The Production of γ-Aminobutyric Acid from Free and Immobilized Cells of Levilactobacillus brevis Cultivated in Anaerobic and Aerobic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. Screening for Glutamate Decarboxylase Activity and GABA Production
2.3. Effect of Cultivation on GABA Production: A Screening Step
2.4. Production of GABA from Free and Immobilized Cells of Lvb. brevis LB12 Cultivated under Anaerobic and Aerobic Conditions
2.4.1. Production of Free and Immobilized Cells
2.4.2. Production of GABA in the Buffer System
2.4.3. Production of GABA from Resting Cells
2.5. Detection of GABA with Chromatographic Techniques
2.5.1. Thin-Layer Chromatography
2.5.2. Reverse Phase—High-Performance Liquid Chromatography
2.6. Statistical Analysis
3. Results
3.1. Screening for Glutamate Decarboxylase Activity and GABA Production
3.2. Effect of Cultivation on Biomass Production and GABA Accumulation
3.3. The Production of GABA from Free and Immobilized Cells of Lvb. brevis LB12 Cultivated under Anaerobic and Aerobic Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dhakal, R.; Bajpai, V.K.; Baek, K.H. Production of GABA (γ-aminobutiric acid) by microrganisms: A review. Braz. J. Microbiol. 2012, 43, 1230–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, N.; Wei, L.; Liu, J. Biotechnological advances and perspectives of gamma-aminobutyric acid production. World J. Microbiol. Biotechnol. 2017, 33, 64–75. [Google Scholar] [CrossRef]
- Ngo, D.H.; Vo, T.S. An Updated Review on Pharmaceutical Properties of Gamma-Aminobutyric Acid. Molecules 2019, 24, 2678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diana, M.; Quílez, J.; Rafecas, M. Gamma-aminobutyric acid as a bioactive compound in foods: A review. J. Funct. Foods 2014, 10, 407–420. [Google Scholar] [CrossRef]
- Poojary, M.M.; Dellarosa, N.; Roohinejad, S.; Koubaa, M.; Tylewicz, U.; Gómez-Galindo, F.; Saraiva, J.A.; Dalla Rosa, M.; Barba, F.J. Influence of innovative processing on γ-aminobutyric acid (GABA) contents in plant food materials. Compr. Rev. Food Sci. Food Saf. 2017, 16, 895–905. [Google Scholar] [CrossRef] [Green Version]
- Rashmi, D.; Zanan, R.; John, S.; Khandagale, K.; Nadaf, A. γ-aminobutyric acid (GABA): Biosynthesis, role, commercial production, and applications. Stud. Nat. Prod. Chem. 2018, 57, 413–452. [Google Scholar] [CrossRef]
- Cui, Y.; Miao, K.; Niyaphorn, S.; Qu, X. Production of gamma-aminobutyric acid from lactic acid bacteria: A systematic review. Int. J. Mol. Sci. 2020, 21, 995. [Google Scholar] [CrossRef] [Green Version]
- MarketWatch. Global GABA (Gamma-Aminobutyric Acid) Market. Growth, Business Statistics, Share, Growth Insights, Trends, Development Data, Forecast Period 2022–2029. Available online: https://www.marketwatch.com/press-release/global-gaba-gamma-aminobutyric-acid-market-growth-business-statistics-share-growth-insights-trends-development-data-forecast-period-2022-2029-2022-08-01 (accessed on 30 September 2022).
- Li, H.; Cao, Y. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 2010, 39, 1107–1116. [Google Scholar] [CrossRef]
- Wu, Q.; Shah, N.P. High gamma-aminobutyric acid production from lactic acid bacteria: Emphasis on Lactobacillus brevis as a functional dairy starter. Crit. Rev. Food Sci. Nutr. 2017, 57, 3661–3672. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Shah, N.P. Restoration of GABA production machinery in Lactobacillus brevis by accessible carbohydrates, anaerobiosis and early acidification. Food Microbiol. 2018, 69, 151–158. [Google Scholar] [CrossRef]
- Pedersen, M.B.; Gaudu, P.; Lechardeur, D.; Petit, M.A.; Gruss, A. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu. Rev. Food Sci. Technol. 2012, 3, 37–58. [Google Scholar] [CrossRef] [PubMed]
- Zotta, T.; Parente, E.; Ricciardi, A. Aerobic metabolism in the genus Lactobacillus: Impact on stress response and potential applications in the food industry. J. Appl. Microbiol. 2017, 122, 857–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.; Chang, C.; Ma, S.; Cheng, Y.; Zhang, J.; Gao, Q. Efficient bioconversion of L-glutamate to γ-aminobutyric acid by Lactobacillus brevis resting cells. J. Ind. Microbiol. Biotechnol. 2017, 44, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, L.; Gao, Q.; Yu, S.M.; Li, L.; Gao, N.F. The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Appl. Microbiol. Biotechnol. 2012, 94, 1619–1627. [Google Scholar] [CrossRef]
- Han, S.H.; Hong, K.B.; Suh, H.J. Biotransformation of monosodium glutamate to gamma-aminobutyric acid by isolated strain Lactobacillus brevis L-32 for potentiation of pentobarbital-induced sleep in mice. Food Biotechnol. 2017, 31, 80–93. [Google Scholar] [CrossRef]
- Ianniello, R.G.; Zotta, T.; Matera, A.; Genovese, G.; Parente, G.; Ricciardi, A. Investigation of factors affecting aerobic and respiratory growth in the oxygen-tolerant strain Lactobacillus casei N87. PLoS ONE 2016, 11, e0164065. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; Lu, Z.X.; Lü, F.X.; Bie, X.M.; Sun, L.J.; Zeng, X.X. A simple method for rapid screening of bacteria with glutamate decarboxylase activities. J. Rapid Methods Autom. Microbiol. 2006, 14, 291–298. [Google Scholar] [CrossRef]
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Baranyi, J. DMFit Manual Version 3.5 Institute of Food Research; Norwich Research Park: Norwich, UK, 2015. [Google Scholar]
- Zheng, G.; Jin, W.; Fan, P.; Feng, X.; Bai, Y.; Tao, T. A novel method for detecting amino acids derivatized with phenyl isothiocyanate by high-performance liquid chromatography–electrospray ionization mass spectrometry. Int. J. Mass Spectrom. 2015, 392, 1–6. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 15 August 2022).
- Beganović, J.; Kos, B.; Leboš Pavunc, A.; Uroić, K.; Jokić, M.; Šušković, J. Traditionally produced sauerkraut as source of autochthonous functional starter cultures. Microbiol. Res. 2014, 169, 623–632. [Google Scholar] [CrossRef]
- Uroić, K.; Nikolić, M.; Kos, B.; Leboš Pavunc, A.; Beganović, J.; Lukić, J.; Jovčić, B.; Filipić, B.; Miljković, M.; Golić, N.; et al. Probiotic properties of lactic acid bacteria isolated from Croatian fresh soft cheeses and Serbian white-pickled cheeses. Food Technol. Biotechnol. 2014, 52, 232–241. [Google Scholar]
- Quinto, E.J.; Jiménez, P.; Caro, I.; Tejero, J.; Mateo, J.; Girbés, T. Probiotic Lactic Acid Bacteria: A review. Food Nutr. Sci. 2014, 5, 1765–1775. [Google Scholar] [CrossRef] [Green Version]
- Binh, T.; Ju, W.; Jung, W.; Park, R. Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis. Biotechnol. Lett. 2014, 36, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Lee, J.; Park, S.; Lee, M.J.; Ji, G.E.; Park, M.S.; Heo, T.R. Improvement of γ-aminobutyric acid (GABA) production using cell entrapment of Lactobacillus brevis GABA 057. J. Microbiol. Biotechnol. 2006, 16, 562–568. [Google Scholar]
- Zotta, T.; Ricciardi, A.; Ianniello, R.G.; Storti, L.V.; Glibota, N.A.; Parente, E. Aerobic and respirative growth of heterofermentative lactic acid bacteria: A screening study. Food Microbiol. 2018, 76, 117–127. [Google Scholar] [CrossRef]
- Huang, J.; Mei, L.; Lin, D. Biosynthesis of γ-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World J. Microbiol. Biotechnol. 2007, 23, 865–871. [Google Scholar] [CrossRef]
- Lyu, C.; Liu, L.; Huang, J.; Zhao, W.; Hu, S.; Mei, L.; Yao, S. Biosynthesis of γ-aminobutyrate by engineered Lactobacillus brevis cells immobilized in gellan gum gel beads. J. Biosci. Bioeng. 2019, 128, 123–128. [Google Scholar] [CrossRef]
N | Strain | Growth | MSG | lag | µmax | Xmax | pH |
---|---|---|---|---|---|---|---|
LB2 | Lvb. brevis PB13L | AN | 0 | 0 | 0.43 ± 0.03 | 2.14 ± 0.05 | 5.90 ± 0.02 |
1 | - | 0.44 ± 0.01 | 3.13 ± 0.04 * | 4.81 ± 0.06 * | |||
AE | 0 | - | 0.63 ± 0.02 † | 7.62 ± 0.04 † | 3.94 ± 0.01 † | ||
1 | - | 0.63 ± 0.01 § | 7.63 ± 0.05 § | 4.44 ± 0.00 *§ | |||
RS | 0 | - | 0.57 ± 0.02 † | 9.06 ± 0.01 †‡ | 3.92 ± 0.01 † | ||
1 | - | 0.56 ± 0.00 § | 8.61 ± 0.03 *§‡ | 4.45 ± 0.02 *§ | |||
LB8 | Lvb. brevis B02 | AN | 0 | - | 0.37 ± 0.01 | 2.16 ± 0.03 | 5.10 ± 0.01 |
1 | - | 0.38 ± 0.00 | 2.33 ± 0.04 | 4.95 ± 0.04 | |||
AE | 0 | - | 0.58 ± 0.02 † | 8.61 ± 0.05 † | 4.01 ± 0.03 † | ||
1 | - | 0.60 ± 0.01 § | 8.30 ± 0.03 § | 4.93 ± 0.06 * | |||
RS | 0 | - | 0.63 ± 0.00 † | 9.01 ± 0.02 † | 4.02 ± 0.01 † | ||
1 | 0.47 ± 0.06 *§‡ | 0.54 ± 0.01 § | 9.87 ± 0.05 *§ | 4.49 ± 0.01 *§‡ | |||
LB11 | Lvb. brevis B29 | AN | 0 | - | 0.56 ± 0.00 | 3.36 ± 0.04 | 4.17 ± 0.03 |
1 | - | 0.51 ± 0.02 | 4.13 ± 0.07 * | 4.94 ± 0.04 * | |||
AE | 0 | 1.47 ± 0.08 *†‡ | 0.61 ± 0.01 | 8.18 ± 0.04 † | 3.87 ± 0.02 † | ||
1 | - | 0.62 ± 0.02 | 8.20 ± 0.05 § | 4.37 ± 0.00 *§ | |||
RS | 0 | - | 0.56 ± 0.02 | 8.39 ± 0.01 † | 3.84 ± 0.01 † | ||
1 | 0.97 ± 0.07 *§‡ | 0.61 ± 0.00 * | 10.01 ± 0.05 *§‡ | 4.39 ± 0.01 *§ | |||
LB12 | Lvb. brevis F02 | AN | 0 | - | 0.43 ± 0.00 | 2.94 ± 0.01 | 5.75 ± 0.00 |
1 | - | 0.46 ± 0.00 * | 2.66 ± 0.05 | 5.85 ± 0.02 | |||
AE | 0 | - | 0.46 ± 0.02 | 6.47 ± 0.06 † | 4.00 ± 0.00 † | ||
1 | - | 0.46 ± 0.05 | 6.29 ± 0.04 § | 4.56 ± 0.01 *§ | |||
RS | 0 | - | 0.42 ± 0.00 | 6.59 ± 0.04 † | 4.01 ± 0.02 † | ||
1 | - | 0.44 ± 0.01 | 6.15 ± 0.02 *§ | 4.54 ± 0.00 *§ | |||
LB13 | Lvb. brevis B24 | AN | 0 | - | 0.41 ± 0.00 | 3.04 ± 0.02 | 4.49 ± 0.00 |
1 | - | 0.36 ± 0.01 * | 3.28 ± 0.09 | 5.46 ± 0.03 * | |||
AE | 0 | 0.44 ± 0.06 *† | 0.61 ± 0.01 † | 7.57 ± 0.09 † | 4.07 ± 0.00 † | ||
1 | - | 0.55 ± 0.00 § | 7.81 ± 0.05 § | 4.55 ± 0.01 *§ | |||
RS | 0 | 1.20 ± 0.03 *†‡ | 0.58 ± 0.00 † | 9.04 ± 0.11 †‡ | 4.09 ± 0.02 † | ||
1 | 0.75 ± 0.06 *§‡ | 0.53 ± 0.02 § | 8.80 ± 0.04 §‡ | 4.51 ± 0.01 *§ |
N | Strain | Growth | MSG | GLU Spot | GABA Spot | GLU HPLC | GABA HPLC | GABA/X |
---|---|---|---|---|---|---|---|---|
LB2 | Lvb. brevis PB13L | AN | 0 | 0 | 0 | - | - | |
1 | 0 | 1 | 0.37 ± 0.07 | 8.21 ± 0.35 | 2.63 ± 0.10 | |||
AE | 0 | 0 | 0 | - | - | |||
1 | 1 | 0 | 10.03 ± 0.95 † | 0 † | - | |||
RS | 0 | 0 | 0 | - | - | |||
1 | 1 | 0 | 10.01 ± 0.69 † | 0 † | - | |||
LB8 | Lvb. brevis B02 | AN | 0 | 0 | 0 | - | - | - |
1 | 0 | 1 | 0 | 6.19 ± 0.93 | 2.67 ± 0.44 | |||
AE | 0 | 0 | 0 | - | - | - | ||
1 | 1 | 1 | 7.86 ± 0.41 † | 1.28 ± 0.03 †‡ | 0.15 ± 0.00 † | |||
RS | 0 | 0 | 0 | - | - | - | ||
1 | 1 | 0 | 9.96 ± 2.53 † | 0 † | - | |||
LB11 | Lvb. brevis B29 | AN | 0 | 0 | 0 | - | - | - |
1 | 0 | 1 | 0 | 8.36 ± 0.41 | 2.03 ± 0.12 | |||
AE | 0 | 0 | 0 | - | - | - | ||
1 | 1 | 0 | 10.00 ± 1.28 † | 0 † | - | |||
RS | 0 | 0 | 0 | - | - | - | ||
1 | 1 | 0 | 9.86 ± 0.34 † | 0 † | - | |||
LB12 | Lvb. brevis F02 | AN | 0 | 0 | 0 | - | - | |
1 | 1 | 1 | 3.36 ± 0.72 | 5.71 ± 0.84 | 2.15 ± 0.35 | |||
AE | 0 | 0 | 0 | - | - | |||
1 | 1 | 1 | 7.62 ± 0.14 † | 2.53 ± 0.24 † | 0.40 ± 0.04 † | |||
RS | 0 | 0 | 0 | - | - | |||
1 | 1 | 1 | 7.85 ± 0.20 † | 2.29 ± 0.36 † | 0.37 ± 0.06 † | |||
LB13 | Lvb. brevis B24 | AN | 0 | 0 | 0 | - | - | |
1 | 0 | 1 | 0 | 8.61 ± 1.83 | 2.62 ± 0.53 | |||
AE | 0 | 0 | 0 | - | - | |||
1 | 1 | 1 | 6.78 ± 1.22 † | 2.70 ± 0.51 † | 0.35 ± 0.06 † | |||
RS | 0 | 0 | 0 | - | - | |||
1 | 1 | 1 | 7.97 ± 0.96 † | 1.96 ± 0.16 † | 0.22 ± 0.02 † |
Cond | Growth | Cycle a | Days b | GLU in (mM) c | GABA out (mM) d | GLU Uptake Efficiency (%) e | Bioconversion Efficiency (%) f |
---|---|---|---|---|---|---|---|
Free cells | Anaerobiosis | B0 | 0 | 48.51 ± 1.32 | 47.91 ± 0.82 | 71.38 ± 1.94 | 98.76 ± 0.99 |
R1 | 10 | 38.50 ± 0.38 | 36.80 ± 0.89 | 56.65 ± 0.57 | 95.57 ± 1.36 | ||
R2 | 20 | 20.19 ± 0.00 | 17.07 ± 0.27 | 29.70 ± 0.00 | 84.55 ± 1.36 | ||
R3 | 30 | 6.85 ± 0.07 | 4.90 ± 0.00 | 10.08 ± 0.11 | 71.52 ± 0.75 | ||
Aerobiosis | B0 | 0 | 9.55 ± 0.58 * | 8.44 ± 0.41 * | 14.05 ± 0.85 * | 88.38 ± 1.03 * | |
R1 | 10 | 9.99 ± 0.14 * | 8.80 ± 0.03 * | 14.70 ± 0.21 * | 88.09 ± 0.93 * | ||
R2 | 20 | 4.42 ± 0.00 * | 3.39 ± 0.00 * | 6.50 ± 0.00 * | 76.83 ± 0.00 * | ||
R3 | 30 | 2.40 ± 0.02 * | 1.45 ± 0.00 * | 3.53 ± 0.04 * | 60.72 ± 0.61 * | ||
Immobilized cells | Anaerobiosis | B0 | 0 | 48.70 ± 0.29 | 25.14 ± 1.20 § | 71.65 ± 0.42 | 51.63 ± 2.77 § |
R1 | 10 | 46.01 ± 0.48 § | 23.81 ± 0.89 § | 67.70 ± 0.71 § | 51.75 ± 2.48 § | ||
R2 | 20 | 43.75 ± 0.31 § | 17.60 ± 1.51 | 64.38 ± 0.46 § | 40.22 ± 3.16 § | ||
R3 | 30 | 42.34 ± 5.33 § | 5.36 ± 0.31 | 62.30 ± 7.85 § | 12.71 ± 0.87 § | ||
Aerobiosis | B0 | 0 | 42.55 ± 0.00 *§ | 10.52 ± 0.00 *§ | 62.60 ± 0.00 *§ | 24.73 ± 0.00 *§ | |
R1 | 10 | 39.79 ± 2.98 § | 4.44 ± 0.17 *§ | 58.55 ± 4.38 § | 11.16 ± 0.41 *§ | ||
R2 | 20 | 29.33 ± 0.00 *§ | 2.86 ± 0.00 *§ | 43.15 ± 0.00 *§ | 9.75 ± 0.00 *§ | ||
R3 | 30 | 28.99 ± 3.22 *§ | 2.62 ± 0.69 *§ | 42.65 ± 4.74 *§ | 9.22 ± 3.39 *§ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zotta, T.; Faraone, I.; Giavalisco, M.; Parente, E.; Lela, L.; Storti, L.V.; Ricciardi, A. The Production of γ-Aminobutyric Acid from Free and Immobilized Cells of Levilactobacillus brevis Cultivated in Anaerobic and Aerobic Conditions. Microorganisms 2022, 10, 2184. https://doi.org/10.3390/microorganisms10112184
Zotta T, Faraone I, Giavalisco M, Parente E, Lela L, Storti LV, Ricciardi A. The Production of γ-Aminobutyric Acid from Free and Immobilized Cells of Levilactobacillus brevis Cultivated in Anaerobic and Aerobic Conditions. Microorganisms. 2022; 10(11):2184. https://doi.org/10.3390/microorganisms10112184
Chicago/Turabian StyleZotta, Teresa, Immacolata Faraone, Marilisa Giavalisco, Eugenio Parente, Ludovica Lela, Livia Vanessa Storti, and Annamaria Ricciardi. 2022. "The Production of γ-Aminobutyric Acid from Free and Immobilized Cells of Levilactobacillus brevis Cultivated in Anaerobic and Aerobic Conditions" Microorganisms 10, no. 11: 2184. https://doi.org/10.3390/microorganisms10112184
APA StyleZotta, T., Faraone, I., Giavalisco, M., Parente, E., Lela, L., Storti, L. V., & Ricciardi, A. (2022). The Production of γ-Aminobutyric Acid from Free and Immobilized Cells of Levilactobacillus brevis Cultivated in Anaerobic and Aerobic Conditions. Microorganisms, 10(11), 2184. https://doi.org/10.3390/microorganisms10112184