Hypervirulence and Multiresistance to Antibiotics in Klebsiella pneumoniae Strains Isolated from Patients with Hospital- and Community-Acquired Infections in a Mexican Medical Center
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. DNA Extraction and Identification of K. pneumoniae
2.3. Detection of Hypermucoviscosity
2.4. Antibiotic Susceptibility
2.5. Biofilm Formation Test
2.6. Identification of Capsular Types K1 and K2
2.7. Identification of Virulence Genes
2.8. Unsupervised Hierarchical Clustering
3. Results
3.1. Origin of Strains and Distribution of Virulence Genes and Serotypes
3.2. Virulence Gene Association Patterns
3.3. Hypermucoviscosity and Multiresistance to Antibiotics
3.4. Biofilm Formation
3.5. Distribution of Virulence Genes Related to Serotypes and Hypermucoviscosity
3.6. Genotypic and Phenotypic Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol. 2020, 18, 344–359. [Google Scholar] [CrossRef]
- Papadimitriou, O.M.; Fligou, F.; Spiliopoulou, I.; Bartzavali, C.; Dodou, V.; Vamvakopoulou, S.; Koutsileou, K.; Zotou, A.; Anastassiou, E.D.; Christofidou, M.; et al. Early KPC-Producing Klebsiella pneumoniae Bacteremia among Intensive Care Unit Patients Non-Colonized upon Admission. Pol. J. Microbiol. 2017, 66, 251–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyun, M.; Lee, J.Y.; Ryu, S.Y.; Ryoo, N.; Kim, H.A. Antibiotic Resistance and Clinical Presentation of Health Care-Associated Hypervirulent Klebsiella pneumoniae Infection in Korea. Microb. Drug. Resist. 2019, 25, 1204–1209. [Google Scholar] [CrossRef] [PubMed]
- Kuş, H.; Arslan, U.; Türk DağI, H.; Fındık, D. Investigation of various virulence factors of Klebsiella pneumoniae strains isolated from nosocomial infection. Mikrobiyol. Bul. 2017, 51, 329–339. [Google Scholar] [PubMed]
- Vachvanichsanong, P.; McNeil, E.B.; Dissaneewate, P. Extended-spectrum beta-lactamase Escherichia coli and Klebsiella pneumoniae urinary tract infections. Epidemiol. Infect. 2020, 149, e12. [Google Scholar] [CrossRef] [PubMed]
- El Fertas, A.R.; Messai, Y.; Alouache, S.; Bakour, R. Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol. Biol. 2013, 61, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.A.; Marr, C.M. Hypervirulent Klebsiella pneumoniae. Clinical. Microbiol. 2019, 32, e00001-19. [Google Scholar] [CrossRef] [Green Version]
- Cubero, M.; Marti, S.; Domínguez, M.Á.; González, D.A.; Berbel, D.; Ardanuy, C. Hypervirulent Klebsiella pneumoniae serotype K1 clinical isolates form robust biofilms at the air-liquid interface. PLoS ONE 2019, 14, e0222628. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhao, G.; Chao, X.; Xie, L.; Wang, H. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. Int. J. Environ. Res. Public. Health 2020, 17, 6278. [Google Scholar] [CrossRef] [PubMed]
- Arato, V.; Raso, M.M.; Gasperini, G.; Berlanda, S.F.; Micoli, F. Prophylaxis and Treatment against Klebsiella pneumoniae: Current Insights on This Emerging Anti-Microbial Resistant Global Threat. Int. J. Mol. Sci. 2021, 22, 4042. [Google Scholar] [CrossRef] [PubMed]
- Barrios, H.; Garza-Ramos, U.; Mejia-Miranda, I.; Reyna-Flores, F.; Sánchez-Pérez, A.; Mosqueda-García, D.; Silva-Sanchez, J. Bacterial Resistance Consortium. ESBL-producing Escherichia coli and Klebsiella pneumoniae: The most prevalent clinical isolates obtained between 2005 and 2012 in Mexico. J. Glob. Antimicrob. Resist. 2017, 10, 243–426. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Díaz, E.; Hernández-Ríos, C.J.; Bravo-Cuellar, A. Antibiotic resistance: Microbiological profile of urinary tract infections in Mexico. Cir. Cir. 2019, 87, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Ponce de León, S. Programa Universitario de Investigación en Salud. Estado Actual de la Resistencia Antimicrobiana en México Reporte de los Hospitales de la Red del PUCRA: Resistencia Antimicrobiana y Consumo de Antibióticos; Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2018; Available online: http://www.puis.unam.mx/slider_docs/reporte-ucradigital.pdf (accessed on 22 February 2022).
- Ooka, T.; Terajima, J.; Kusumoto, M.; Iguchi, A.; Kurokawa, K.; Ogura, Y.; Asadulghani, M.; Nakayama, K.; Murase, K.; Ohnishi, M.; et al. Development of a multiplex PCR-based rapid typing method for enterohemorrhagic Escherichia coli O157 strains. J. Clin. Microbiol. 2009, 47, 2888–2894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Liu, C.; Zheng, W.; Zhang, X.; Yu, J.; Gao, Q.; Hou, Y.; Huang, X. PCR detection of Klebsiella pneumoniae in infant formula based on 16S-23S internal transcribed spacer. Int. J. Food. Microbiol. 2008, 125, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.T.; Chuang, Y.P.; Shun, C.T.; Chang, S.C.; Wang, J.T. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J. Exp. Med. 2004, 199, 697–705. [Google Scholar] [CrossRef] [Green Version]
- Performance standards for antimicrobial susceptibility testing. In CLSI, Twenty-Third Informational Supplement M100-S23; Carpenter, D.E. (Ed.) Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2013; p. 74. [Google Scholar]
- Maldonado, N.C.; Silva de Ruiz, C.; Cecilia, M.; Nader-Macias, M.E. A simple technique to detect Klebsiella biofilm-forming-strains. Inhibitory potential of Lactobacillus fermentum CRL 1058 whole cells and products. Commun. Curr. Res. Educ. Top. Trends Appl. Microbiol. 2007, 1, 52–59. [Google Scholar]
- Fang, C.T.; Lai, S.Y.; Yi, W.C.; Hsueh, P.R.; Liu, K.L.; Chang, S.C. Klebsiella pneumoniae genotype K1: An emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin. Infect. Dis. 2007, 45, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Gower, J.C. A General Coefficient of Similarity and Some of Its Properties. Biometrics 1971, 27, 857–871. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Laupland, K.B.; Ross, T.; Pitout, J.D.; Church, D.L.; Gregson, D.B. Community-onset urinary tract infections: A population-based assessment. Infection 2007, 35, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Linhares, I.; Raposo, T.; Rodrigues, A.; Almeida, A. Frequency and antimicrobial resistance patterns of bacteria implicated in community urinary tract infections: A ten-year surveillance study (2000–2009). BMC. Infect. Dis. 2013, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Paganin, F.; Lilienthal, F.; Bourdin, A.; Lugagne, N.; Tixier, F.; Génin, R.; Yvin, J.L. Severe community-acquired pneumonia: Assessment of microbial aetiology as mortality factor. Eur. Respir. J. 2004, 24, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.; Marco, F.; Soriano, A.; Almela, M.; Martinez, J.A.; Pitart, C.; Mensa, J. Epidemiology and prognostic determinants of bacteraemic catheter-acquired urinary tract infection in a single institution from 1991 to 2010. J. Infect. 2013, 67, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Struve, C.; Bojer, M.; Krogfelt, K.A. Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect. Immun. 2008, 76, 4055–4065. [Google Scholar] [CrossRef] [Green Version]
- Struve, C.; Bojer, M.; Krogfelt, K.A. Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect. Immun. 2009, 77, 5016–5024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, V. Iron uptake mechanisms and their regulation in pathogenic bacteria. Int. J. Med. Microbiol. 2001, 291, 67–79. [Google Scholar] [CrossRef]
- Gołębiewska, J.E.; Krawczyk, B.; Wysocka, M.; Ewiak, A.; Komarnicka, J.; Bronk, M.; Rutkowski, B.; Dębska-Ślizień, A. Host and pathogen factors in Klebsiella pneumoniae upper urinary tract infections in renal transplant patients. J. Med. Microbiol. 2019, 68, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Mizoguchi, M.; Oshida, Y.; Tatsuno, K.; Saito, R.; Okazaki, M.; Okugawa, S.; Moriya, K. Clinical and microbiological characteristics and occurrence of Klebsiella pneumoniae infection in Japan. Int. J. Gen. Med. 2018, 11, 293–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Zhang, X.; Wu, Q.; Zheng, X.; Dong, G.; Fang, R.; Zhang, Y.; Cao, J.; Zhou, T. Clinical, microbiological, and molecular epidemiological characteristics of Klebsiella pneumoniae-induced pyogenic liver abscess in southeastern China. Antimicrob. Resist. Infect. Control. 2019, 8, 166. [Google Scholar] [CrossRef] [PubMed]
- Schulz, E.; Schumann, M.; Schneemann, M.; Dony, V.; Fromm, A.; Nagel, O.; Schulzke, J.D.; Bücker, R. Escherichia coli Alpha-Hemolysin HlyA Induces Host Cell Polarity Changes, Epithelial Barrier Dysfunction and Cell Detachment in Human Colon Carcinoma Caco-2 Cell Model via PTEN-Dependent Dysregulation of Cell Junctions. Toxins 2021, 13, 520. [Google Scholar] [CrossRef]
- Subashchandrabose, S.; Mobley, H.L.T. Virulence and Fitness Determinants of Uropathogenic Escherichia coli. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.L.; da Silva, B.C.M.; Rezende, G.S.; Nakamura-Silva, R.; Pitondo-Silva, A.; Campanini, E.B.; Brito, M.C.A.; da Silva, E.M.L.; Freire, C.C.M.; da Cunha, A.F.; et al. High Prevalence of Multidrug-Resistant Klebsiella pneumoniae Harboring Several Virulence and β-Lactamase Encoding Genes in a Brazilian Intensive Care Unit. Front. Microbiol. 2019, 9, 3198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentivegna, E.; Luciani, M.; Arcari, L.; Santino, I.; Simmaco, M.; Martelletti, P. Reduction of Multidrug-Resistant (MDR) Bacterial Infections during the COVID-19 Pandemic: A Retrospective Study. Int. J. Environ. Res. Public Health 2021, 18, 1003. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yi, H.; Fang, J.; Han, L.; Zhou, M.; Guo, Y. Antimicrobial resistance and risk factors for mortality of pneumonia caused by Klebsiella pneumoniae among diabetics: A retrospective study conducted in Shanghai, China. Infect. Drug Resist. 2019, 12, 1089–1098. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Kim, S.I.; Kim, Y.R.; Wie, S.H.; Lee, H.K.; Kim, S.Y.; Park, Y.J. Virulence factors and clinical patterns of hypermucoviscous Klebsiella pneumoniae isolated from urine. Infect. Dis. 2017, 49, 178–184. [Google Scholar] [CrossRef]
- Vuotto, C.; Longo, F.; Pascolini, C.; Donelli, G.; Balice, M.P.; Libori, M.F.; Tiracchia, V.; Salvia, A.; Varaldo, P.E. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J. Appl. Microbiol. 2017, 123, 1003–1018. [Google Scholar] [CrossRef]
- Karimi, K.; Zarei, O.; Sedighi, P.; Taheri, M.; Doosti-Irani, A.; Shokoohizadeh, L. Investigation of Antibiotic Resistance and Biofilm Formation in Clinical Isolates of Klebsiella pneumoniae. Int. J. Microbiol. 2021, 5573388. [Google Scholar] [CrossRef]
- Tang, M.; Wei, X.; Wan, X.; Ding, Z.; Ding, Y.; Liu, J. The role and relationship with efflux pump of biofilm formation in Klebsiella pneumoniae. Microb. Pathog. 2020, 147, 104244. [Google Scholar] [CrossRef]
- Alcántar-Curiel, M.D.; Blackburn, D.; Saldaña, Z.; Gayosso-Vázquez, C.; Iovine, N.M.; De la Cruz, M.A. Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation. Virulence 2013, 4, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Catalán-Nájera, J.C.; Garza-Ramos, U.; Barrios-Camacho, H. Hypervirulence and hypermucoviscosity: Two different but complementary Klebsiella spp. phenotypes? Virulence 2017, 8, 1111–1123. [Google Scholar] [CrossRef] [Green Version]
- Choby, J.E.; Howard-Anderson, J.; Weiss, D.S. Hypervirulent Klebsiella pneumoniae—Clinical and molecular perspectives. J. Intern. Med. 2020, 287, 283–300. [Google Scholar] [CrossRef] [PubMed]
Function | Gene or Capsular Serotype | Origin of the Strains | p-Value | Total (n = 150) | |||||
---|---|---|---|---|---|---|---|---|---|
Hospital-Acquired (n = 25) | Acquired in the Community (n = 125) | ||||||||
Bacteremia n = 21 (%) | Pneumonia n = 4 (%) | UTI n = 61 (%) | Respiratory Infection n = 53 (%) | Infected Ulcer n = 8 (%) | *Other n = 3 (%) | ||||
Adhesins | fimH | 21 (100) | 4 (100) | 57 (93.4) | 49 (92.5) | 7 (87.5) | 3 (100) | 0.754 | 141 |
mrkD | 21 (100) | 4 (100) | 57 (93.4) | 51 (96.2) | 7 (87.5) | 3 (100) | 0.690 | 143 | |
kpn | 20 (95.2) | 4 (100) | 42 (68.9) | 32 (60.4) | 5 (62.5) | 3 (100) | 0.033 | 106 | |
ycfM | 21 (100) | 4 (100) | 55 (90.2) | 50 (94.3) | 7 (87.5) | 3 (100) | 0.622 | 140 | |
Iron-acquisition systems | entB | 21 (100) | 4 (100) | 60 (98.4) | 50 (94.3) | 6 (75) | 3 (100) | 0.028 | 144 |
irp1 | 18 (85.7) | 2 (50) | 52 (85.2) | 45 (84.9) | 5 (62.5) | 3 (100) | 0.248 | 125 | |
irp2 | 19 (90.5) | 2 (50) | 54 (88.5) | 46 (86.8) | 5 (62.5) | 3 (100) | 0.102 | 129 | |
ybtS | 16 (76.2) | 3 (75) | 46 (75.4) | 42 (79.2) | 5 (62.5) | 3 (100) | 0.839 | 115 | |
fyuA | 17 (81) | 3 (75) | 38 (62.3) | 37 (69.8) | 4 (50) | 3 (100) | 0.379 | 102 | |
iutA | 3 (14.3) | 2 (50) | 22 (36.1) | 34 (64.2) | 2 (25) | 1(33.3) | 0.004 | 64 | |
iroN | 2 (9.5) | 0 | 9 (14.8) | 13 (24.5) | 2 (25) | 1(33.3) | 0.465 | 27 | |
Protectins | magA | 0 | 0 | 8 (13.1) | 15 (28.3) | 2 (25) | 0 | 0.038 | 25 |
rmpA | 4 (19) | 2 (50) | 23 (37.7) | 43 (81.1) | 4 (50) | 2 (66.7) | 0.0004 | 78 | |
Toxins | hlyA | 1 (4.8) | 0 | 8 (13.1) | 9 (17) | 1 (12.5) | 1 (33.3) | 0.607 | 20 |
cnf-1 | 3 (14.3) | 1(25) | 9 (14.8) | 8 (15.1) | 0 | 1 (33.3) | 0.767 | 22 | |
Capsular serotype | K1 | 0 | 0 | 8 (13.1) | 15 (28.3) | 2 (25) | 0 | 0.03 | 25 |
K2 | 11 (52.4) | 0 | 10 (16.4) | 25 (47.2) | 1 (12.5) | 1 (33.3) | 0.001 | 48 | |
Non-K1/K2 | 10 (47.6) | 4 (100) | 43 (70.5) | 13 (24.1) | 5 (62.5) | 2 (66.7) | 0.0001 | 77 |
Function | Gene or Capsular Serotype | Origin of the Strains | p-Value | Total (n = 150) | |||||
---|---|---|---|---|---|---|---|---|---|
Hospital-Acquired (n = 25) | Acquired in the Community (n = 125) | ||||||||
Bacteremia n = 21 (%) | Pneumonia n = 4 (%) | UTI n = 61 (%) | Respiratory Infection n = 53 (%) | Infected Ulcer n = 8 (%) | * Other n = 3 (%) | ||||
No. | Patterns of Virulence Genes | Total (n = 150) | |||||||
1 | fimH/kpn/mrkD/ycfM/entB/irp1/irp2/ybtS/fyuA | 8 (38.1) | 0 | 8 (13.1) | 0 | 2 (25) | 0 | 0.0001 | 18 |
2 | fimH/kpn/mrkD/ycfM/rmpA/entB/irp1/irp2/ybtS/fyuA/iutA | 1 (4.8) | 1 (25) | 4 (6.5) | 7 (13.2) | 0 | 0 | 0.458 | 13 |
3 | fimH/kpn/mrkD/ycfM/rmpA/entB/irp1/irp2/ybtS/fyuA | 3 (14.3) | 0 | 2 (3.3) | 1 (1.9) | 0 | 2 (66.7) | 0.006 | 8 |
4 | fimH/mrkD/ycfM/rmpA/entB/irp1/irp2/ybtS/fyuA/iutA | 0 | 0 | 2 (3.3) | 3 (5.7) | 0 | 0 | 0.826 | 5 |
5 | fimH/mrkD/ycfM/rmpA/magA/entB/irp1/irp2/ybtS/fyuA/iutA/iroN | 0 | 0 | 1 (1.6) | 3 (5.7) | 0 | 0 | 0.593 | 4 |
6 | fimH/kpn/mrkD/ycfM/entB/irp1/irp2 | 1 (4.8) | 0 | 3 (4.9) | 0 | 0 | 0 | 0.484 | 4 |
7 | fimH/kpn/mrkD/ycfM/entB/irp1/irp2/ybtS | 0 | 0 | 3 (4.9) | 0 | 0 | 0 | 0.478 | 3 |
8 | fimH/kpn/mrkD/ycfM/entB/irp1 | 2 (9.5) | 0 | 0 | 1 (1.9) | 0 | 0 | 0.198 | 3 |
9 | fimH/mrkD/ycfM/rmpA/magA/entB/irp1/irp2/ybtS/fyuA/iutA | 0 | 0 | 1 (1.6) | 2 (3.8) | 0 | 0 | 0.490 | 3 |
10 | fimH/kpn/mrkD/ycfM/rmpA/entB/irp1/irp2/ybtS/fyuA/iutA/iroN | 0 | 0 | 0 | 3 (5.7) | 0 | 0 | 0.314 | 3 |
11 | fimH/kpn/mrkD/ycfM/entB/irp1/irp2/ybtS/hlyA | 0 | 0 | 1 (1.6) | 1 (1.9) | 0 | 0 | 1 | 2 |
12 | fimH/kpn/mrkD/ycfM/rmpA/entB/irp1/irp2/ybtS | 0 | 0 | 1 (1.6) | 1 (1.9) | 0 | 0 | 1 | 2 |
13 | fimH/kpn/mrkD/ycfM/entB | 0 | 1 (25) | 0 | 1 (1.9) | 0 | 0 | 0.106 | 2 |
14 | fimH/kpn/mrkD/ycfM/rmpA/entB/fyuA/iutA | 0 | 0 | 0 | 2 (3.8) | 0 | 0 | 0.546 | 2 |
15 | fimH/mrkD/ycfM/rmpA/magA/entB/irp1/irp2/ybtS/iutA | 0 | 0 | 1 (1.6) | 1 (1.9) | 0 | 0 | 1 | 2 |
16 | fimH/kpn/mrkD/ycfM/entB/irp1/irp2/ybtS/fyuA/iutA | 0 | 0 | 1 (1.6) | 1 (1.9) | 0 | 0 | 1 | 2 |
17 | fimH/kpn/mrkD/ycfM/rmpA/magA/entB/irp1/irp2/ybtS/fyuA | 0 | 0 | 0 | 2 (3.8) | 0 | 0 | 0.546 | 2 |
18 | fimH/kpn/mrkD/ycfM/entB/irp1/irp2/ybtS/fyuA/cnf-1 | 1 (4.8) | 1 (25) | 0 | 0 | 0 | 0 | 0.022 | 2 |
19 | fimH/kpn/mrkD/ycfM/entB/irp1/irp2/ybtS/fyuA/iroN/cnf-1 | 1 (4.8) | 0 | 1 (1.6) | 0 | 0 | 0 | 0.423 | 2 |
20 | fimH/kpn/mrkD/ycfM/entB/irp1/irp2/ybtS/fyuA/iutA/iroN/cnf-1/hlyA | 1 (4.8) | 0 | 0 | 0 | 0 | 1 (33.3) | 0.015 | 2 |
21-86 | Distinct patterns | 3 (14.3) | 1 (25) | 32 (52.4) | 24 (45.3) | 6 (75) | 0 | 66 |
Antibiotics | Hypermucoviscous (HM) Phenotype (n = 150) | ||||
---|---|---|---|---|---|
Hospital-Acquired (n = 25) | Acquired in the Community (n = 125) | ||||
HM-Positive (n = 8) % | HM-Negative (n = 17) % | HM-Positive (n = 72) % | HM-Negative (n = 53) % | p-Value | |
Ampicillin | 8 (100) | 17 (100) | 70 (97.2) | 53 (100) | 1 |
Carbenicillin | 8 (100) | 17 (100) | 70 (97.2) | 53 (100) | 1 |
Cephalothin | 6 (75) | 17 (100) | 35 (48.6) | 23 (43.4) | 0.00004 |
Cefotaxime | 7 (87.5) | 16 (94.1) | 20 (27.8) | 23 (43.4) | 0.000001 |
Ciprofloxacin | 7 (87.5) | 16 (94.1) | 21 (29.2) | 20 (37.7) | 0.0000006 |
Chloramphenicol | 1 (12.5) | 4 (23.5) | 18 (25) | 8 (15.1) | 0.41 |
Nitrofurantoin | 7 (87.5) | 10 (58.8) | 36 (50) | 33 (62.3) | 0.507 |
Amikacin | 3 (37.5) | 4 (23.5) | 12 (16.7) | 9 (17) | 0.772 |
Gentamicin | 5 (62.5) | 15 (88.2) | 20 (27.7) | 43 (81.1) | 0.0000006 |
Netilmicin | 5 (62.5) | 10 (58.8) | 14 (19.4) | 13 (24.5) | 0.0007 |
Norfloxacin | 6 (75) | 11(64.7) | 19 (26.4) | 25 (47.2) | 0.011 |
Trimethoprim-sulfamethoxazole | 5 (62.5) | 16 (94.1) | 22 (30.6) | 24 (45.3) | 0.00001 |
Multiresistance (different families of antibiotics; n = 86) | |||||
4-6 | 2 (25) | 1 (5.9) | 10 (13.9) | 14 (26.4) | |
7-9 | 1 (12.5) | 2 (11.8) | 20 (27.8) | 10 (18.9) | |
10-12 | 5 (62.5) | 6 (35.3) | 9 (12.5) | 7 (13.2) | 0.00006 |
Function | Gene or Capsular Serotype | Hypermucoviscous (HM)-Positive (n = 80) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Biofilm (+) (n = 68) | Biofilm (−) (n = 12) | |||||||||
Weak (n = 39) % | Moderate (n = 18) % | Strong (n = 11) % | Non-Producing (n = 12) % | |||||||
Hospital (n = 3) | Community (n = 36) | Hospital (n = 3) | Community (n = 15) | Hospital (n = 2) | Community (n = 9) | Hospital (n = 0) | Community (n = 12) | p-Value | ||
Adhesins | fimH | 3 (100) | 35 (97.2) | 3 (100) | 14 (93.3) | 2 (100) | 7 (77.8) | 0 | 12 (100) | 0.152 |
mrkD | 3 (100) | 35 (97.2) | 3 (100) | 13 (86.7) | 2 (100) | 9 (100) | 0 | 12 (100) | 0.322 | |
kpn | 3 (100) | 25 (69.4) | 3 (100) | 8 (56.3) | 2 (100) | 7 (77.8) | 0 | 7 (58.3) | 0.557 | |
ycfM | 3 (100) | 35 (97.2) | 3 (100) | 13 (86.7) | 2 (100) | 8 (88.9) | 0 | 11 (91.7) | 0.375 | |
Iron-acquisition systems | entB | 3 (100) | 35 (97.2) | 3 (100) | 12 (80) | 2 (100) | 9 (100) | 0 | 11 (91.7) | 0.117 |
irp1 | 3 (100) | 32 (88.9) | 3 (100) | 12 (80) | 2 (100) | 9 (100) | 0 | 11 (91.7) | 0.625 | |
irp2 | 3 (100) | 32 (88.9) | 2 (66.7) | 13 (86.7) | 2 (100) | 9 (100) | 0 | 11 (91.7) | 0.625 | |
ybtS | 3 (100) | 29 (80.6) | 2 (66.7) | 11 (73.3) | 2 (100) | 7 (77.8) | 0 | 12 (100) | 0.26 | |
fyuA | 3 (100) | 29 (80.6) | 2 (66.7) | 11 (73.3) | 2 (100) | 5 (55.6) | 0 | 8 (66.7) | 0.447 | |
iutA | 0 | 19 (52.8) | 1 (33.3) | 10 (66.7) | 0 | 5 (55.6) | 0 | 7 (58.3) | 0.790 | |
iroN | 0 | 9 (25) | 0 | 2 (13.3) | 0 | 3 (33.3) | 0 | 2 (16.7) | 0.698 | |
Protectins | magA | 0 | 9 (25) | 0 | 3 (20) | 0 | 2 (22.2) | 0 | 4 (33.3) | 0.773 |
rmpA | 1 (33.3) | 27 (75) | 1 (33.3) | 11 (73.3) | 1 (50) | 4 (44.4) | 0 | 7 (58.3) | 0.392 | |
Toxins | hlyA | 0 | 2 (5.6) | 0 | 2 (13.3) | 0 | 2 (22.2) | 0 | 0 | 0.255 |
cnf | 0 | 3 (8.3) | 0 | 1 (6.7) | 0 | 1 (11.1) | 0 | 2 (16.7) | 0.750 | |
Serotype | K1 | 0 | 9 (25) | 0 | 3 (20) | 0 | 2 (22.2) | 0 | 4 (33.3) | 0.773 |
K2 | 2 (66.7) | 15 (41.7) | 0 | 4 (26.7) | 2 (100) | 3 (33.3) | 0 | 2 (16.7) | 0.19 | |
Non-K1/K2 | 1 (33.3) | 12 (33.3) | 3 (66.7) | 8 (53.3) | 0 | 4 (44.4) | 0 | 6 (50) | 0.228 |
Function | Gene or Capsular Serotype | Hypermucoviscous (HM)-Negative (n = 70) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Biofilm (+) (n = 67) | Biofilm (−) (n = 3) | |||||||||
Weak (n = 27) % | Moderate (n = 29) % | Strong (n = 11) % | Non-Producing (n = 3) % | |||||||
Hospital (n = 5) | Community (n = 22) | Hospital (n = 8) | Community (n = 21) | Hospital (n = 4) | Community (n = 7) | Hospital (n = 0) | Community (n = 3) | p-Value | ||
Adhesins | fimH | 5 (100) | 19 (86.4) | 8 (100) | 20 (95.2) | 4 (100) | 6 (85.7) | 0 | 3 (100) | 0.576 |
mrkD | 5 (100) | 20 (90.9) | 8 (100) | 21 (100) | 4 (100) | 5 (71.4) | 0 | 3 (100) | 0.117 | |
kpn | 4 (80) | 11 (50) | 8 (100) | 18 (85.7) | 4 (100) | 3 (42.9) | 0 | 3 (100) | 0.015 | |
ycfM | 5 (100) | 20 (90.9) | 8 (100) | 20 (95.2) | 4 (100) | 5 (71.4) | 0 | 3 (100) | 0.396 | |
Iron-acquisition systems | entB | 5 (100) | 22 (100) | 8 (100) | 20 (95.2) | 4 (100) | 7 (100) | 0 | 3 (100) | 1 |
irp1 | 2 (40) | 19 (86.4) | 6 (75) | 17 (81) | 4 (100) | 3 (42.9) | 0 | 2 (66.7) | 0.676 | |
irp2 | 3 (60) | 18 (81.8) | 7 (87.5) | 18 (85.7) | 4 (100) | 5 (71.4) | 0 | 2 (66.7) | 0.67 | |
ybtS | 4 (80) | 17 (77.3) | 4 (50) | 14 (66.7) | 4 (100) | 5 (71.4) | 0 | 1 (33.3) | 0.224 | |
fyuA | 3 (60) | 13 (59.1) | 6 (75) | 12 (57.1) | 4 (100) | 3 (42.9) | 0 | 1 (33.3) | 0.873 | |
iutA | 2 (40) | 11 (50) | 1 (12.5) | 5 (23.8) | 1 (25) | 1 (14.3) | 0 | 1 (33.3) | 0.111 | |
iroN | 1 (20) | 7 (31.8) | 1 (12.5) | 2 (9.5) | 0 | 0 | 0 | 0 | 0.093 | |
Protectins | magA | 0 | 4 (18.2) | 0 | 2 (9.5) | 0 | 0 | 0 | 1 (33.3) | 0.214 |
rmpA | 1 (20) | 13 (59.1) | 0 | 7 (33.3) | 2 (50) | 1 (14.3) | 0 | 2 (66.7) | 0.096 | |
Toxins | hlyA | 1 (20) | 6 (27.3) | 0 | 6 (28.6) | 0 | 1 (14.3) | 0 | 0 | 0.717 |
cnf | 2 (40) | 5 (22.7) | 2 (25) | 6 (28.6) | 0 | 0 | 0 | 0 | 0.198 | |
Serotype | K1 | 0 | 4 (18.2) | 0 | 2 (9.5) | 0 | 0 | 0 | 1 (33.3) | 0.214 |
K2 | 0 | 7 (31.8) | 3 (37.5) | 4 (19) | 3 (75) | 2 (28.6) | 0 | 1 (33.3) | 0.557 | |
Non-K1/K2 | 5 (100) | 11 (50) | 2 (25) | 18 (85.7) | 1 (25) | 5 (71.4) | 0 | 1 (33.3) | 0.584 |
Function | Gene | Hypermucoviscous (HM)-Positive (n = 80) | ||||||
---|---|---|---|---|---|---|---|---|
Capsular Serotype No. (%) | ||||||||
K1 (n = 18) | K2 (n = 28) | Non-K1/K2 (n = 34) | p-Value | |||||
Hospital (n = 0) | Community (n = 18) | Hospital (n = 4) | Community (n = 24) | Hospital (n = 4) | Community (n = 30) | |||
Adhesins | fimH | 0 | 18 (100) | 4 (100) | 23 (95.8) | 4 (100) | 27 (90) | 0.540 |
mrkD | 0 | 18 (100) | 4 (100) | 24 (100) | 4 (100) | 27 (90) | 0.238 | |
kpn | 0 | 4 (22.2) | 4 (100) | 22 (91.7) | 4 (100) | 21 (70) | 0.000002 | |
ycfM | 0 | 18 (100) | 4 (100) | 23 (95.8) | 4 (100) | 26 (86.7) | 0.280 | |
Iron-acquisition systems | entB | 0 | 16 (88.9) | 4 (100) | 23 (95.8) | 4 (100) | 28 (93.3) | 0.715 |
irp1 | 0 | 18 (100) | 4 (100) | 19 (79.2) | 4 (100) | 27 (90) | 0.170 | |
irp2 | 0 | 18 (100) | 4 (100) | 20 (83.3) | 3 (75) | 27 (90) | 0.280 | |
ybtS | 0 | 17 (94.4) | 4 (100) | 18 (75) | 3 (75) | 24 (80) | 0.308 | |
fyuA | 0 | 14 (77.8) | 4 (100) | 18 (75) | 3 (75) | 21 (70) | 0.797 | |
iutA | 0 | 11 (61.1) | 0 | 17 (70.8) | 1 (25) | 13 (43.3) | 0.241 | |
iroN | 0 | 8 (44.4) | 0 | 4 (16.7) | 0 | 4 (13.3) | 0.024 | |
Protectins | magA | 0 | 18 (100) | 0 | 0 | 0 | 0 | 0.000002 |
rmpA | 0 | 16 (88.9) | 1 (25) | 22 (91.7) | 2 (50) | 11 (36.7) | 0.00008 | |
Toxins | hlyA | 0 | 1 (5.6) | 0 | 2 (8.3) | 0 | 3 (10) | 1 |
cnf-1 | 0 | 0 | 0 | 3 (12.5) | 0 | 4 (13.3) | 0.41 |
Function | Gene | Hypermucoviscous (HM)-Negative (n = 70) | ||||||
---|---|---|---|---|---|---|---|---|
Capsular Serotype No. (%) | ||||||||
K1 (n = 7) | K2 (n = 20) | Non-K1/K2 (n = 43) | p-Value | |||||
Hospital (n = 0) | Community (n = 7) | Hospital (n = 7) | Community (n = 13) | Hospital (n = 10) | Community (n = 33) | |||
Adhesins | fimH | 0 | 7 (100) | 7 (100) | 12 (92.3) | 10 (100) | 29 (87.9) | 1 |
mrkD | 0 | 7 (100) | 7 (100) | 12 (92.3) | 10 (100) | 30 (90.9) | 1 | |
kpn | 0 | 3 (42.9) | 7 (100) | 9 (69.2) | 9 (90) | 23 (69.7) | 0.256 | |
ycfM | 0 | 7 (100) | 7 (100) | 13 (100) | 10 (100) | 28 (84.8) | 0.219 | |
Iron-acquisition systems | entB | 0 | 7 (100) | 7 (100) | 13 (100) | 10 (100) | 32 (97) | 1 |
irp1 | 0 | 6 (85.7) | 7 (100) | 12 (92.3) | 5 (50) | 23 (69.7) | 0.042 | |
irp2 | 0 | 5 (71.4) | 7 (100) | 12 (92.3) | 7 (70) | 26 (78.8) | 0.082 | |
ybtS | 0 | 4 (57.1) | 7 (100) | 11 (84.6) | 5 (50) | 22 (66.7) | 0.035 | |
fyuA | 0 | 2 (28.6) | 7 (100) | 10 (76.9) | 6 (60) | 17 (51.5) | 0.005 | |
iutA | 0 | 4 (57.1) | 1 (14.3) | 7 (53.8) | 3 (30) | 7 (21.2) | 0.206 | |
iroN | 0 | 2 (28.6) | 1 (14.3) | 3 (23.1) | 1 (10) | 4 (12.1) | 0.443 | |
Protectins | magA | 0 | 7 (100) | 0 | 0 | 0 | 0 | 0.000000006 |
rmpA | 0 | 6 (85.7) | 2 (28.6) | 11 (84.6) | 1 (10) | 6 (18.2) | 0.00004 | |
Toxins | hlyA | 0 | 3 (42.9) | 0 | 4 (30.8) | 1 (10) | 6 (18.2) | 0.425 |
cnf-1 | 0 | 3 (42.9) | 2 (28.6) | 3 (23.1) | 2 (20) | 5 (15.2) | 0.395 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bautista-Cerón, A.; Monroy-Pérez, E.; García-Cortés, L.R.; Rojas-Jiménez, E.A.; Vaca-Paniagua, F.; Paniagua-Contreras, G.L. Hypervirulence and Multiresistance to Antibiotics in Klebsiella pneumoniae Strains Isolated from Patients with Hospital- and Community-Acquired Infections in a Mexican Medical Center. Microorganisms 2022, 10, 2043. https://doi.org/10.3390/microorganisms10102043
Bautista-Cerón A, Monroy-Pérez E, García-Cortés LR, Rojas-Jiménez EA, Vaca-Paniagua F, Paniagua-Contreras GL. Hypervirulence and Multiresistance to Antibiotics in Klebsiella pneumoniae Strains Isolated from Patients with Hospital- and Community-Acquired Infections in a Mexican Medical Center. Microorganisms. 2022; 10(10):2043. https://doi.org/10.3390/microorganisms10102043
Chicago/Turabian StyleBautista-Cerón, Areli, Eric Monroy-Pérez, Luis Rey García-Cortés, Ernesto Arturo Rojas-Jiménez, Felipe Vaca-Paniagua, and Gloria Luz Paniagua-Contreras. 2022. "Hypervirulence and Multiresistance to Antibiotics in Klebsiella pneumoniae Strains Isolated from Patients with Hospital- and Community-Acquired Infections in a Mexican Medical Center" Microorganisms 10, no. 10: 2043. https://doi.org/10.3390/microorganisms10102043
APA StyleBautista-Cerón, A., Monroy-Pérez, E., García-Cortés, L. R., Rojas-Jiménez, E. A., Vaca-Paniagua, F., & Paniagua-Contreras, G. L. (2022). Hypervirulence and Multiresistance to Antibiotics in Klebsiella pneumoniae Strains Isolated from Patients with Hospital- and Community-Acquired Infections in a Mexican Medical Center. Microorganisms, 10(10), 2043. https://doi.org/10.3390/microorganisms10102043