ONE 2015, 10, e0144476. [Google Scholar] [CrossRef]
- Majumder, A.; Jha, S. Biotechnological approaches for the production of potential anticancer leads podophyllotoxin and paclitaxel: An overview. J. Biol. Sci. 2009, 1, 46–69. [Google Scholar]
- Gordaliza, M.; Castro, M.A.; García-Grávalos, M.D.; Ruiz, P.; Miguel del Corral, J.M.; Feliciano, A.S. Antineoplastic and Antiviral activities of podophyllotoxin related lignans. Arch. Pharm. 1994, 327, 175–179. [Google Scholar] [CrossRef]
- Abd-Elsalam, K.A.; Hashim, A.F. Hidden Fungi as microbial and nano-Factories for anticancer agents. Fungal Genom Biol. 2013, 3, e115. [Google Scholar] [CrossRef]
- Kusari, S.; Lamshoft, M.; Spiteller, M. Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J. Appl. Microbiol. 2009, 107, 1019–1030. [Google Scholar] [CrossRef]
- Ochoa-Villarreal, M.; Howat, S.; Hong, S.; Jang, M.O.; Jin, Y.W.; Lee, E.K.; Loake, G.J. Plant cell culture strategies for the production of natural products. BMB Rep. 2016, 49, 149–158. [Google Scholar] [CrossRef]
- Cortés, F.; Pastor, N. Induction of endoreduplication by topoisomerase II catalytic inhibitors. Mutagenesis 2003, 18, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Nitiss, J.L. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer. 2009, 9, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Froelich-Ammon, S.J.; Osheroff, N. Topoisomerase poisons: Harnessing the dark side of enzyme mechanism. J. Biol. Chem. 1995, 270, 21429–21432. [Google Scholar] [CrossRef] [Green Version]
- Kour, A.; Shawl, A.S.; Rehman, S.; Sultan, P.; Qazi, P.H.; Suden, P.; Khajuria, R.K.; Verma, V. Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J. Microbiol. Biotechnol. 2008, 24, 1115–1121. [Google Scholar] [CrossRef]
- Huang, J.-X.; Zhang, J.; Zhang, X.-R.; Zhang, K.; Zhang, X.; He, X.-R. Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm. Biol. 2014, 52, 1237–1243. [Google Scholar] [CrossRef]
- Charlwood, B.V.; Rhodes, M.J. Secondary Products from Plant Tissue Culture; Clarendon Press: New York, NY, USA, 1990. [Google Scholar]
- Eaton, C.J.; Cox, M.P.; Scott, B. What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci. 2011, 180, 190–195. [Google Scholar] [CrossRef]
- Ahamed, A.; Ahring, B.K. Production of hydrocarbon compounds by endophytic fungi Gliocladium species grown on cellulose. Bioresour. Technol. 2011, 102, 9718–9722. [Google Scholar] [CrossRef]
- Elgendy, M.M.A.A.; Alzahrani, H.A.A.; Elbondkly, A.M.A. Genome shuffling of Mangrove endophytic Aspergillus luchuensis MERV10 for improving the cholesterol-lowering agent lovastatin under solid state fermentation. Mycobiology 2016, 44, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Xiao, Y.; Wang, C.; Liu, D.; Zhang, Y.; Wang, X.; Li, X.; Jin, T. Screening of taxol biosynthesis-related genes in taxol produced from Nodulisporium sylviforme HDF-68 by mRNA differential display. Ann. Microbiol. 2014, 64, 1633–1642. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, W.; Xu, W.; Shen, Y.; Du, L. Optimization of genome shuffling for high-yield production of the antitumor deacetylmycoepoxydiene in an endophytic fungus of mangrove plants. Appl. Microbiol. Biotechnol. 2016, 100, 1–8. [Google Scholar] [CrossRef]
- Long, D.M.; Smidmansky, E.D.; Archer, A.J.; Strobel, G.A. In vivo addition of telomeric repeats to foreign DNA generates chromosomal DNAs in the taxol-producing fungus Pestalotiopsis microspora. Fungal Genet. Biol. 1998, 24, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, B.; Miao, Z.; Tang, K. Transformation of taxol-producing endophytic fungi by restriction enzyme-mediated integration (REMI). FEMS Microbiol. Lett. 2007, 273, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wei, Y.M.; Zhou, X.W.; Lin, J.; Sun, X.F.; Tang, K.X. Agrobacterium tumefaciens mediated genetic transformation of the Taxol-producing endophytic fungus Ozonium sp. EFY21. Genet. Mol. Res. 2013, 12, 2913. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhou, X.; Liu, L.; Lu, J.; Wang, Z.; Yu, G.; Hu, L.; Lin, J.; Sun, X.; Tang, K. An efficient transformation system of taxol-producing endophytic fungus EFY-21 (Ozonium sp.). Afr. J. Biotechnol. 2010, 9, 1726–1733. [Google Scholar] [CrossRef]
- Bian, G.; Yuan, Y.; Tao, H.; Shi, X.; Zhong, X.; Han, Y.; Fu, S.; Fang, C.; Deng, Z.; Liu, T. Production of taxadiene by engineering of mevalonate pathway in Escherichia coli and endophytic fungus Alternaria alternata TPF6. Biotechnol. J. 2017, 12, 1600697. [Google Scholar] [CrossRef]
- Fidan, O.; Zhan, J. Discovery and engineering of an endophytic Pseudomonas strain from Taxus chinensis for efficient production of zeaxanthin diglucoside. J. Biol. Eng. 2019, 13, 66. [Google Scholar] [CrossRef] [Green Version]
- Barrios-Gonzalez, J.; Fernandez, F.J.; Tomasini, A. Microbial secondary metabolites production and strain improvement. Indian J. Biotechnol. 2003, 2, 322–333. [Google Scholar]
- Adrio, J.L.; Demain, A.L. Genetic improvement of processes yielding microbial products. FEMS Microbiol. Rev. 2006, 30, 187–214. [Google Scholar] [CrossRef]
- Kai, Z.; Qingshen, S.; Yanjun, Z.; Wenxiang, P.; Tao, J.; Dongpo, Z. Screening and characterization of a high taxol producing fungus by protoplast mutagenesis. High Technol. Lett. 2009, 15, 220–226. [Google Scholar] [CrossRef]
- Xu, F.; Tao, W.Y.; Cheng, L.; Guo, L.J. Formation and regeneration of protoplasts of taxol-producing endophytic fungus Fusarium maire. J. Food Sci. Biotechnol. 2006, 25, 20–24. [Google Scholar]
- Zhao, K.; Zhou, D.P.; Ping, W.X.; Ge, J. Study on the preparation and regeneration of protoplast from taxol-producing fungus Nodulisporium sylviforme. Nat. Sci. 2004, 2, 52–59. [Google Scholar]
- Zhou, X.; Wei, Y.; Zhu, H.; Wang, Z.; Lin, J.; Liu, L.; Tang, K. Protoplast formation, regeneration and transformation from the taxol-producing fungus Ozonium sp. Afr. J. Biotechnol. 2008, 7, 2017–2024. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Zhao, K.; Ping, W.; Ge, J.; Ma, X.; Jun, L. Study on the mutagenesis of protoplasts from taxol-producing fungus Nodulisporium sylviforme. J. Am. Sci. 2005, 1, 62. [Google Scholar]
- Scherlach, K.; Hertweck, C. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem. 2009, 7, 1753–1760. [Google Scholar] [CrossRef]
- Bhalkar, B.N.; Patil, S.M.; Govindwar, S.P. Camptothecin production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana. Fungal Biol. 2016, 120, 873–883. [Google Scholar] [CrossRef]
- Elmoslamy, S.H.; Elkady, M.F.; Rezk, A.H.; Abdelfattah, Y.R. Applying taguchi design and large-scale strategy for mycosynthesis of nanosilver from endophytic Trichoderma harzianum SYA.F4 and its application against phytopathogens. Sci. Rep. 2017, 7, 45297. [Google Scholar] [CrossRef] [Green Version]
- Bode, H.B.; Bethe, B.; Höfs, R.; Zeeck, A. Big effects from small changes: Possible ways to explore nature’s chemical diversity. Chembiochem 2002, 3, 619–627. [Google Scholar] [CrossRef]
- Thiry, M.; Cingolani, D. Optimizing scale-up fermentation processes. Trends Biotechnol. 2002, 20, 103–105. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Feng, G.; Du, L.; Zeng, D. Biodegradation of diuron by an endophytic fungus Neurospora intermedia DP8-1 isolated from sugarcane and its potential for remediating diuron-contaminated soils. PLoS ONE 2017, 12, e0182556. [Google Scholar] [CrossRef] [Green Version]
- Gracidarodríguez, J.; Gómezvaladez, A.; Tovarjiménez, X.; Amaroreyes, A.; Aranacuenca, A.; Zamudiopérez, E. Optimization of the biosynthesis of naphthoquinones by endophytic fungi isolated of Ferocactus latispinus. Biologia 2017, 72, 1416–1421. [Google Scholar] [CrossRef]
- Bhalkar, B.N.; Bedekar, P.A.; Kshirsagar, S.D.; Govindwar, S.P. Solid state fermentation of soybean waste and an up-flow column bioreactor for continuous production of camptothecine by an endophytic fungus Fusarium oxysporum. RSC Adv. 2016, 6, 56527–56536. [Google Scholar] [CrossRef]
- Soliman, S.S.M.; Raizada, M.N. Darkness: A crucial factor in fungal taxol production. Front. Microbiol. 2018, 9, 353. [Google Scholar] [CrossRef]
- Pettit, R.K. Small-molecule elicitation of microbial secondary metabolites. Microb. Biotechnol. 2011, 4, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Brakhage, A.A.; Schroeckh, V. Fungal secondary metabolites-strategies to activate silent gene clusters. Fungal Genet. Biol. 2011, 48, 15–22. [Google Scholar] [CrossRef]
Biological Application | Endophytic Fungi | Plant Species | Outcome | Reference |
---|---|---|---|---|
Plant growth promotion and agriculture | ||||
Plant growth promotion (PGP) | Penicillium sp. 21 | Camellia sinensis | Mineral-solubilizing function (Ca3(PO4)2 and rock phosphate) | [18,19] |
Penicillium sp. 2 | ||||
Aspergillus sp. MNF | ||||
Trichoderma gamsii (NFCCI 2177) | Lens esculenta | Solubilization of Tricalcium phosphate | [20] | |
Trichoderma peudokoningi | Solanum lycopersicum | Siderophore production, HCN and ammonia production | [21] | |
Chaetomium globosum | ||||
Fusarium oxysporum | ||||
Ophiosphaerella sp. | Triticum aestivum | PGP activities | [22] | |
Cochliobolus sp. | ||||
Cladosporium sphaerospermum | Glycine max | Solubilize calcium phosphate | [23] | |
Fusarium tricinctum RSF-4L | S. nigrum | Production of phytohormones (gibberellins) | [24] | |
Alternaria alternata RSF-6L | ||||
Endophytic fungi | Hordeum murinum subsp. murinum | IAA production, PGP activities Plant yield increase | [25] | |
Biofertilizers/biostimulants for crops | Aspergillus sp. | S. officinarum | Phosphorous solubilization | [26] |
Penicillium sp. 1 | ||||
Penicillium sp. 2 | ||||
Cochliobolus sp. | T. aestivum | Phosphorous solubilization | [26] | |
Curvularia sp. | ||||
Fusarium equiseti | Pisum sativum | Phosphorous solubilization | [27] | |
Coniothyrium aleuritis isolate 42 | Lycopersicon esculentum | Plant biomass increase, fruit yield | [28] | |
Pichia guilliermondii isolate F15 | ||||
Fusarium oxysporum strain NSF2 | ||||
Fusarium proliferatum strain AF04 | ||||
Aspergillus nidulans strain FH5 | ||||
Trichoderma spirale strain YIMPH30310 | ||||
Biocontrol function | Fusarium verticillioides | Zea mays | Restrict Ustilago maydis growth | [29] |
Penicillium sp. | Cucumis sativus | Biocontrol of Fusarium oxysporum f. sp. cucumerinum | [30] | |
Guignardia mangiferae | ||||
Hypocrea sp. | ||||
Neurospora sp. | ||||
Eupenicillium javanicum | ||||
Lasiodiplodia theobromae | ||||
Biotic/abiotic stress tolerance | Piriformospora indica | Hordeum vulgare | Drought stress tolerance | [31] |
P. indica | Brassica rapa | Drought stress tolerance | [32] | |
P. indica | H. vulgare | Biotic/abiotic stress tolerance | [25] | |
Bioremediation | Mucor sp. MHR-7 | Brassica campestris | Metal toxicity reduction | [33] |
Rhizopus sp. CUC23 | Lactuca sativa | Chromium detoxification | [34] | |
A. fumigatus ML43 | ||||
Penicillum radicum PL17 | ||||
Endophytic fungi | Agrostis stolonifera | Bioremediation of lead | [35] | |
Neotyphodium coenophialum | Festuca arundinacea, Festuca pratensis | Bioaugmentation, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) removal from the soil | [36] | |
N. uncinatum | ||||
Verticillium sp. Xylaria sp. | Plants from Ecuadorian Amazon | Degradation of Petroleum hydrocarbon | [37] | |
Endophytic fungi | - | Bioremediation of synthetic plastic polymers | [38] | |
Curvularia sp. | Mangrove sp. | Heavy metal biosorption | [39] | |
Neusartorya sp. | ||||
Bjerkandera adusta SWUSI4 | Sinosenecio oldhamianus | Detoxification of triphenylmethane dyes | [40] | |
Lasiodiplodia theobromae | Boswellia ovalifoliolata | Heavy metal tolerance | [41] | |
Lindgomycetaceae P87 Aspergillus sp. A31 | Aeschynomene fluminensis | Heavy metal resistance, bioremediation | [42] | |
Bioactive metabolites for industrial and pharmacological applications | ||||
Paclitaxel | Taxomyces andreanae T. brevifolia | Pacific yew | Anticancer | [15] |
Azadirachtin A and B | Eupenicillium parvum | Azadirachta indica | Insecticidal | [43] |
Subglutinol A | Fusarium subglutinans | Tripterygium wilfordii | Immuno-suppressant | [44] |
Isopestacin | Pestalotiopsis microspora | Terminalia morobensis | Antifungal, Antioxidant | [11] |
Podophyllotoxin | Trametes hirsuta | Podophyllum hexandrum | Antiviral, Radio-protective | [45] |
Forskolin | Rhizoctonia bataticola | Coleus forskohlii | Anti-HIV, Antitumor | [46] |
Sanguinarine | Fusarium proliferatum | Macleaya cordata | Antihelmintic | [47] |
Digoxin | Alternaria sp. | Digitalis lanata | Cardiotonic | [48] |
Quinine | Phomopsis sp. | Cinchona ledgeriana | Antimalarial | [49] |
Capsaicin | Alternaria alternata | Capsicum annuum | Cardio-protective | [50] |
Endophytic Fungi | Fungi and Fungus-Like Taxa | Plant Association | Bioactivity | Secondary Metabolite | Class of Compound | Active Concentration | Pathogen(s) | Reference |
---|---|---|---|---|---|---|---|---|
Pestalotiopsis foedan | Coelomycetes | Bruguiera sexangula | Antifungal | (3R,4R,6R,7S)-7-hydroxyl-3,7-dimethyl-oxabicyclo [3.3.1] nonan-2-one | Monoterpene lactone | 3.1 µg/mL (MIC) | Botrytis cinerea Phytophthora nicotianae | [65] |
(3R,4R)-3-(7-methylcyclohexenyl)-propanoic acid | 6.3 µg/mL | [66] | ||||||
Pestalotiopsis sp. DO14 | Coelomycetes | Dendrobium officinale | Antifungal, Cytotoxic | (4S,6S)-6-[(1S,2R)-1,2-dihydroxybutyl]-4-hydroxy-4-methoxytetrahydro-2H-pyran-2-one | Monoterpenoid | ≤25 µg/mL (MIC) | Candida albicans Cryptococcus neoformans Trichophyton rubrum Aspergillus fumigatus | [67] |
(6S,2E)-6-hydroxy-3-methoxy-5-oxodec-2-enoic acid | ||||||||
Diaporthe maritima | Coelomycetes | Picea sp. | Antifungal | Phomopsolide A | Dihydropyrones | 25 µM (MIC) | Microbotryum violaceum | [68] |
Phomopsolide B | 250 µM | |||||||
Phomopsolide C | 250 µM | |||||||
Scleroderma UFSM Sc1 | Basidiomycetes | Eucalyptus grandis | Antifungal, Insecticidal | Sclerodol A | Lanostane-type triterpenes | 50 µg/mL (MIC) 50 µg/mL 12.5 µg/mL 25 µg/mL | C. albicans C. tropicalis C. crusei C. parapsilosis | [69] |
Sclerodol B | 25 µg/mL 25 µg/mL 6.25 µg/mL 12.5 µg/mL | |||||||
Fusarium fujikuroi (WF5) | Hyphomycetes | Eleusine coracana | Antifungal | 5-hydroxy 2(3H)-benzofuranone | Furanone | 31.25 µg/mL (MIC) | F. graminearum | [70] |
Harpagoside | Iridoide glycoside | 31.25 µg/mL | ||||||
Trichoderma koningiopsis YIM PH30002 | Hyphomycetes | Panax notoginseng | Antifungal | Koningiopisin C | Polyketides | 32 µg/mL (MIC) 64 µg/mL 32 µg/mL 16 µg/mL | F. oxysporum A. panax F. solani P. cucumerina | [71] |
Trichoderma brevicompactum 0248 | Hyphomycetes | Allium sativum | Antifungal | Trichodermin | Sesquiterpene | EC50 of 0.25 µg/mL 2.02 µg/mL 25.60 µg/mL | R. solani B. cinerea C. lindemuthianum | [72] |
Aspergillus sp. | Hyphomycetes | Gloriosa superba | Antimicrobial, Cytotoxic | 6-methyl-1,2,3-trihydroxy-7,8-cyclohepta-9,12-diene-11-one-5,6,7,8-tetralene-7-acetamide (KL-4) | Tetralene derivative | 25 µg/mL (MIC) 12.5 µg/mL 50 µg/mL | S. cerevisiae C. albicans C. gastricus | [73] |
Penicillium sp. R22 | Hyphomycetes | Nerium indicum | Antifungal | 3-O-methylviridicatin | Isoquinolone alkaloid | 31.2 µg/mL (MIC) | A. brassicae B. cinerea V. mali | [74] |
Viridicatol | 31.2 µg/mL | A. brassicae A. alternata B. cinerea | ||||||
5-hydroxy-8-methoxy-4-phenylisoquinolin-1(2H)-one | 31.2 µg/mL | A. brassicae A. alternata V. mali | ||||||
Trichoderma sp. 09 | Hyphomycetes | Myoporum bontioides | Antifungal | Dichlorodiaportin | Isocoumarin | 6.25–150 µg/mL(MIC) | C. musae Rhizoctonia solani | [75] |
Dichlorodiaportinolide | ||||||||
Fusarium chlamydosporium | Hyphomycetes | Anvillea garcinii | Antimicrobial, Cytotoxic | Fusarithioamide A | Benzamide derivative | 3.1 μg mL−1 (MIC) 4.4 μg mL−1 6.9 μg mL−1 | B. cereus S. aureus E. coli | [76] |
Curvularia sp., strain M12 | Hyphomycetes | Murraya koenigii | Antifungal | Murranofuran A | Dihydrofurans | 0.5 µg/mL | Phytophthora capsici | [77] |
Murranolide A | Oxygenated polyketide | IC50 50–100 µg/mL | ||||||
Murranopyrone | Dihydropyrones | 50–100 µg/mL | ||||||
Murranoic acid A | Dienoic acid | 50–100 µg/mL | ||||||
Fusarium sp. | Hyphomycetes | Mentha longifolia | Antimalarial Antifungal | Fusaripeptide A | Cyclodepsipeptide | IC50 0.24 µM 0.11 µM | C. glabrata C. albicans | [78] |
Trichothecium sp. | Hyphomycetes | Phyllanthus amarus | Anticancer, Antimetastatic, Antifungal | Trichothecinol A | Trichothecenes | 20 µg/mL (MIC) | Cryptococcus albidus HeLa and B16F10 cells MDA-MB-231 cells | [79] |
Phoma sp. | Coelomycetes | Fucus serratus | Antimicrobial | Phomafuranol (3R)-5-hydroxymellein Phomalacton Emodin | Dihydrofuran derivative | NR | M. violaceum | [80] |
(3R)-5-hydroxymellein | 5 mm ZOI | |||||||
Phomalacton | 6 mm | |||||||
Emodin | 5 mm | |||||||
Rhizopycnis vagum Nitaf 22 | Coelomycetes | Nicotiana tabacum | Antimicrobial, Cytotoxic | Rhizopycnin D | Dibenzo-α-pyrone derivatives | IC50 9.9 µg/mL | M. oryzae | [81] |
Colletotrichum sp. | Coelomycetes | Gomera | Antibacterial, Antifungal, Antialgal | Seimatoric acid | Oxobutanoic acid derivative | NR | Microbotryum violaceum | [82] |
Colletonoic acid | Benzoic acid derivative | 7 mm ZOI | B. megaterium C. fusca | |||||
Xylaria sp. XC-16 | Ascomycetes | Toona sinensis | Cytotoxic, Fungicidal | Cytochalasin Z28 | Cytochalasins | 12.5 µM (MIC) | G. saubinetti | [83] |
Penicillium chrysogenum | Hyphomycetes | Cistanche deserticola | Neuroprotective | Chrysogenamide A | Macfortine alkaloids | IC50 1 × 10−4 µM | SH-SY5Y cells | [84] |
Circumdatin G | ||||||||
Benzamide | ||||||||
2′,3′-dihydrosorbicillin(9Z,12Z)-2,3-dihydroxypropyloctadeca-9,12-dienoate | ||||||||
Chaetomium globosum CDW7 | Ascomycetes | Ginkgo biloba | Antifungal | Chaetoglobosin A | Chaetoglobosins | IC50 0.35 µg/mL | S. sclerotiorum | [85] |
Chaetoglobosin D | 0.62 µg/mL | |||||||
Coniothyrium sp. | Coelomycetes | Salsola oppostifolia | Antimicrobial | Coniothyrinones A | Hydroxyanthraquinone | 7.5 mm ZOI | Microbotryum violaceum | [86] |
Coniothyrinones B | 6 mm | |||||||
Coniothyrinones C | 8 mm | |||||||
Coniothyrinones D | 7.5 mm | |||||||
Pestalotiopsis fici | Coelomycetes | Camellia sinensis | Antifungal | Ficipyrone A | α-pyrones | IC50 15.9 µM | Gibberella zeae | [87] |
Xylaria sp. strain F0010 | Ascomycetes | Abies holophylla Garcinia hombroniana | Antioxidant | Griseofulvin | Indanones | IC50 18.0 µg/mL | A. mali | [88,89] |
5.0 µg/mL | B. cinerea | |||||||
1.7 µg/mL | Colletotrichum gloeosporioides | |||||||
11.0 µg/mL | Corticium sasaki | |||||||
30.0 µg/mL | F. oxysporum | |||||||
1.7 µg/mL | M. grisea | |||||||
Phaeoacremonium sp. | Hyphomycetes | Senna spectabilis | Antifungal | Isoaigialone B Isoaigialone C | Lactone derivatives | 5 µg >5 µg | Cladosporium cladosporioides C. sphaerospermum | [90] |
Aigialone | 5 µg | |||||||
Aspergillus terreus | Hyphomycetes | Carthamus lanatus | Anti-microbial, Anti-malarial, Anti-leishmanial | (22E,24R)-stigmasta-5,7,22-trien-3-β-ol | Butyrolactones | IC50 4.38 µg/mL | C. neoformans | [91] |
Aspernolides F | 5.19 µg/mL | |||||||
Penicillium raciborskii | Hyphomycetes | Rhododendron tomentosum | Antifungal | Outovirin C | Bridged epipolythiodiket-opiperazines | 0.38 µM (MIC) | F. oxysporum B. cinerea V. dahlia | [92] |
Mycosphaerella sp. | Ascomycetes | Eugenia bimarginata | Antifungal | 2-amino-3,4-dihydroxy-2-25-(hydroxymethyl)-14-oxo-6,12-eicosenoic acid | Eicosanoic acids | 1.3 to 2.50 µg/mL (MIC) | C. neoformans C. gattii | [93] |
Myriocin | 0.5 µg/mL | |||||||
Guignardia sp. | Ascomycetes | Euphorbia sieboldiana | Antifungal | Guignardone N | Meroterpenes and dioxolanone derivatives | FIC 0.23 | C. albicans | [94] |
Guignardic acid | 0.19 | |||||||
Hyalodendriella sp. | Ascomycetes | Populus deltoides Marsh × P. nigra L. | Antimicrobial | Hyalodendriol C | Dibenzo-α-pyrones | 19.22–98.47 μg/mL (MIC) | Bacillus subtilis Pseudomonas lachrymans Ralstonia solanacearum Xanthomonas vesicatoria Magnaporthe oryzae | [95,96] |
Palmariol B | 16.18–92.21 μg/mL | |||||||
TMC-264 | 16.24–85.46 μg/mL | |||||||
Penicilliumolide B | 17.81–86.32 μg/mL | |||||||
Alternariol 9-methyl ether | 107.19–123.19 μg/mL | |||||||
Fusarium sp. | Hyphomycetes | Ficus carica | Antifungal | Helvolic acid methyl ester | Helvolic acid derivative | 12.5–25 μg/mL (MIC) | B. cinerea C. gloeosporioides F. oxysporum f. sp. niveum Fusarium graminearum Phytophthora capsici | [97] |
Helvolic acid | ||||||||
Hydrohelvolic acid | ||||||||
Lopherdermium nitens DAOM 250027 | Ascomycetes | Pinus strobus | Antifungal | Six phenolic bisabolane-type sesquiterpenoids | Phenolic bisabolane-type sesquiterpenoids | 50 μM (MIC) | Microbotryum violaceum | [98] |
Pyrenophorin | Macrolide | 5 μM | Saccharomyces cerevisiae | |||||
Epicoccum sp. | Ascomycetes | Theobroma cacao | Antimicrobial, Antifungal | Epicolactone | Polyoxygenated polyketides | 20–80 μg per paper disc (MIC) | Pythium ultimum Aphanomyces cochlioides Rhizoctonia solani | [99] |
Epicoccolide A | ||||||||
Epicoccolide B | ||||||||
Botryosphaeria dothidea KJ-1 | Ascomycetes | Melia azedarach | Antifungal, Antibacterial, Antioxidant Cytotoxic | Stemphyperylenol | α-pyridone derivative Ceramide derivative | 1.57 μM (MIC) | Alternaria solani | [100] |
Pycnophorin | 6.25–25 μM | |||||||
Chaetoglobosin C | ||||||||
Djalonensone | ||||||||
Alternariol | ||||||||
β-sitosterol glucoside | ||||||||
5-hydroxymethylfurfural | ||||||||
Botryosphaeria sp. P483 | Ascomycetes | Huperzia serrata | Antifungal, Nematicidal | Botryosphaerin H | Tetranorlabdane diterpenoids | ZOI 9, 7, 7, 8, 8 mm | Gaeumannomyces graminis Fusarium solani Pyricularia oryzae Fusarium moniliforme F. oxysporum | [101] |
13,14,15,16-tetranorlabd-7-en-19,6β:12,17-diolide | 12, 10, 10, 11, 13 mm | |||||||
Colletotrichum gloeosporioides | Coelomycetes | Michelia champaca | Antifungal | 2-phenylethyl 1H-indol-3-yl-acetate | ---- | 5 µg 25 µg (MIC) | Cladosporium cladosporioides C. sphaerospermum | [102] |
Uracil | ||||||||
Cyclo-(S*-Pro-S*-Tyr) Cyclo-(S*-Pro-S*-Val) 2(2-aminophenyl) acetic acid | ||||||||
4-hydroxy-benzamide | ||||||||
2(2-hydroxyphenyl) acetic acid | ||||||||
Phoma sp. WF4 | Coelomycetes | Eleusine coracana | Antifungal | Viridicatol | Viridicatol alkaloid | ZOI 1.8 mm | Fusarium graminearum | [103] |
Tenuazonic acid | Tenuazonic acid | 2 mm | ||||||
Alternariol | Alternariol | 1.5 mm | ||||||
Alternariol monomethyl ether | Ether derivative | 1.5 mm | ||||||
Chaetomium cupreum ZJWCF079 | Ascomycetes | Macleaya cordata | Antifungal | Ergosta-5,7,22-trien-3beta-ol | NR | EC50 125 µg/mL 190 µg/mL | Sclerotinia sclerotiorum B. cinerea | [104] |
Microsphaeropsis sp. | Coelomycetes | Salsola oppositifolia | Antifungal | Microsphaerol | Polychlorinated triphenyl diether | ZOI 9 and 5 mm 9 and 7 mm 8 and 3 mm | Microbotryum violaceum B. megaterium E. coli | [105] |
Seimatosporium sp. | Seimatorone | Naphthalene derivative | ||||||
Mycosphaerella sp. | Ascomycetes | Eugenia bimarginata DC. | Antifungal | 2-amino-3,4-dihydroxy-2-25-(hydroxymethyl)-14-oxo-6,12-eicosenoic acid | Eicosanoic acid | 1.3–2.50 µg/mL (MIC) | C. neoformans C. gattii | [93] |
Myriocin | 0.5 µg/mL | |||||||
Pezicula sp. | Ascomycetes | Forsythia viridissima | Antifungal | Mellein | NR | EC50 48.63 µg/mL | B. cinerea | [106] |
150.90 µg/mL | Colletotrichum orbiculare | |||||||
163.37 µg/mL | Verticillium dahliae | |||||||
159.09 µg/mL | Fusarium oxysporium f. sp. | |||||||
118.83 µg/mL | Cucumerinum | |||||||
161.04 µg/mL | Pyricularia oryzae | |||||||
125.36 µg/mL | Pestalotia diospyri | |||||||
205.01 µg/mL | Pythium ultimum | |||||||
45.98 µg/mL | Sclerotinia sclerotiorum | |||||||
Nodulisporium sp. A21 | Ascomycetes | Ginkgo biloba | Anti-phytopathogenic, Antifungal | Sporothriolide | NR | EC50 3.04 µg/mL 200 µg/mL | Rhizoctonia solani Magnaporthe oryzae | [107] |
Echinacea purpurea | Ascomycetes | Biscogniauxia mediterranea EPU38CA | Antifungal | (−)-5-methylmellein | NR | 300 µM (MIC) | P. obscurans | [108] |
---- | P. viticola | |||||||
(−)-(3R)-8-hydroxy-6-methoxy-3,5-dimethyl-3,4-dihydroisocoumarin | Coumarin | ---- | B. cinerea | |||||
300µM | P. viticola | |||||||
---- | P. obscurans | |||||||
Phialophora mustea | Ascomycetes | Crocus sativus | Antimicrobial, Cytotoxic | Phialomustin C | Azaphilone derivative | IC50 14.3 µM | Candida albicans | [109] |
Phialomustin D | 73.6 µM | |||||||
Plectophomella sp. Physalospora sp. | Ascomycetes | NR | Antifungal, Antibacterial, Herbicidal | (−)-Mycorrhizin A | Mycorrhizin | --- | Ustilago violacea Eurotium repens | [110] |
Cytochalasins E | Cytochalasins | --- | E. repens Mycotypha microspore | |||||
Cytochalasins K | ||||||||
Radicinin | Dihydropyranone | --- | E. repens M. microspore | |||||
Berkleasmium sp. | Ascomycetes | Dioscorea zingiberensis | Antifungal | Diepoxin ζ | Spirobisnaphthalenes | IC50 9.1–124.5 µg/mL | M. oryzae | [111] |
Palmarumycin C11 | ||||||||
Palmarumycin C12 | ||||||||
Cladospirone B | ||||||||
Palmarumycin C6 | ||||||||
1,4,7β-trihydroxy-8-(spirodioxy-1′,8′-naphthyl)-7,8-dihydronaphthalene | ||||||||
Palmarumycin C8 | ||||||||
Diaporthe melonis | Ascomycetes | Annona squamosa | Antimicrobial | Diaporthemins A | Dihydroanthracenone atropodiastereomers | NA | S. aureus 25697 S. aureus ATCC 29213 S. pneumoniae ATCC 49619 | [112] |
Diaporthemins B | NA | S. aureus 25697 S. aureus ATCC 29213 S. pneumoniae ATCC 49619 | ||||||
Flavomannin-6,6′-di-O-methyl ether | 32 μg/mL (MIC) | Staphylococcus aureus 25697 | ||||||
32 μg/mL | S. aureus ATCC 29213 | |||||||
2 μg/mL | Streptococcus pneumoniae ATCC 49619 | |||||||
Cryptosporiopsis quercina | Ascomycetes | Tripterigium wilfordii | Antifungal | Cryptocandin | Lipopeptide | MIC 0.03–0.07 μg/mL | C. albicans, Trichophyton mentagrophytes, Trichophyton rubrum | [113] |
Colletotrichum gloeosporioides | Ascomycetes | Artemesia mongolica | Antifungal | Colletotric acid | Benzoic acid derivative | MIC 25 μg/mL | Bacillus subtilis | [114] |
50 μg/mL | Staphylococcus aureus | |||||||
50 μg/mL | Sarcina lutea | |||||||
50 μg/mL | Helminthosporium sativum | |||||||
Alternaria sp. | Ascomycetes | Trixis vauthieri | Anti-trypanosomiasis, Anti-leishmaniasis | Altenusin | Biphenyl fungal metabolite | IC50 4.3 μM | Trypanothione reductase (TR) inhibitory activity | [115] |
Aspergillus sp. strain CY725 | Hyphomycetes | NR | Antibacterial | Helvolic acid | Helvolic acid | 8.0 µg/mL (MIC) | H. pylori | [116] |
Monomethylsulochrin | 10.0 µg/mL | |||||||
Ergosterol | Sterols | 20.0 µg/mL | ||||||
3b-hydroxy-5a, 8a-epidioxy-ergosta-6, 22-diene | 30.0 µg/mL | |||||||
Fusarium sp. IFB-121 | Hyphomycetes | Quercus variabilis | Antibacterial | Fusaruside | Cerebrosides | 3.9 µg/mL (MIC) | B. subtilis | [117] |
3.9 µg/mL | E. coli | |||||||
1.9 µg/mL | P. fluorescens | |||||||
(2S,2′R,3R,3′E,4E,8E)-1-O-beta-D-glucopyranosyl-2-N-(2′-hydroxy-3′-octadecenoyl)-3-hydroxy-9-methyl-4,8-sphingadienine | 7.8 µg/mL | B. subtilis | ||||||
3.9 µg/mL | E. coli | |||||||
7.8 µg/mL | P. fluorescens | |||||||
Periconia sp. | Ascomycetes | Taxus cuspidata | Antibacterial | Periconicins A | Fusicoccane diterpenes | 3.12 µg/mL (MIC) | Klebsiella pneumoniae | [118] |
Periconicins B | 25 µg/mL | |||||||
F. oxysporum | Hyphomycetes | Lycopersicum esculentum | Nematicidal | 3-hydroxypropionic acid | Propionic acid | LD50 12.5–15 µg/mL | M. incognita | [119] |
Chaetomium sp. | Ascomycetes | Nerium oleander | Antioxidant | NR | NR | IC50 109.8 μg/mL | Inhibited xanthine oxidase activity | [120] |
Cladosporium cladosporioides | Ascomycetes | Huperzia serrata | Prevent neurodegeneration | Huperzine A | NR | 10 μg/mL | Acetylcholinesterase inhibition activity | [121] |
Edenia sp. | Ascomycetes | Petrea volubilis | Antiparasitic | Palmarumycin CP17 | NR | IC50 1.34 μM | Leishmania donovani | [122] |
Palmarumycin CP18 | 0.62 μM | |||||||
Nodulisporium sp. | Ascomycetes | Erica arborea | Antifungal, Antialgal | Nodulisporins D | Naphthalene-Chroman Coupling products | ZOI 8 mm | B. megatarium | [123] |
7 mm | M. violaceum | |||||||
8 mm | C. fusca | |||||||
Nodulisporins E | 7 mm | B. megatarium | ||||||
7 mm | M. violaceum | |||||||
5 mm | C. fusca | |||||||
Nodulisporins F | 8 mm | B. megatarium | ||||||
10 mm | M. violaceum | |||||||
8 mm | C. fusca | |||||||
(3S,4S,5R)-2,4,6-trimethyloct-6-ene-3,5-diol | 0 mm | B. megatarium | ||||||
8 mm | M. violaceum | |||||||
6 mm | C. fusca | |||||||
5-hydroxy-2-hydroxymethyl-4H-chromen-4-one | 0 mm | B. megatarium | ||||||
6 mm | M. violaceum | |||||||
6 mm | C. fusca | |||||||
3-(2,3-dihydroxyphenoxy)-butanoic acid | 0 mm | B. megatarium | ||||||
6 mm | M. violaceum | |||||||
7 mm | C. fusca | |||||||
Chalara sp. | Ascomycetes | Artemisia vulgaris | Antibacterial | Isofusidienol A | Chromone-3-oxepines | ZOI 23 mm | B. subtilis | [124] |
Isofusidienol B | 22 mm | |||||||
Isofusidienol C | 9 mm | |||||||
Isofusidienol D | 8 mm | |||||||
Ampelomyces sp. | Ascomycetes | Urospermum picroides | Cytotoxic | 6-O-methylalaternin | NR | 41.7 μM (MIC) | S. aureus S. epidermidis Enterococcus faecalis | [125] |
Altersolanol A | 37.2–74.4 μM | |||||||
Alternaria sp. | Ascomycetes | Sonneratia alba | Antibiotic | Xanalteric acid I | Phenolic compounds | 343.40–686.81 μM | S. aureus | [126] |
Xanalteric acid II | ||||||||
Pestalotiopsis theae | Coelomycetes | --- | Anti-HIV | Pestalotheol A | NR | NR | HIV-1LAI replication in C8166 cells | [127] |
Pestalotheol B | NR | |||||||
Pestalotheol C | EC50 16.1 μM | |||||||
Pestalotheol D | NR | |||||||
Stemphylium globuliferum | Ascomycetes | Mentha pulegium | Cytotoxic | Alterporriol G and H (mixture) | NR | EC50 2.7 μM | L5178Y lymphoma cells | [128] |
Altersolanol K | ||||||||
Altersolanol L | ||||||||
Stemphypyrone | ||||||||
Chaetomium sp. | Ascomycetes | Otanthus maritimus | Cytotoxic | Aureonitolic acid | Tetrahydrofuran derivative | NA | L5178Y mouse lymphoma cells | [129] |
Cochliodinol | EC50 7.0 μg/mL | |||||||
Isocochliodinol | --- | |||||||
Iindole-3-carboxylic acid | --- | |||||||
Cyclo(alanyltryptophane) | --- | |||||||
Orsellinic acid | 2.7 μg/mL | |||||||
Chaetomium sp. | Ascomycetes | Eucalyptus exserta | Antibacterial | Mollicellin O | Depsidones | IC50 79.44 μg/mL | S. aureus ATCC29213 | [130] |
76.35 μg/mL | S. aureus N50 | |||||||
Mollicellin H | 5.14 μg/mL | S. aureus ATCC29213 | ||||||
6.21 μg/mL | S. aureus N50 | |||||||
Mollicellin I | 70.14 μg/mL | S. aureus ATCC29213 | ||||||
63.15 μg/mL | S. aureus N50 | |||||||
Cytotoxic | Mollicellin G | 19.64 μg/mL | HepG2 cell line | |||||
13.97 μg/mL | Hela cell line | |||||||
Mollicellin H | 6.83 μg/mL | HepG2 cell line | ||||||
--- | Hela cell line | |||||||
Antioxidant | Mollicellin I | --- | HepG2 cell line | |||||
21.35 μg/mL | Hela cell line | |||||||
Mollicellin O | 71.92 μg/mL | DPPH free radical scavenging assay | ||||||
Alternaria sp. | Ascomycetes | Polygonum senegalense | Cytotoxic | Alternariol | Sulfated derivatives of alternariol and its monomethyl ethers | EC50 1.7 μg/mL | L5178Y lymphoma cells | [131] |
Alternariol 5-O-sulfate | 4.5 μg/mL | |||||||
Alternariol 5-O-methyl ether Altenusin Desmethylaltenusin | 7.8 μg/mL | |||||||
2,5dimethyl-7-hydroxychromone Tenuazonic acid | 6.8 μg/mL | |||||||
Altertoxin I | 6.2 μg/mL | |||||||
3′-hydroxyalternariol 5-O-methyl ether | --- | |||||||
Alterlactone | --- | |||||||
Alternaric acid | --- | |||||||
Talaroflavone | --- | |||||||
Altenuene | --- | |||||||
4′-epialtenuene | --- | |||||||
Phyllosticta spinarum | Ascomycetes | Platycladus orientalis | Cytotoxic | Tauranin(+)-(5 S,10 S)-4′-hydroxymethylcyclozonarone | Sesquiterpene quinones | EC50 4.3 μM | NCI-H460 cell lines MCF-7 cell lines SF-268 cell lines PC-3 M cell lines MIA Pa Ca-2 cancer cell lines | [132] |
3-ketotauranin | 1.5 μM | |||||||
3alpha-hydroxytauranin | 1.8 μM | |||||||
12-hydroxytauranin | 3.5 μM | |||||||
Phyllospinarone | 2.8 μM | |||||||
Eupenicillium sp. | Ascomycetes | Glochidion ferdinandi | Cytotoxic | Trichodermamide C | A modified dipeptide | IC50 1.5 μM | Human colorectal carcinoma cell line HCT116 | [133] |
9.3 μM | Human lung carcinoma cell line A549 | |||||||
Pestalotiopsis sp. | Coelomycetes | Rhizophora mucronata | Cytotoxic | Pestalotiopsone F | Pestalasins chromones | EC50 26.89 μM | Murine cancer cell line L5178Y | [134,135] |
Marketed Drug | Commerical Market | Endophyte | Pharmacological Functions | Bottlenecks | References | ||
---|---|---|---|---|---|---|---|
Taxol (Paclitaxel) | $78.77 million (2017) | Taxomyces andreanae Taxus brevifolia | Anticancer-binds to microtubule assembly and delays cell division/growth, Treatment for breast, ovary, and Kaposi’s sarcoma | Biosynthetic complexities, harvestation of the molecule | [15,194,195] | ||
Camptothecin | $2.2 billion (2008) | Entrophospora infrequens Alternaria alternata Fomitopsis sp. Phomopsis sp. | Inhibitor of Topoisomerase enzyme | Yield-loss on repeated sub-culturing | [196,197] | ||
R | R1 | ||||||
Camptothecin (2) | H | H | |||||
9 Methoxycamptothecin (3) | OCH3 | H | |||||
10-Hydroxycamptothecin (4) | H | OH | |||||
Vinca alkaloids (Vinblastine and Vincristine) | - | Alternaria sp. F. oxysporum | Anticancer alkaloids, inhibit microtubule assembly leading to destabilization | Yield-loss on repeated sub-culturing | [198,199] | ||
Podophyllotoxin | $444.1 million (2019) | Phialocephala fortinii | Cytotoxic in U-87 cell line, Antitumor activity in cancer models | Low abundance in plants | [200,45] | ||
Griseofulvin | $5.8 billion (2019) | Xylaria sp. strain F0010 | Antioxidant | Low abundance, production from alternate sources | [89] | ||
Laritin A and B | - | Rhodococcus jostii | Anti-inflammatory, Anticancer, Immunomodulatory properties | Low abundance, Yield-loss on repeated sub-culturing | [13] | ||
Rohitukine | - | Fusarium proliferatum | Cytotoxic against the HCT-116 and MCF7 cell lines | Yield-loss on repeated sub-culturing | [201] | ||
Piperine | $4.87 billion (2020) | Periconia strains | Hepatoprotective Antibacterial | Yield-loss on repeated sub-culturing | [202] https://www.expertmarketresearch.com/reports/piperine-market accessed on 12 July 2021 | ||
Altersolanol | - | Alternaria sp. | Antiangiogenic | Yield-loss on repeated sub-culturing | [203] | ||
Huperzine A | - | Shiraia sp. | Cholinesterase inhibitor | Yield-loss on repeated sub-culturing | [204] | ||
Phomoxanthone A and B | - | Phomopsis sp., BCC 1323 | Cytotoxic against BC-1 cells, KB, and Vero (non-malignant) cells | Yield-loss on repeated sub-culturing | [205] | ||
Quinine | $804.98 million | Phomopsis sp. | Antimalarial agent | Yield-loss on repeated sub-culturing | [206] https://www.prnewswire.com/news-releases/global-quinine-market-review-2015-2018 accessed on 12 July 2021 | ||
Silybin A | - | Aspergillus iizukae | Hepatoprotective | Low abundance, production from alternate sources | [207] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, P.; Bae, H. Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms 2022, 10, 360. https://doi.org/10.3390/microorganisms10020360
Tiwari P, Bae H. Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms. 2022; 10(2):360. https://doi.org/10.3390/microorganisms10020360
Chicago/Turabian StyleTiwari, Pragya, and Hanhong Bae. 2022. "Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery" Microorganisms 10, no. 2: 360. https://doi.org/10.3390/microorganisms10020360
APA StyleTiwari, P., & Bae, H. (2022). Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms, 10(2), 360. https://doi.org/10.3390/microorganisms10020360