The Arginine Catabolism-Derived Amino Acid l-ornithine Is a Chemoattractant for Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. DNA Manipulation and Electroporation
2.3. L-Ornithine Purity Analysis
2.4. Chemotaxis Assays
3. Results
3.1. PAO1 Chemotaxis towards l-ornithine
3.2. L-Ornithine Chemotaxis Is Mediated by PctA and PctB Receptors in PAO1
3.3. Diverse Pa Isolates Are Attracted to l-ornithine
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gellatly, S.L.; Hancock, R.E. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis. 2013, 67, 159–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silby, M.W.; Winstanley, C.; Godfrey, S.A.; Levy, S.B.; Jackson, R.W. Pseudomonas genomes: Diverse and adaptable. FEMS Microbiol. Rev. 2011, 35, 652–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradali, M.F.; Ghods, S.; Rehm, B.H. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juhas, M. Pseudomonas aeruginosa essentials: An update on investigation of essential genes. Microbiology 2015, 161, 2053–2060. [Google Scholar] [CrossRef]
- Lyczak, J.B.; Cannon, C.L.; Pier, G.B. Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist. Microbes Infect. 2000, 2, 1051–1060. [Google Scholar] [CrossRef]
- Malhotra, S.; Hayes, D., Jr.; Wozniak, D.J. Cystic fibrosis and Pseudomonas aeruginosa: The host-microbe interface. Clin. Microbiol. Rev. 2019, 32, e00138-18. [Google Scholar] [CrossRef]
- Rossi, E.; La Rosa, R.; Bartell, J.A.; Marvig, R.L.; Haagensen, J.A.; Sommer, L.M.; Molin, S.; Johansen, H.K. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 2021, 19, 331–342. [Google Scholar] [CrossRef]
- Faure, E.; Kwong, K.; Nguyen, D. Pseudomonas aeruginosa in chronic lung infections: How to adapt within the host? Front. Immunol. 2018, 9, 2416. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Sampedro, I.; Parales, R.E.; Krell, T.; Hill, J.E. Pseudomonas chemotaxis. FEMS Microbiol. Rev. 2015, 39, 17–46. [Google Scholar] [CrossRef] [Green Version]
- Ortega, A.; Zhulin, I.B.; Krell, T. Sensory repertoire of bacterial chemoreceptors. Microbiol. Mol. Biol. Rev. 2017, 81, e00033-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matilla, M.A.; Krell, T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol. Rev. 2018, 42, fux052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matilla, M.A.; Martín-Mora, D.; Gavira, J.A.; Krell, T. Pseudomonas aeruginosa as a Model to Study Chemosensory Pathway Signaling. Microbiol. Mol. Biol. Rev. 2021, 85, e00151-20. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, K.; Fukutomi, H.; Kuroda, A.; Kato, J.; Ohtake, H. Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. Microbiology 1997, 143, 3223–3229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rico-Jiménez, M.; Muñoz-Martínez, F.; García-Fontana, C.; Fernandez, M.; Morel, B.; Ortega, A.; Ramos, J.L.; Krell, T. Paralogous chemoreceptors mediate chemotaxis towards protein amino acids and the non-protein amino acid gamma-aminobutyrate (GABA). Mol. Microbiol. 2013, 88, 1230–1243. [Google Scholar] [CrossRef]
- Wu, G.; Morris, S.M., Jr. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 1998, 336, 1–17. [Google Scholar] [CrossRef]
- Scibior, D.; Czeczot, H. Arginine-metabolism and functions in the human organism. Postepy Hig. Med. Dosw. 2004, 58, 321–332. [Google Scholar]
- Morris, S.M., Jr. Regulation of enzymes of the urea cycle and arginine metabolism. Annu. Rev. Nutr. 2002, 22, 87–105. [Google Scholar] [CrossRef]
- Maarsingh, H.; Pera, T.; Meurs, H. Arginase and pulmonary diseases. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2008, 378, 171. [Google Scholar] [CrossRef] [Green Version]
- Bernier, S.P.; Ha, D.G.; Khan, W.; Merritt, J.H.; O’Toole, G.A. Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Res. Microbiol. 2011, 162, 680–688. [Google Scholar] [CrossRef] [Green Version]
- Stanier, R.Y.; Palleroni, N.J.; Doudoroff, M. The aerobic pseudomonads a taxonomic study. Microbiology 1966, 43, 159–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holloway, B.; Krishnapillai, V.; Morgan, A. Chromosomal genetics of Pseudomonas. Microbiol. Rev. 1979, 43, 73–102. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, A.; Kumano, T.; Taguchi, K.; Nikata, T.; Kato, J.; Ohtake, H. Molecular cloning and characterization of a chemotactic transducer gene in Pseudomonas aeruginosa. J. Bacteriol. 1995, 177, 7019–7025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zegans, M.E.; Wozniak, D.; Griffin, E.; Toutain-Kidd, C.M.; Hammond, J.H.; Garfoot, A.; Lam, J.S. Pseudomonas aeruginosa exopolysaccharide Psl promotes resistance to the biofilm inhibitor polysorbate 80. Antimicrob. Agents Chemother. 2012, 56, 4112–4122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfgang, M.C.; Kulasekara, B.R.; Liang, X.; Boyd, D.; Wu, K.; Yang, Q.; Miyada, C.G.; Lory, S. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2003, 100, 8484–8489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweizer, H. Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene 1991, 97, 109–112. [Google Scholar] [CrossRef]
- Shitashiro, M.; Tanaka, H.; Soo Hong, C.; Kuroda, A.; Takiguchi, N.; Ohtake, H.; Kato, J. Identification of chemosensory proteins for trichloroethylene in Pseudomonas aeruginosa. J. Biosci. Bioeng. 2005, 99, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Ausubel, F.B.R.; Kingston, R.E.; Moore, D.D.; Setdman, J.G.; Smith, J.A.; Struhl, K. Current Protocols in Molecular Biology. Part 1: E. coli, Plasmids, and Bacteriophages; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Masduki, A.; Nakamura, J.; Ohga, T.; Umezaki, R.; Kato, J.; Ohtake, H. Isolation and characterization of chemotaxis mutants and genes of Pseudomonas aeruginosa. J. Bacteriol. 1995, 177, 948–952. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Jones, A.D.; Last, R.L. Rapid LC–MS/MS profiling of protein amino acids and metabolically related compounds for large-scale assessment of metabolic phenotypes. In Amino Acid Analysis. Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; Volume 828, pp. 1–11. [Google Scholar] [CrossRef]
- Sampedro, I.; Kato, J.; Hill, J.E. Elastin degradation product isodesmosine is a chemoattractant for Pseudomonas aeruginosa. Microbiology 2015, 161, 1496–1503. [Google Scholar] [CrossRef] [Green Version]
- Parales, R.E.; Ditty, J.L.; Harwood, C.S. Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl. Environ. Microbiol. 2000, 66, 4098–4104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adler, J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. Microbiol. 1973, 74, 77–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, H.H.; Lee, S.H.; Kim, J.M.; Kim, H.E.; Kim, Y.G.; Yoo, J.Y.; Chang, W.S.; Lee, C.S. Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient. Biosens. Bioelectron. 2010, 26, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Lacal, J.; Alfonso, C.; Liu, X.; Parales, R.E.; Morel, B.; Conejero-Lara, F.; Rivas, G.; Duque, E.; Ramos, J.L.; Krell, T. Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: Differential chemotactic response towards receptor ligands. J. Biol. Chem. 2010, 285, 23126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Mora, D.; Reyes-Darias, J.A.; Ortega, A.; Corral-Lugo, A.; Matilla, M.A.; Krell, T. McpQ is a specific citrate chemoreceptor that responds preferentially to citrate/metal ion complexes. Environ. Microbiol. 2016, 18, 3284–3295. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, J.T. Interorgan amino acid transport and its regulation. J. Nutr. 2003, 133, 2068S–2072S. [Google Scholar] [CrossRef] [Green Version]
- Gavira, J.A.; Gumerov, V.M.; Rico-Jiménez, M.; Petukh, M.; Upadhyay, A.A.; Ortega, A.; Matilla, M.A.; Zhulin, I.B.; Krell, T. How bacterial chemoreceptors evolve novel ligand specificities. Mbio 2020, 11, e03066-19. [Google Scholar] [CrossRef] [Green Version]
- Schwarzer, C.; Fischer, H.; Machen, T.E. Chemotaxis and binding of Pseudomonas aeruginosa to scratch-wounded human cystic fibrosis airway epithelial cells. PLoS ONE 2016, 11, e0150109. [Google Scholar] [CrossRef] [Green Version]
- Kamath, K.S.; Pascovici, D.; Penesyan, A.; Goel, A.; Venkatakrishnan, V.; Paulsen, I.T.; Packer, N.H.; Molloy, M.P. Pseudomonas aeruginosa cell membrane protein expression from phenotypically diverse cystic fibrosis isolates demonstrates host-specific adaptations. J. Proteome Res. 2016, 15, 2152–2163. [Google Scholar] [CrossRef]
- Mehl, A.; Ghorbani, P.; Douda, D.; Huang, H.; Palaniyar, N.; Ratjen, F.; Grasemann, H. Effect of arginase inhibition on pulmonary l-arginine metabolism in murine Pseudomonas pneumonia. PLoS ONE 2014, 9, e90232. [Google Scholar] [CrossRef]
- Thomas, S.R.; Ray, A.; Hodson, M.E.; Pitt, T.L. Increased sputum amino acid concentrations and auxotrophy of Pseudomonas aeruginosa in severe cystic fibrosis lung disease. Thorax 2000, 55, 795–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain or Plasmid | Characteristics | Reference or Source |
---|---|---|
Strains | ||
Pseudomona aeruginosa PAO1 | Prototroph, FP (sex factor minus) | [22] |
PCT2 | PAO1 derivative, ΔpctC, ΔpctA, Δorfl, ΔpctB::Km | [14] |
PCTA1 | PAO1 derivative, ΔpctA::Kmr | [23] |
PCTB1 | PAO1 derivative, ΔpctB::Kmr | [14] |
PCTC1 | PAO1 derivative, ΔpctC::Kmr | [14] |
PCT2pMAI18-1(pctA) | PAO1 derivative, ΔpctB, ΔpctC::Cbr | This study |
PCT2pMAI18-1(pctB) | PAO1 derivative, ΔpctA, ΔpctC::Cbr | This study |
PCT2pMAI18-1(pctC) | PAO1 derivative, ΔpctA, ΔpctB::Cbr | This study |
P. aeruginosa 577 | Clinical isolate from peritoneal fluid | PA8 § |
P. aeruginosa 581 | Clinical isolate from toe | PA1 § |
P. aeruginosa 590 | Clinical isolate from leg | PA2 § |
P. aeruginosa 627 | Clinical isolate from trachea | PA42 § |
P. aeruginosa 738 | Clinical isolate from eye | [24] |
P. aeruginosa 595 | Clinical isolate from throat | PA6 § |
P. aeruginosa 617 | Clinical isolate from abdominal fluid | PA36 § |
P. aeruginosa MSH3 | Environmental strain | [25] |
Plasmids | ||
pUCP18 | Broad-host-range cloning vector; Cbr | [26] |
pMAI18-1 | pUCP18 with pctA(2.1 kb), Cbr | [27] |
pMAI18-2 | pUCP18 with pctB2.1 kb); Cbr | [27] |
pMAI18-3 | pUCP18 with pctC(2.1 kb), Cbr | [27] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhodary, B.; Sampedro, I.; Behroozian, S.; Borza, V.; Her, S.; Hill, J.E. The Arginine Catabolism-Derived Amino Acid l-ornithine Is a Chemoattractant for Pseudomonas aeruginosa. Microorganisms 2022, 10, 264. https://doi.org/10.3390/microorganisms10020264
Dhodary B, Sampedro I, Behroozian S, Borza V, Her S, Hill JE. The Arginine Catabolism-Derived Amino Acid l-ornithine Is a Chemoattractant for Pseudomonas aeruginosa. Microorganisms. 2022; 10(2):264. https://doi.org/10.3390/microorganisms10020264
Chicago/Turabian StyleDhodary, Basanta, Inmaculada Sampedro, Shekooh Behroozian, Victor Borza, Stephanie Her, and Jane E. Hill. 2022. "The Arginine Catabolism-Derived Amino Acid l-ornithine Is a Chemoattractant for Pseudomonas aeruginosa" Microorganisms 10, no. 2: 264. https://doi.org/10.3390/microorganisms10020264
APA StyleDhodary, B., Sampedro, I., Behroozian, S., Borza, V., Her, S., & Hill, J. E. (2022). The Arginine Catabolism-Derived Amino Acid l-ornithine Is a Chemoattractant for Pseudomonas aeruginosa. Microorganisms, 10(2), 264. https://doi.org/10.3390/microorganisms10020264