Impact of Microbial Uptake on the Nutrient Plume around Marine Organic Particles: High-Resolution Numerical Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nutrient Transport and Consumption at the Particle Scale
2.2. Boundary Conditions on the Nutrient Field
2.3. Flow Field around the Particle
2.4. Plume Metrics
2.5. Efficiencies of Dissolution and Degradation
2.6. Description of the High-Resolution Numerical Scheme
3. Results and Discussion
3.1. Validation of the Numerical Methodology
3.2. Fundamental Timescales and Dimensionless Numbers
3.3. Nutrient Uptake Kinetics, Affinity and Timescale
3.4. Visualization and Metrics of Plume Quenching
3.5. Regulation of Plume Formation by Particle-Associated Bacteria
3.6. Ecological Significance of Nutrient Plume Quenching
3.7. Further Perspective on Plume Quenching Implications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyd, P.W.; Claustre, H.; Levy, M.; Siegel, D.A.; Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 2019, 568, 327–335. [Google Scholar] [CrossRef]
- Nowicki, M.; DeVries, T.; Siegel, D.A. Quantifying the carbon export and sequestration pathways of the ocean’s biological carbon pump. Glob. Biogeochem. Cycles 2022, 36, e2021GB007083. [Google Scholar] [CrossRef]
- Durkin, C.A.; Buesseler, K.O.; Cetinić, I.; Estapa, M.L.; Kelly, R.P.; Omand, M. A visual tour of carbon export by sinking particles. Glob. Biogeochem. Cycles 2021, 35, e2021GB006985. [Google Scholar] [CrossRef]
- Verdugo, P.; Alldredge, A.L.; Azam, F.; Kirchman, D.L.; Passow, U.; Santschi, P.H. The oceanic gel phase: A bridge in the DOM–POM continuum. Mar. Chem. 2004, 92, 67–85. [Google Scholar] [CrossRef]
- Quigg, A.; Santschi, P.H.; Burd, A.; Chin, W.-C.; Kamalanathan, M.; Xu, C.; Ziervogel, K. From nano-gels to marine snow: A synthesis of gel formation processes and modeling efforts involved with particle flux in the ocean. Gels 2021, 7, 114. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.; Grossart, H.-P.; Schweitzer, B.; Ploug, H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 2002, 28, 175–211. [Google Scholar] [CrossRef] [Green Version]
- Giani, M.; Berto, D.; Zangrando, V.; Castelli, S.; Sist, P.; Urbani, R. Chemical characterization of different typologies of mucilaginous aggregates in the Northern Adriatic Sea. Sci. Total Environ. 2005, 353, 232–246. [Google Scholar] [CrossRef] [PubMed]
- Azam, F.; Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 2007, 5, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Omand, M.M.; Govindarajan, R.; He, J.; Mahadevan, A. Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics. Sci. Rep. 2020, 10, 5582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giering, S.L.C.; Cavan, E.L.; Basedow, S.L.; Briggs, N.; Burd, A.B.; Darroch, L.J.; Guidi, L.; Irisson, J.-O.; Iversen, M.H.; Kiko, R.; et al. Sinking organic particles in the ocean—Flux estimates from in situ optical devices. Front. Mar. Sci. 2020, 6, 834. [Google Scholar] [CrossRef]
- Cavan, E.; Trimmer, M.; Shelley, F.; Sanders, R. Remineralization of particulate organic carbon in an ocean oxygen minimum zone. Nat. Commun. 2017, 8, 14847. [Google Scholar] [CrossRef] [Green Version]
- Doney, S.C.; Fabry, V.J.; Feely, R.A.; Kleypas, J.A. Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci. 2009, 1, 169–192. [Google Scholar] [CrossRef] [Green Version]
- Levin, L.A.; le Bris, N. The deep ocean under climate change. Science 2015, 350, 766–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lønborg, C.; Carreira, C.; Jickells, T.; Álvarez-Salgado, X.A. Impacts of global change on ocean dissolved organic carbon (DOC) cycling. Front. Mar. Sci. 2020, 7, 466. [Google Scholar] [CrossRef]
- Stock, C.A.; Dunne, J.P.; Fan, S.; Ginoux, P.; John, J.; Krasting, J.P.; Laufkötter, C.; Paulot, F.; Zadeh, N. Ocean biogeochemistry in GFDL’s Earth System Model 4.1 and its response to increasing atmospheric CO2. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002043. [Google Scholar] [CrossRef]
- Henson, S.A.; Laufkötter, C.; Leung, S.; Giering, S.L.C.; Palevsky, H.I.; Cavan, E.L. Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. 2022, 15, 248–254. [Google Scholar] [CrossRef]
- Regnier, P.; Resplandy, L.; Najjar, R.G.; Ciais, P. The land-to-ocean loops of the global carbon cycle. Nature 2022, 603, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, O.A.; Hill, P.S.; Milligan, T.G. Seasonal and spatial variation of floc size, settling velocity, and density on the inner Adriatic Shelf (Italy). Cont. Shelf Res. 2007, 27, 417–430. [Google Scholar] [CrossRef]
- Passow, U.; Ziervogel, K.; Asper, V.; Diercks, A. Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ. Res. Lett. 2012, 7, 035301. [Google Scholar] [CrossRef] [Green Version]
- Brakstad, O.G.; Lewis, A.; Beegle-Krause, C.J. A critical review of marine snow in the context of oil spills and oil spill dispersant treatment with focus on the Deepwater Horizon oil spill. Mar. Pollut. Bull. 2018, 135, 346–356. [Google Scholar] [CrossRef]
- Kapellos, G.E. Microbial strategies for oil biodegradation. In Modeling of Microscale Transport in Biological Processes; Academic Press: Cambridge, MA, USA, 2017; pp. 19–39. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Tang, F.H.M.; Maggi, F. Sinking of microbial-associated microplastics in natural waters. PLoS ONE 2020, 15, e0228209. [Google Scholar] [CrossRef]
- Dang, H.; Lovell, C.R. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 2015, 80, 91–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapellos, G.E.; Paraskeva, C.A.; Kalogerakis, N.; Doyle, P.S. Theoretical insight into the biodegradation of solitary oil micro- droplets moving through a water column. Bioengineering 2018, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.; Simon, M.; Alldredge, A.; Azam, F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 1992, 359, 139–142. [Google Scholar] [CrossRef]
- Del Negro, P.; Crevatin, E.; Larato, C.; Ferrari, C.; Totti, C.; Pompei, M.; Giani, M.; Berto, D.; Fonda Umani, S. Mucilage micro- cosms. Sci. Total Environ. 2005, 353, 258–269. [Google Scholar] [CrossRef]
- Danovaro, R.; Armeni, M.; Luna, G.M.; Corinaldesi, C.; Dell’Anno, A.; Ferrari, C.R.; Fiordelmondo, C.; Gambi, C.; Gismondi, M.; Manini, E.; et al. Exo-enzymatic activities and dissolved organic pools in relation with mucilage development in the Northern Adriatic Sea. Sci. Total Environ. 2005, 353, 189–203. [Google Scholar] [CrossRef]
- Zoppini, A.; Puddu, A.; Fazi, S.; Rosati, M.; Sist, P. Extracellular enzyme activity and dynamics of bacterial community in mucilaginous aggregates of the northern Adriatic Sea. Sci. Total Environ. 2005, 353, 270–286. [Google Scholar] [CrossRef]
- Arnosti, C.; Reintjes, G.; Amann, R. A mechanistic microbial underpinning for the size-reactivity continuum of dissolved organic carbon degradation. Mar. Chem. 2018, 206, 93–99. [Google Scholar] [CrossRef]
- García-Cruz, N.U.; Valdivia-Rivera, S.; Narciso-Ortiz, L.; García-Maldonado, J.Q.; Uribe-Flores, M.M.; Aguirre-Macedo, M.L.; Lizardi-Jiménez, M.A. Diesel uptake by an indigenous microbial consortium isolated from sediments of the Southern Gulf of Mexico: Emulsion characterisation. Environ. Pollut. 2019, 250, 849–855. [Google Scholar] [CrossRef]
- Alcolombri, U.; Peaudecerf, F.J.; Fernandez, V.I.; Behrendt, L.; Lee, K.S.; Stocker, R. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 2021, 14, 775–780. [Google Scholar] [CrossRef]
- Kujawinski, E.B. The impact of microbial metabolism on marine dissolved organic matter. Annu. Rev. Mar. Sci. 2011, 3, 567–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnosti, C.; Ziervogel, K.; Yang, T.; Teske, A. Oil-derived marine aggregates—Hot spots of polysaccharide degradation by specialized bacterial communities. Deep Sea Res. II 2016, 129, 179–186. [Google Scholar] [CrossRef]
- Moran, M.A.; Kujawinski, E.B.; Schroer, W.F.; Amin, S.A.; Bates, N.R.; Bertrand, E.M.; Braakman, R.; Brown, C.T.; Covert, M.W.; Doney, S.C.; et al. Microbial metabolites in the marine carbon cycle. Nat. Microbiol. 2022, 7, 508–523. [Google Scholar] [CrossRef]
- Jackson, G.A.; Kiørboe, T. Zooplankton use of chemodetection to find and eat particles. Mar. Ecol. Prog. Ser. 2004, 269, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Kiørboe, T.; Jackson, G.A. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr. 2001, 46, 1309–1318. [Google Scholar] [CrossRef]
- Kiørboe, T.; Ploug, H.; Thygesen, U.H. Fluid motion and solute distribution around sinking aggregates. I. Small-scale fluxes and heterogeneity of nutrients in the pelagic environment. Mar. Ecol. Prog. Ser. 2001, 211, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Herndl, G.J. Ecology of amorphous aggregations (marine snow) in the Northern Adriatic Sea. II. Microbial density and activity in marine snow and its implication to overall pelagic processes. Mar. Ecol. Prog. Ser. 1988, 48, 265–275. [Google Scholar] [CrossRef]
- Azam, F.; Long, R. Sea snow microcosms. Nature 2001, 414, 495–498. [Google Scholar] [CrossRef]
- Stocker, R.; Seymour, J.R.; Samadani, A.; Hunt, D.E.; Polz, M.F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl. Acad. Sci. USA 2008, 105, 4209–4214. [Google Scholar] [CrossRef] [PubMed]
- Lehman, J.T.; Scavia, D. Microscale nutrient patches produced by zooplankton. Proc. Natl. Acad. Sci. USA 1982, 79, 5001–5005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowen, J.D.; Stolzenbach, K.D.; Chisholm, S.W. Simulating bacterial clustering around phytoplankton cells in a turbulent ocean. Limnol. Oceanogr. 1993, 38, 36–51. [Google Scholar] [CrossRef]
- Smriga, S.; Fernandez, V.I.; Mitchell, J.G.; Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl. Acad. Sci. USA 2016, 113, 1576–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradi, N.; Liu, B.; Iversen, M.; Kuypers, M.M.; Ploug, H.; Khalili, A. A new mathematical model to explore microbial processes and their constraints in phytoplankton colonies and sinking marine aggregates. Sci. Adv. 2018, 4, eaat1991. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.R.; Stocker, R. Trade-offs of chemotactic foraging in turbulent water. Science 2012, 338, 675–679. [Google Scholar] [CrossRef] [Green Version]
- Watteaux, R.; Stocker, R.; Taylor, J.R. Sensitivity of the rate of nutrient uptake by chemotactic bacteria to physical and biological parameters in a turbulent environment. J. Theor. Biol. 2015, 387, 120–135. [Google Scholar] [CrossRef]
- Desai, N.; Dabiri, S.; Ardekani, A.M. Nutrient uptake by chemotactic bacteria in presence of rising oil drops. Int. J. Multiph. Flow 2018, 108, 156–168. [Google Scholar] [CrossRef]
- Jackson, G.A. Seascapes: The world of aquatic organisms as determined by their particulate natures. J. Exp. Biol. 2012, 215, 1017–1030. [Google Scholar] [CrossRef] [Green Version]
- Koch, A.L.; Wang, C.H. How close to the theoretical diffusion limit do bacterial uptake systems function? Arch. Microbiol. 1982, 131, 36–42. [Google Scholar] [CrossRef]
- Sundqvist, H.; Veronis, G. A simple finite-difference grid with non-constant intervals. Tellus 1970, 22, 26–31. [Google Scholar] [CrossRef]
- Liu, J.; Pope, G.A.; Sepehrnoori, K. A high-resolution finite-difference scheme for nonuniform grids. Appl. Math. Model. 1995, 19, 162–172. [Google Scholar] [CrossRef]
- Van der Vorst, H.A. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1992, 13, 631–644. [Google Scholar] [CrossRef]
- Clift, R.; Grace, J.R.; Weber, M.E. Bubbles, Drops, and Particles; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Johnson, A.I.; Akehata, T. Reaction accompanied mass transfer from fluid and solid spheres at low Reynolds numbers. Can. J. Chem. Eng. 1965, 43, 10–15. [Google Scholar] [CrossRef]
- Nagy, E.; Blickle, T.; Ujhidy, A. Spherical effect on mass transfer between fine solid particle and liquid accompanied by chemical reaction. Chem. Eng. Sci. 1989, 44, 198–201. [Google Scholar] [CrossRef]
- Levich, V.G. Physicochemical Hydrodynamics; Prentice-Hall: Englewood Cliffs, NJ, USA, 1962. [Google Scholar]
- Acrivos, A.; Goddard, J.D. Asymptotic expansions for laminar forced-convection heat and mass transfer. Part 1. Low speed flows. J. Fluid Mech. 1965, 23, 273–291. [Google Scholar] [CrossRef]
- Acrivos, A.; Taylor, T.D. Heat and mass transfer from single spheres in Stokes flow. Phys. Fluids 1962, 5, 387–394. [Google Scholar] [CrossRef]
- Saboni, A.; Alexandrova, S.; Spasic, A.M.; Gourdon, C. Effect of the viscosity ratio on mass transfer from a fluid sphere at low to very high Péclet numbers. Chem. Eng. Sci. 2007, 62, 4742–4750. [Google Scholar] [CrossRef]
- Juncu, G. The influence of the Henry number on the conjugate mass transfer from a sphere: II—Mass transfer accompanied by a first-order chemical reaction. Heat Mass Transf. 2002, 38, 523–534. [Google Scholar] [CrossRef]
- Azam, F.; Fenchel, T.; Field, J.G.; Gray, J.S.; Meyer-Reil, L.A.; Thingstad, F. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 1983, 10, 257–263. [Google Scholar] [CrossRef]
- Karp-Boss, L.; Boss, E.; Jumars, P.A. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr. Mar. Biol. 1996, 34, 71–108. [Google Scholar]
- Armstrong, R.A. Nutrient uptake rate as a function of cell size and surface transporter density: A Michaelis-like approximation to the model of Pasciak and Gavis. Deep-Sea Res. I 2008, 55, 1311–1317. [Google Scholar] [CrossRef]
- Fiksen, Ø.; Follows, M.J.; Aksnes, D.L. Trait-based models of nutrient uptake in microbes extend the Michaelis-Menten framework. Limnol. Oceanogr. 2013, 58, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Casey, J.R.; Follows, M.J. A steady-state model of microbial acclimation to substrate limitation. PLoS Comput. Biol. 2020, 16, e1008140. [Google Scholar] [CrossRef]
- Desai, N.; Shaik, V.A.; Ardekani, A.M. Hydrodynamic interaction enhances colonization of sinking nutrient sources by motile microorganisms. Front. Microbiol. 2019, 10, 289. [Google Scholar] [CrossRef]
- Løvdal, T.; Skjoldal, E.F.; Heldal, M.; Norland, S.; Thingstad, T.F. Changes in morphology and elemental composition of Vibrio splendidus along a gradient from carbon-limited to phosphate-limited growth. Microb. Ecol. 2008, 55, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Tambi, H.; Flaten, G.A.F.; Egge, J.K.; Bødtker, G.; Jacobsen, A.; Thingstad, T.F. Relationship between phosphate affinities and cell size and shape in various bacteria and phytoplankton. Aquat. Microb. Ecol. 2009, 57, 311–320. [Google Scholar] [CrossRef]
- Vadstein, O.; Olsen, Y. Chemical composition and phosphate uptake kinetics of limnetic bacterial communities cultured in chemostats under phosphorus limitation. Limnol. Oceanogr. 1989, 34, 939–946. [Google Scholar] [CrossRef]
- Martens-Habbena, W.; Berube, P.; Urakawa, H.; de la Torre, H.J.R.; Stahl, D.A. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 2009, 461, 976–979. [Google Scholar] [CrossRef]
- Kits, K.D.; Sedlacek, C.J.; Lebedeva, E.V.; Han, P.; Bulaev, A.; Pjevac, P.; Daebeler, A.; Romano, S.; Albertsen, M.; Stein, L.Y.; et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 2017, 549, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Matin, A.; Veldkamp, H. Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment. J. Gen. Microbiol. 1978, 105, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Button, D.K.; Robertson, B.R.; Lepp, P.W.; Schmidt, T.M. A small, dilute-cytoplasm, high-affinity, novel bacterium isolated by extinction culture and having kinetic constants compatible with growth at ambient concentrations of dissolved nutrients in seawater. Appl. Environ. Microbiol. 1998, 64, 4467–4476. [Google Scholar] [CrossRef]
- Duetz, W.A.; Wind, B.; van Andel, J.G.; Barnes, M.R.; Williams, P.A.; Rutgers, M. Biodegradation kinetics of toluene, m-xylene, p-xylene and their intermediates through the upper TOL pathway in Pseudomonas putida (PWWO). Microbiology 1998, 144, 1669–1675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapp, P. Multiphasic kinetics of transformation of 1,2,4-trichlorobenzene at nano- and micromolar concentrations by Burkholderia sp. strain PS14. Appl. Environ. Microbiol. 2001, 67, 3496–3500. [Google Scholar] [CrossRef] [Green Version]
- Noell, S.E.; Giovannoni, S.J. SAR11 bacteria have a high affinity and multifunctional glycine betaine transporter. Environ. Microbiol. 2019, 21, 2559–2575. [Google Scholar] [CrossRef] [PubMed]
- Mårdén, P.; Nyström, T.; Kjelleberg, S. Uptake of leucine by a marine Gram-negative heterotrophic bacterium during exposure to starvation conditions. FEMS Microbiol. Ecol. 1987, 45, 233–241. [Google Scholar] [CrossRef]
- Button, D.K.; Robertson, B.; Gustafson, E.; Zhao, X. Experimental and theoretical bases of specific affinity, a cytoarchitecture-based formulation of nutrient collection proposed to supercede the Michaelis-Menten paradigm of microbial kinetics. Appl. Environ. Microbiol. 2004, 70, 5511–5521. [Google Scholar] [CrossRef] [Green Version]
- Button, D.K. Nutrient uptake by microorganisms according to kinetic parameters from theory as related to cytoarchitecture. Microbiol. Mol. Biol. Rev. 1998, 62, 636–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bratbak, G.; Dundas, I. Bacterial dry matter content and biomass estimations. Appl. Environ. Microbiol. 1984, 48, 755–757. [Google Scholar] [CrossRef] [Green Version]
- Kiørboe, T.; Tang, K.; Grossart, H.-P.; Ploug, H. Dynamics of microbial communities on marine snow aggregates: Colonization, growth, detachment, and grazing mortality of attached bacteria. Appl. Environ. Microbiol. 2003, 69, 3036–3047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, M.; Sliwerska, E.; Gore, J.; Polz, M.F.; Cordero, O.X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 2016, 7, 11965. [Google Scholar] [CrossRef] [Green Version]
- Precali, R.; Giani, M.; Marini, M.; Grilli, F.; Ferrari, C.R.; Pečar, O.; Paschini, E. Mucilaginous aggregates in the northern Adriatic in the period 1999–2002: Typology and distribution. Sci. Total Environ. 2005, 353, 10–23. [Google Scholar] [CrossRef]
- Kapellos, G.E.; Alexiou, T.S.; Payatakes, A.C. Hierarchical simulator of biofilm growth and dynamics in granular porous materials. Adv. Water Resour. 2007, 30, 1648–1667. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Schwartzman, J.; Cordero, O.X. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. Proc. Natl. Acad. Sci. USA 2019, 116, 23309–23316. [Google Scholar] [CrossRef] [Green Version]
- Bach, L.T.; Riebesell, U.; Sett, S.; Febiri, S.; Rzepka, P.; Schulz, K.G. An approach for particle sinking velocity measurements in the 3–400 μm size range and considerations on the effect of temperature on sinking rates. Mar. Biol. 2012, 159, 1853–1864. [Google Scholar] [CrossRef] [PubMed]
- Mühlenbruch, M.; Grossart, H.-P.; Eigemann, F.; Voss, M. Mini-review: Phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ. Microbiol. 2018, 20, 2671–2685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zetsche, E.-M.; Larsson, A.I.; Iversen, M.H.; Ploug, H. Flow and diffusion around and within diatom aggregates: Effects of aggregate composition and shape. Limnol. Oceanogr. 2020, 65, 1818–1833. [Google Scholar] [CrossRef] [Green Version]
- Iversen, M.H.; Lampitt, R.S. Size does not matter after all: No evidence for a size-sinking relationship for marine snow. Prog. Oceanogr. 2020, 189, 102445. [Google Scholar] [CrossRef]
- Bach, L.T.; Boxhammer, T.; Larsen, A.; Hildebrandt, N.; Schulz, K.G.; Riebesell, U. Influence of plankton community structure on the sinking velocity of marine aggregates. Glob. Biogeochem. Cycles 2016, 30, 1145–1165. [Google Scholar] [CrossRef] [Green Version]
- Laurenceau-Cornec, E.C.; Trull, T.W.; Davies, D.M.; de la Rocha, C.L.; Blain, S. Phytoplankton morphology controls on marine snow sinking velocity. Mar. Ecol. Prog. Ser. 2015, 520, 35–56. [Google Scholar] [CrossRef] [Green Version]
- Jouandet, M.-P.; Trull, T.W.; Guidi, L.; Picheral, M.; Ebersbach, F.; Stemmann, L.; Blain, S. Optical imaging of mesopelagic particles indicates deep carbon flux beneath a natural iron-fertilized bloom in the Southern Ocean. Limnol. Oceanogr. 2011, 56, 1130–1140. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, A.M.P.; Buesseler, K.O. Variability in the average sinking velocity of marine particles. Limnol. Oceanogr. 2010, 55, 2085–2096. [Google Scholar] [CrossRef]
- Nowald, N.; Fischer, G.; Ratmeyer, V.; Iversen, M.; Reuter, C.; Wefer, G. In-situ sinking speed measurements of marine snow aggregates acquired with a settling chamber mounted to the Cherokee ROV. In Proceedings of the IEEE Proceedings OCEANS 2009-Europe, Bremen, Germany, 11–14 May 2009. [Google Scholar] [CrossRef]
- Pilskaln, C.H.; Lehmann, C.; Paduan, J.B.; Silver, M.W. Spatial and temporal dynamics in marine aggregate abundance, sinking rate and flux: Monterey Bay, central California. Deep-Sea Res. II 1998, 45, 1803–1837. [Google Scholar] [CrossRef]
- Diercks, A.-R.; Asper, V.L. In situ settling speeds of marine snow aggregates below the mixed layer: Black Sea and Gulf of Mexico. Deep-Sea Res. I 1997, 44, 385–398. [Google Scholar] [CrossRef]
- Alldredge, A.L.; Gotschalk, C. In situ settling behavior of marine snow. Limnol. Oceanogr. 1988, 33, 339–351. [Google Scholar] [CrossRef]
- Engel, A.; Schartau, M. Influence of transparent exopolymer particles (TEP) on sinking velocity of Nitzschia closterium aggregates. Mar. Ecol. Prog. Ser. 1999, 182, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Maggi, F. The settling velocity of mineral, biomineral, and biological particles and aggregates in water. J. Geophys. Res. Oceans 2013, 118, 2118–2132. [Google Scholar] [CrossRef]
- Alldredge, A.L.; Crocker, K.M. Why do sinking mucilage aggregates accumulate in the water column? Sci. Total Environ. 1995, 165, 15–22. [Google Scholar] [CrossRef]
- Ahmerkamp, S.; Liu, B.; Kindler, K.; Maerz, J.; Stocker, R.; Kuypers, M.M.M.; Khalili, A. Settling of highly porous and impermeable particles in linear stratification: Implications for marine aggregates. J. Fluid Mech. 2022, 931, A9. [Google Scholar] [CrossRef]
- Bochdansky, A.B.; Clouse, M.A.; Herndl, G.J. Dragon kings of the deep sea: Marine particles deviate markedly from the common number-size spectrum. Sci. Rep. 2016, 6, 22633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapellos, G.E.; Alexiou, T.S. Modeling momentum and mass transport in cellular biological media: From the molecular to the tissue scale. In Transport in Biological Media; Academic Press: Amsterdam, The Netherlands, 2013; pp. 1–40. [Google Scholar] [CrossRef]
- Briggs, N.; Dall’Olmo, G.; Claustre, H. Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science 2020, 367, 791–793. [Google Scholar] [CrossRef] [PubMed]
- Alonso-González, I.J.; Arístegui, J.; Lee, C.; Sanchez-Vidal, A.; Calafat, A.; Fabrés, J.; Sangrá, P.; Masqué, P.; Hernández-Guerra, A.; Benítez-Barrios, V. Role of slowly settling particles in the ocean carbon cycle. Geophys. Res. Lett. 2010, 37, L13608. [Google Scholar] [CrossRef] [Green Version]
- Riley, J.S.; Sanders, R.; Marsay, C.; le Moigne, F.A.C.; Achterberg, E.P.; Poulton, A.J. The relative contribution of fast and slow sinking particles to ocean carbon export. Glob. Biogeochem. Cycles 2012, 26, GB1026. [Google Scholar] [CrossRef] [Green Version]
- Baker, C.A.; Henson, S.A.; Cavan, E.L.; Giering, S.L.C.; Yool, A.; Gehlen, M.; Belcher, A.; Riley, J.S.; Smith, H.E.K.; Sanders, R. Slow-sinking particulate organic carbon in the Atlantic Ocean: Magnitude, flux, and potential controls. Glob. Biogeochem. Cycles 2017, 31, 1051–1065. [Google Scholar] [CrossRef]
- Karthäuser, C.; Ahmerkamp, S.; Marchant, H.K.; Bristow, L.A.; Hauss, H.; Iversen, M.H.; Kiko, R.; Maerz, J.; Lavik, G.; Kuypers, M.M.M. Small sinking particles control anammox rates in the Peruvian oxygen minimum zone. Nat. Commun. 2021, 12, 3235. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, S.J. SAR11 bacteria: The most abundant plankton in the oceans. Annu. Rev. Mar. Sci. 2017, 9, 231–255. [Google Scholar] [CrossRef] [PubMed]
- Barbara, G.M.; Mitchell, J.G. Marine bacterial organisation around point-like sources of amino acids. FEMS Microbiol. Ecol. 2003, 43, 99–109. [Google Scholar] [CrossRef]
- Grossart, H.-P.; Riemann, L.; Azam, F. Bacterial motility in the sea and its ecological implications. Aquat. Microb. Ecol. 2001, 25, 247–258. [Google Scholar] [CrossRef]
Symbol | Range | Units | Description |
---|---|---|---|
0.05–5 | mm | particle radius | |
0–100 | m/d | reference velocity (1) | |
10−5–10−7 | cm2/s | nutrient diffusivity (2) | |
104–107 | cells/mL | bacterial abundance (3) | |
0.01–10 | pL/(cell⋅s) | nutrient affinity (4) | |
Pe | 0–1000 | − | Péclet number |
Da | 0–10 | − | Damköhler number (5) |
Bacteria | Substrate | Reference | ||||
---|---|---|---|---|---|---|
[nM] | ||||||
Vibrio splendidusa | phosphate | 1330 | 100 d | 13.3 | 4.27 | [67] |
Vibrio splendidusb | phosphate | 455 | 100 d | 4.55 | 0.72 | [68] |
Roseobacter algicola | phosphate | 364 | 100 d | 3.64 | 2.37 | [68] |
Nesjøen lake mixed culture | phosphate | 310 | 96 | 3.23 | 0.79 | [69] |
N. maritimus SCM1 | ammonium | 5231 | 134 | 39.04 | 0.63 | [70] |
Nitrospira inopinata | ammonium | 2596 | 840 | 3.09 | 0.11 | [71] |
Escherichia coli ML308 a | glucose | 2349 | 597 | 3.93 | 1.72 | [49] |
Escherichia coli ML308 b | glucose | 5390 | 13,000 | 0.41 | 0.27 | [49] |
Spirillum sp. DSM 1109 | lactate | 397 | 5800 | 0.07 | 0.010 | [72] |
Cycloclasticus oligotrophus | toluene | 13,132 | 651 | 20.17 | 1.40 | [73] |
Pseudomonas putida mt2 | m-xylene | 3750 | 340 | 11.03 | 1.01 | [74] |
p-xylene | 4710 | 1300 | 3.62 | 0.33 | [74] | |
toluene | 4230 | 7700 | 0.55 | 0.050 | [74] | |
Burkholderia sp. PS14 | TCB c | 667 | 2883 | 0.23 | 0.026 | [75] |
Pelagibacter HTCC1062 | GBT c | 12.63 | 0.89 | 14.19 | 0.141 | [76] |
Pelagibacter HTCC7211 | GBT c | 14.92 | 1.85 | 8.06 | 0.080 | [76] |
Vibrio sp. strain S14 | leucine | 35.70 | 760 | 0.05 | 0.033 | [77] |
Marinobacter arcticus | leucine | 53.36 | 198 | 0.27 | 0.025 | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapellos, G.E.; Eberl, H.J.; Kalogerakis, N.; Doyle, P.S.; Paraskeva, C.A. Impact of Microbial Uptake on the Nutrient Plume around Marine Organic Particles: High-Resolution Numerical Analysis. Microorganisms 2022, 10, 2020. https://doi.org/10.3390/microorganisms10102020
Kapellos GE, Eberl HJ, Kalogerakis N, Doyle PS, Paraskeva CA. Impact of Microbial Uptake on the Nutrient Plume around Marine Organic Particles: High-Resolution Numerical Analysis. Microorganisms. 2022; 10(10):2020. https://doi.org/10.3390/microorganisms10102020
Chicago/Turabian StyleKapellos, George E., Hermann J. Eberl, Nicolas Kalogerakis, Patrick S. Doyle, and Christakis A. Paraskeva. 2022. "Impact of Microbial Uptake on the Nutrient Plume around Marine Organic Particles: High-Resolution Numerical Analysis" Microorganisms 10, no. 10: 2020. https://doi.org/10.3390/microorganisms10102020
APA StyleKapellos, G. E., Eberl, H. J., Kalogerakis, N., Doyle, P. S., & Paraskeva, C. A. (2022). Impact of Microbial Uptake on the Nutrient Plume around Marine Organic Particles: High-Resolution Numerical Analysis. Microorganisms, 10(10), 2020. https://doi.org/10.3390/microorganisms10102020