Microencapsulation of Probiotics for Food Functionalization: An Update on Literature Reviews
Abstract
:1. Introduction
2. Food Probiotication with Microencapsulated Cells
2.1. Baked Goods
2.2. Dairy Products
2.2.1. Milk
2.2.2. Fermented Milk and Yogurt
2.2.3. Ice Cream
2.2.4. Cheese
2.3. Fruits and Vegetable-Based Products
2.4. Other Products
3. Co-Microencapsulation of Probiotics
- Omega-3 and GABA;
- Soluble dietary fibres;
- Phytochemicals.
4. The Market of Microencapsulated Probiotics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health benefits of probiotics: A review. ISRN Nutr. 2013, 2013. [Google Scholar] [CrossRef]
- Koirala, S.; Anal, A.K. Probiotics-based foods and beverages as future foods and overall safety and regulatory claims. Future Foods 2021, 3, 100013. [Google Scholar] [CrossRef]
- Thomas, M.B.; Vaidyanathan, M.; Radhakrishnan, K.; Raichur, A.M. Enhanced viability of probiotic Saccharomyces boulardii encapsulated by layer-by-layer approach in pH responsive chitosan–dextran sulfate polyelectrolytes. J. Food Eng. 2014, 136, 1–8. [Google Scholar] [CrossRef]
- Anselmo, A.C.; McHugh, K.J.; Webster, J.; Langer, R.; Jaklenec, A. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater. 2016, 28, 9486–9490. [Google Scholar] [CrossRef] [PubMed]
- Nguon, O.; Lagugné-Labarthet, F.; Brandys, F.A.; Li, J.; Gillies, E.R. Microencapsulation by in situ polymerization of amino resins. Polym. Rev. 2018, 58, 326–375. [Google Scholar] [CrossRef]
- Spigno, G.; Duserm Garrido, G.; Guidesi, M.; Elli, M. Spray-drying encapsulation of probiotics for ice-cream application. Chem. Eng. Trans. 2015, 43, 49–54. [Google Scholar] [CrossRef]
- Surnis, M.S.A.; Huparikar, M.K.B.; Kamble, M.P.A.; Mulla, M.M.I. Microencapsulation of Probiotics (Lactobacillus Casei and Bifidobacterium Longum) in Pineapple Jam by Spray Drying and its Comparitive Study. Int. J. Eng. Res. 2016, 5, 675–677. [Google Scholar]
- Naga Sivudu, S.; Ramesh, B.; Umamahesh, K.; Vijaya Sarathi Reddy, O. Probiotication of Tomato and Carrot Juices for Shelf-life Enhancement using Micro-encapsulation. J. Food Biosci. Technol. 2016, 6, 13–22. [Google Scholar]
- García-Ceja, A.; Mani-López, E.; Palou, E.; López-Malo, A. Viability during refrigerated storage in selected food products and during simulated gastrointestinal conditions of individual and combined lactobacilli encapsulated in alginate or alginate-chitosan. LWT Food Sci. Technol. 2015, 63, 482–489. [Google Scholar] [CrossRef]
- Alves, M.; Peres, C.M.; Hernandez-Mendonza, A.; Bronze, M.R.; Peres, C.; Malcata, F.X. Olive paste as vehicle for delivery of potential probiotic Lactobacillus plantarum 33. Food Res. Int. 2015, 75, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemi, S.M.B.; Shahidi, F.; Mortazavi, S.A.; Milani, E.; Eshaghi, Z. Synbiotic potential of Doogh supplemented with free and encapsulated Lactobacillus plantarum LS5 and Helianthus tuberosus inulin. J. Food Sci. Technol. 2015, 52, 4579–4585. [Google Scholar] [CrossRef] [PubMed]
- De Prisco, A.; Mauriello, G. Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci. Technol. 2016, 48, 27–39. [Google Scholar] [CrossRef]
- Seyedain-Ardabili, M.; Sharifan, A.; Ghiassi Tarzi, B. The production of synbiotic bread by microencapsulation. Food Technol. Biotechnol. 2016, 54, 52–59. [Google Scholar] [CrossRef]
- Muzzafar, A.; Sharma, V. Microencapsulation of probiotics for incorporation in cream biscuits. J. Food Meas. Charact. 2018, 12, 2193–2201. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.D.; Boom, R.M.; Schutyser, M.A. Survival of encapsulated Lactobacillus plantarum during isothermal heating and bread baking. LWT 2018, 93, 396–404. [Google Scholar] [CrossRef]
- Zhang, L.; Taal, M.A.; Boom, R.M.; Chen, X.D.; Schutyser, M.A. Effect of baking conditions and storage on the viability of Lactobacillus plantarum supplemented to bread. LWT 2018, 87, 318–325. [Google Scholar] [CrossRef]
- Thang, T.D.; Hang, H.T.T.; Luan, N.T.; KimThuy, D.T.; Lieu, D.M. Survival Survey of Lactobacillus acidophilus In Additional Probiotic Bread. Turk. J. Agric. Food Sci. Technol. 2019, 7, 588–592. [Google Scholar]
- Arslan-Tontul, S.; Erbas, M.; Gorgulu, A. The Use of probiotic-loaded single-and double-layered microcapsules in cake production. Probiotics Antimicrob. Proteins 2019, 11, 840–849. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Kandylis, P.; Petrović, T.; Dimitrijević-Branković, S.; Lević, S.; Nedović, V.; Kourkoutas, Y. Survival of spray dried microencapsulated Lactobacillus casei ATCC 393 in simulated gastrointestinal conditions and fermented milk. LWT Food Sci. Technol. 2016, 71, 169–174. [Google Scholar] [CrossRef]
- Chaikham, P. Stability of probiotics encapsulated with Thai herbal extracts in fruit juices and yoghurt during refrigerated storage. Food Biosci. 2015, 12, 61–66. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, D. Development of antioxidant rich fruit supplemented probiotic yogurts using free and microencapsulated Lactobacillus rhamnosus culture. J. Food Sci. Technol. 2016, 53, 667–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amakiri, A.C.; Thantsha, M.S. Survival of Bifidobacterium longum LMG 13197 microencapsulated in Vegetal or Vegetal-inulin matrix in simulated gastrointestinal fluids and yoghurt. SpringerPlus 2016, 5, 1343. [Google Scholar] [CrossRef] [PubMed]
- Bosnea, L.A.; Moschakis, T.; Biliaderis, C.G. Microencapsulated cells of Lactobacillus paracasei subsp. paracasei in biopolymer complex coacervates and their function in a yogurt matrix. Food Funct. 2017, 8, 554–562. [Google Scholar] [CrossRef]
- Jiang, Y.; Zheng, Z.; Zhang, T.; Hendricks, G.; Guo, M. Microencapsulation of Lactobacillus acidophilus NCFM using polymerized whey proteins as wall material. Int. J. Food Sci. Nutr. 2016, 67, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, C.L.; Sun, Y.; Li, A.L.; Liu, F.; Meng, X.C. Microencapsulation of Lactobacillus rhamnosus GG by Transglutaminase Cross-Linked Soy Protein Isolate to Improve Survival in Simulated Gastrointestinal Conditions and Yoghurt. J. Food Sci. 2016, 81, M1726–M1734. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, S.; Zheng, J.; Gao, F.; Ahmad, S.; Guo, M. Microencapsulation of Lactobacillus acidophilus (La-5), its evaluation and application in the yoghurt. Pak. J. Agric. Sci. 2016, 53, 933–939. [Google Scholar]
- Patrignani, F.; Siroli, L.; Serrazanetti, D.I.; Braschi, G.; Betoret, E.; Reinheimer, J.A.; Lanciotti, R. Microencapsulation of functional strains by high pressure homogenization for a potential use in fermented milk. Food Res. Int. 2017, 97, 250–257. [Google Scholar] [CrossRef]
- Afzaal, M.; Khan, A.U.; Saeed, F.; Ahmed, A.; Ahmad, M.H.; Maan, A.A.; Tufail, T.; Anjum, F.M.; Hussain, S. Functional exploration of free and encapsulated probiotic bacteria in yogurt and simulated gastrointestinal conditions. Food Sci. Nutr. 2019, 7, 3931–3940. [Google Scholar] [CrossRef]
- Pinto, S.S.; Cavalcante, B.D.; Verruck, S.; Alves, L.F.; Prudêncio, E.S.; Amboni, R.D. Effect of the incorporation of Bifidobacterium BB-12 microencapsulated with sweet whey and inulin on the properties of Greek-style yogurt. J. Food Sci. Technol. 2017, 54, 2804–2813. [Google Scholar] [CrossRef] [PubMed]
- Seth, D.; Mishra, H.N.; Deka, S.C. Effect of microencapsulation using extrusion technique on viability of bacterial cells during spray drying of sweetened yoghurt. Int. J. Biol. Macromol. 2017, 103, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Kalkan, S.; Öztürk, D.; Selimoğlu, B.S. Determining some of the quality characteristics of probiotic yogurts manufactured by using microencapsulated Saccharomyces cerevisiae var. boulardii. Turk. J. Vet. Anim. Sci. 2018, 42, 617–623. [Google Scholar] [CrossRef]
- Wang, M.; Wang, C.; Gao, F.; Guo, M. Effects of polymerised whey protein-based microencapsulation on survivability of Lactobacillus acidophilus LA-5 and physiochemical properties of yoghurt. J. Microencapsul. 2018, 35, 504–512. [Google Scholar] [CrossRef]
- Fazilah, N.F.; Hamidon, N.H.; Ariff, A.B.; Khayat, M.E.; Wasoh, H.; Halim, M. Microencapsulation of Lactococcus lactis Gh1 with Gum Arabic and Synsepalum dulcificum via Spray Drying for Potential Inclusion in Functional Yogurt. Molecules 2019, 24, 1422. [Google Scholar] [CrossRef]
- Verruck, S.; Barretta, C.; Miotto, M.; Canella, M.H.M.; de Liz, G.R.; Maran, B.M.; Garcia, S.G.; da Silveira, S.M.; Vieira, C.R.W.; da Cruz, A.G.; et al. Evaluation of the interaction between microencapsulated Bifidobacterium BB-12 added in goat’s milk Frozen Yogurt and Escherichia coli in the large intestine. Food Res. Int. 2020, 127, 108690. [Google Scholar] [CrossRef]
- Obradović, N.; Volić, M.; Nedović, V.; Rakin, M.; Bugarski, B. Microencapsulation of probiotic starter culture in protein–carbohydrate carriers using spray and freeze-drying processes: Implementation in whey-based beverages. J. Food Eng. 2022, 321, 110948. [Google Scholar] [CrossRef]
- Silva, R.; Pimentel, T.C.; Junior, F.E.D.M.; Esmerino, E.A.; Freitas, M.Q.; Fávaro-Trindade, C.S.; Silva, M.C.; Cruz, A.G. Microencapsulation with spray-chilling as an innovative strategy for probiotic low sodium requeijão cremoso processed cheese processing. Food Biosci. 2022, 46, 101517. [Google Scholar] [CrossRef]
- Afzaal, M.; Saeed, F.; Arshad, M.U.; Nadeem, M.T.; Saeed, M.; Tufail, T. The effect of encapsulation on the stability of probiotic bacteria in ice cream and simulated gastrointestinal conditions. Probiotics Antimicrob. Proteins 2019, 11, 1348–1354. [Google Scholar] [CrossRef]
- Kataria, A.; Achi, S.C.; Halami, P.M. Effect of encapsulation on viability of Bifidobacterium longum CFR815j and physiochemical properties of ice cream. Indian J. Microbiol. 2018, 58, 248–251. [Google Scholar] [CrossRef]
- Afzaal, M.; Khan, A.U.; Saeed, F.; Arshad, M.S.; Khan, M.A.; Saeed, M.; Maan, A.A.; Khan, M.K.; Ismail, Z.; Ahmed, A.; et al. Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal conditions and in ice cream. Food Sci. Nutr. 2020, 8, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Gruskiene, R.; Bockuviene, A.; Sereikaite, J. Microencapsulation of bioactive ingredients for their delivery into fermented milk products: A review. Molecules 2021, 26, 4601. [Google Scholar] [CrossRef] [PubMed]
- Picciotti, U.; Massaro, A.; Galiano, A.; Garganese, F. Cheese fortification: Review and possible improvements. Food Rev. Int. 2021, 1–27. [Google Scholar] [CrossRef]
- Sharifi, S.; Rezazad-Bari, M.; Alizadeh, M.; Almasi, H.; Amiri, S. Use of whey protein isolate and gum Arabic for the co-encapsulation of probiotic Lactobacillus plantarum and phytosterols by complex coacervation: Enhanced viability of probiotic in Iranian white cheese. Food Hydrocoll. 2021, 113, 106496. [Google Scholar] [CrossRef]
- Mudgil, P.; Aldhaheri, F.; Hamdi, M.; Punia, S.; Maqsood, S. Fortification of Chami (traditional soft cheese) with probiotic-loaded protein and starch microparticles: Characterization, bioactive properties, and storage stability. LWT 2022, 158, 113036. [Google Scholar] [CrossRef]
- Kavas, N.; Kavas, G.; Kınık, Ö.; Ateş, M.; Şatır, G.; Kaplan, M. The effect of using microencapsulated pro and prebiotics on the aromatic compounds and sensorial properties of synbiotic goat cheese. Food Biosci. 2021, 43, 101233. [Google Scholar] [CrossRef]
- Kavas, N.; Kavas, G.; Kınık, Ö.; Ateş, M.; Kaplan, M.; Şatır, G. Symbiotic microencapsulation to enhance Bifidobacterium longum and Lactobacillus paracasei survival in goat cheese. Food Sci. Technol. 2021, 42. [Google Scholar] [CrossRef]
- Mukhtar, H.; Yaqub, S. Production of probiotic Mozzarella cheese by incorporating locally isolated Lactobacillus acidophilus. Ann. Microbiol. 2020, 70, 56. [Google Scholar] [CrossRef]
- Phoem, A.N.; Chanthachum, S.; Voravuthikunchai, S.P. Applications of microencapsulated Bifidobacterium longum with Eleutherine americana in fresh milk tofu and pineapple juice. Nutrients 2015, 7, 2469–2484. [Google Scholar] [CrossRef]
- Gandomi, H.; Abbaszadeh, S.; Misaghi, A.; Bokaie, S.; Noori, N. Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT Food Sci. Technol. 2016, 69, 365–371. [Google Scholar] [CrossRef]
- Roy, D.; Savard, P.; Guertin, N.; Martoni, C.J.; Jones, M.L.; Champagne, C.P. Viability of Lactobacillus reuteri NCIMB 30242 during storage in fruit juice and soy beverage. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 320–325. [Google Scholar] [CrossRef]
- Dias, C.O.; de Almeida, J.D.S.O.; Pinto, S.S.; de Oliveira Santana, F.C.; Verruck, S.; Müller, C.M.O.; Prudêncio, E.S.; de Mello Castanho Amboni, R.D. Development and physico-chemical characterization of microencapsulated bifidobacteria in passion fruit juice: A functional non-dairy product for probiotic delivery. Food Biosci. 2018, 24, 26–36. [Google Scholar] [CrossRef]
- Azarkhavarani, P.R.; Ziaee, E.; Hosseini, S.M.H. Effect of encapsulation on the stability and survivability of Enterococcus faecium in a non-dairy probiotic beverage. Food Sci. Technol. Int. 2019, 25, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Rovinaru, C.; Pasarin, D. Application of Microencapsulated Synbiotics in Fruit-Based Beverages. Probiotics Antimicrob. Proteins 2019, 12, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Santos Monteiro, S.; Albertina Silva Beserra, Y.; Miguel Lisboa Oliveira, H.; Pasquali, M.A.D.B. Production of probiotic passion fruit (Passiflora edulis Sims f. flavicarpa Deg.) drink using Lactobacillus reuteri and microencapsulation via spray drying. Foods 2020, 9, 335. [Google Scholar]
- Nami, Y.; Lornezhad, G.; Kiani, A.; Abdullah, N.; Haghshenas, B. Alginate-Persian Gum-Prebiotics microencapsulation impacts on the survival rate of Lactococcus lactis ABRIINW-N19 in orange juice. LWT 2020, 124, 109190. [Google Scholar] [CrossRef]
- González-Ferrero, C.; Irache, J.M.; Marín-Calvo, B.; Ortiz-Romero, L.; Virto-Resano, R.; González-Navarro, C.J. Encapsulation of probiotics in soybean protein-based microparticles preserves viable cell concentration in foods all along the production and storage processes. J. Microencapsul. 2020, 37, 242–253. [Google Scholar] [CrossRef]
- González-Cuello, R.E.; Pájaro, K.; Acevedo, W.; Ortega-Toro, R. Study of the Shelf Life of a Low-Calorie Jam Added with Microencapsulated Probiotics. Contemp. Eng. Sci. 2018, 11, 1235–1244. [Google Scholar] [CrossRef]
- Talebzadeh, S.; Sharifan, A. Developing probiotic jelly desserts with Lactobacillus acidophilus. J. Food Process. Preserv. 2017, 41, e13026. [Google Scholar] [CrossRef]
- Bora, A.F.M.; Li, X.; Zhu, Y.; & Du, L. Improved viability of microencapsulated probiotics in a freeze-dried banana powder during storage and under simulated gastrointestinal tract. Probiotics Antimicrob. Proteins 2019, 11, 1330–1339. [Google Scholar] [CrossRef]
- Kiani, A.; Nami, Y.; Hedayati, S.; Jaymand, M.; Samadian, H.; Haghshenas, B. Tarkhineh as a new microencapsulation matrix improves the quality and sensory characteristics of probiotic Lactococcus lactis KUMS-T18 enriched potato chips. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lipan, L.; Rusu, B.; Sendra, E.; Hernández, F.; Vázquez-Araújo, L.; Vodnar, D.C.; Carbonell-Barrachina, Á.A. Spray drying and storage of probiotic-enriched almond milk: Probiotic survival and physicochemical properties. J. Sci. Food Agric. 2020, 100, 3697–3708. [Google Scholar] [CrossRef] [PubMed]
- Song, C.E.; Shim, H.H.; Kuppusamy, P.; Jeong, Y.I.; Lee, K.D. Potential Sustainable Properties of Microencapsulated Endophytic Lactic Acid Bacteria (KCC-42) in In-Vitro Simulated Gastrointestinal Juices and Their Fermentation Quality of Radish Kimchi. BioMed Res. Int. 2018, 2018. [Google Scholar] [CrossRef]
- Song, C.E.; Kuppusamy, P.; Jeong, Y.I.; Shim, H.H.; Lee, K.D. Microencapsulation of endophytic LAB (KCC-41) and its probiotic and fermentative potential for cabbage kimchi. Int. Microbiol. 2019, 22, 121–130. [Google Scholar] [CrossRef]
- Witzler, J.J.P.; Pinto, R.A.; de Valdez, G.F.; de Castro, A.D.; Cavallini, D.C.U. Development of a potential probiotic lozenge containing Enterococcus faecium CRL 183. LWT 2017, 77, 193–199. [Google Scholar] [CrossRef]
- Marcial-Coba, M.S.; Saaby, L.; Knøchel, S.; Nielsen, D.S. Dark chocolate as a stable carrier of microencapsulated Akkermansia muciniphila and Lactobacillus casei. FEMS Microbiol. Lett. 2019, 366 (Suppl. S1), i24–i29. [Google Scholar] [CrossRef] [PubMed]
- Gadhiya, D.; Patel, A.; Prajapati, J.B. Current trend and future prospective of functional probiotic milk chocolates and related products-a review. Czech J. Food Sci. 2015, 33, 295–301. [Google Scholar] [CrossRef]
- Rajam, R.; Kumar, S.B.; Prabhasankar, P.; Anandharamakrishnan, C. Microencapsulation of Lactobacillus plantarum MTCC 5422 in fructooligosaccharide and whey protein wall systems and its impact on noodle quality. J. Food Sci. Technol. 2015, 52, 4029–4041. [Google Scholar] [CrossRef]
- Kalkan, S.; Mustafa, O.T.A.Ğ.; Köksal, E.İ.; Bozkurt, N.Ş. Production of functional Turkish noodle (Erişte) supplementary probiotic and determining of some quality properties. Food Health 2020, 6, 140–150. [Google Scholar] [CrossRef]
- Silva, E.K.; Zabot, G.L.; Bargas, M.A.; Meireles, M.A.A. Microencapsulation of lipophilic bioactive compounds using prebiotic carbohydrates: Effect of the degree of inulin polymerization. Carbohydr. Polym. 2016, 152, 775–783. [Google Scholar] [CrossRef]
- Eratte, D.; Dowling, K.; Barrow, C.J.; Adhikari, B.P. In-vitro digestion of probiotic bacteria and omega-3 oil co-microencapsulated in whey protein isolate-gum Arabic complex coacervates. Food Chem. 2017, 227, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Enache, I.M.; Vasile, A.M.; Enachi, E.; Barbu, V.; Stănciuc, N.; Vizireanu, C. Co-microencapsulation of anthocyanins from black currant extract and lactic acid bacteria in biopolymeric matrices. Molecules 2020, 25, 1700. [Google Scholar] [CrossRef] [PubMed]
- Niño-Vásquez, I.A.; Muñiz-Márquez, D.; Ascacio-Valdés, J.A.; Contreras-Esquivel, J.C.; Aguilar, C.N.; Rodríguez-Herrera, R.; Flores-Gallegos, A.C. Co-microencapsulation: A promising multi-approach technique for enhancement of functional properties. Bioengineered 2022, 13, 5168–5189. [Google Scholar] [CrossRef]
- Kvakova, M.; Bertkova, I.; Stofilova, J.; Savidge, T.C. Co-encapsulated synbiotics and immobilized probiotics in human health and gut Microbiota modulation. Foods 2021, 10, 1297. [Google Scholar] [CrossRef]
- Massounga Bora, A.F.; Li, X.; & Liu, L. Physicochemical and Functional Characterization of Newly Designed Biopolymeric-Based Encapsulates with Probiotic Culture and Charantin. Foods 2021, 10, 2677. [Google Scholar] [CrossRef]
- Hao, L.; Shan, Q.; Wei, J.; Ma, F.; Sun, P. Lactoferrin: Major physiological functions and applications. Curr. Protein Pept. Sci. 2019, 20, 139–144. [Google Scholar] [CrossRef]
- Desiderato, C.K.; Sachsenmaier, S.; Ovchinnikov, K.V.; Stohr, J.; Jacksch, S.; Desef, D.N.; Crauwels, P.; Egert, M.; Diep, D.B.; Goldbeck, O.; et al. Identification of Potential Probiotics Producing Bacteriocins Active against Listeria monocytogenes by a Combination of Screening Tools. Int. J. Mol. Sci. 2021, 22, 8615. [Google Scholar] [CrossRef]
- Huq, T.; Fraschini, C.; Khan, A.; Riedl, B.; Bouchard, J.; Lacroix, M. Alginate based nanocomposite for microencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin. Carbohydr. Polym. 2017, 168, 61–69. [Google Scholar] [CrossRef]
- Mawad, A.; Helmy, Y.A.; Shalkami, A.G.; Kathayat, D.; Rajashekara, G.E. E. coli Nissle microencapsulation in alginate-chitosan nanoparticles and its effect on Campylobacter jejuni in vitro. Appl. Microbiol. Biotechnol. 2018, 102, 10675–10690. [Google Scholar] [CrossRef] [PubMed]
- Lotfipour, F.; Shahi, S.; Farjami, A.; Salatin, S.; Mahmoudian, M.; Dizaj, S.M. Safety and Toxicity Issues of Therapeutically Used Nanoparticles from the Oral Route. BioMed Res. Int. 2021, 2021. [Google Scholar] [CrossRef]
- Centurion, F.; Basit, A.W.; Liu, J.; Gaisford, S.; Rahim, M.A.; Kalantar-Zadeh, K. Nanoencapsulation for probiotic delivery. ACS Nano 2021, 15, 18653–18660. [Google Scholar] [CrossRef] [PubMed]
- Marketsand Markets (2022). Microcapsule Market by Technology (Spray, Emulsion and Dripping), End-user Industry (Pharmaceuticals & Healthcare, Food, Household & Personal Care, Textiles, Agrochemicals), Shell Material, Core Material & Region—Global Forecast to 2026. Available online: https://www.marketsandmarkets.com/Market-Reports/microcapsule-market-24415649.html (accessed on 29 September 2022).
- Dey, G. Non-dairy Probiotic Foods: Innovations and market trends. In Innovations in Technologies for Fermented Food and Beverage Industries; Springer: Cham, Switzerland, 2018; pp. 159–173. [Google Scholar]
Probiotic Strains | Encapsulation Facts | Storage Conditions | Viability (At the End Storage) | Capsule Size (µm) | Notes | Author(s) |
---|---|---|---|---|---|---|
L. casei 01 L. acidophilus LA-5 B. lactis BB-12 | Thai herbal plants (cashew flower, yanang, pennywort, and green tea) | 4 °C for 30 days |
| Not reported |
| [22] |
B. longum LMG 13197 | Vegetal BM 297 and inulin Freeze-drying | 4° C for 6 weeks |
| Not reported |
| [24] |
L. paracasei subsp. Paracasei E6 | Whey protein isolate (WPI) and gum Arabic Complex coacervation | 4 °C for 45 days |
| Not reported |
| [25] |
L. acidophilus NCFM L. delbrueckii subsp. bulgaricus S. thermophilus | Polymerized whey protein (PWP) Compared to Sodium alginate | 4 °C for 9 weeks |
| Not reported |
| [26] |
L. acidophilus LA-5 | Whey protein concentrate (WPC) and mixture of polysaccharides (sodium alginate, λ-carrageenan, inulin, lentinan, and glucose) | 4 °C for 35 days |
| Not reported |
| [28] |
L. acidophilus ATTC-4356 | Sodium alginate and carrageenan | 4 °C for 18 days |
| -ALG beads 714-Carrageenan 726 |
| [30] |
Bifidobacterium BB-12 L. bulgaricus (LB) S. thermophiles (ST) | Sweet whey (SW) and inulin (SWI) Spray drying | 4 °C for 28 days |
| Not reported |
| [31] |
S. thermophilus (ST) and L. bulgaricus (LB) NCDC 263 | Sodium alginate (ALG) Extrusion, spray drying | - |
| 82.00–149.37 |
| [32] |
Saccharomyces cerevisiae var. boulardii | Sodium alginate, extrusion | 4 °C for 21 days |
| Not reported |
| [33] |
L. acidophilus LA-5 | Polymerized whey protein (PWP) | 4 °C for 10 weeks |
| Average ~744 |
| [34] |
L. lactis Gh1 | Gum Arabic Synsepalum dulcificum (miracle fruit: seed, pulp, and leaf) Spray drying | 4 °C for 21 days |
| Not reported |
| [35] |
Mix: Lactobacillus delbrueckii ssp. bulgaricus (1.0%), Bifidobacterium bifidum (6.0%), Streptococcus salivarius ssp. thermophilus, (80.0%), Lactobacillus acidophilus | Whey, whey protein concentrate, and sodium alginate. Spray and freeze drying | 4 °C for 28 days Tested under simulated GI conditions |
| Spray drying: 5.06–7.23 Freeze drying: 2.98–3.62 |
| [37] Whey-based beverage |
L. acidophilus La-5 | Cottonseed vegetable fat Spray chilling |
|
| 78 ± 4 |
| [38]
|
Probiotic | Encapsulation Facts | Storage Conditions | Viability (At the End Storage) | CapsuleSize (µm) | Notes | Author(s) |
---|---|---|---|---|---|---|
| ALG Pineapple juice | 4 °C for 45 days |
| Not reported. |
| [49] |
| CHI/ALG+ inulin Apple juice | 4 or 25 °C for 90 days |
| With inulin: 1.40 ± 0.08 mmWithout inulin: 1.39 ± 0.06 mm |
| [50] |
| ALG and poly-L-lysine Mixed fruit | 4 and 8 °C for 8 weeks. |
| Not reported. |
| [51] |
| Maltodextrins and inulin Passion fruit juice | 4 or 25 °C for 30 days |
| 10.65 and 16.52 μm |
| [52] |
| Calcium Alginate Sour cherry juice (SCJ) | 4 °C or 25 °C for 4 weeks |
| Not reported |
| [53] |
| ALG, Persian Gum FOS and inulin Orange juice | 4 °C for 6 weeks |
| ALG: 860–1130 μmALG + PG: 340–370 μm+FOS: 350–430 μm+Inulin: 460–560 μm |
| [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sbehat, M.; Mauriello, G.; Altamimi, M. Microencapsulation of Probiotics for Food Functionalization: An Update on Literature Reviews. Microorganisms 2022, 10, 1948. https://doi.org/10.3390/microorganisms10101948
Sbehat M, Mauriello G, Altamimi M. Microencapsulation of Probiotics for Food Functionalization: An Update on Literature Reviews. Microorganisms. 2022; 10(10):1948. https://doi.org/10.3390/microorganisms10101948
Chicago/Turabian StyleSbehat, Maram, Gianluigi Mauriello, and Mohammad Altamimi. 2022. "Microencapsulation of Probiotics for Food Functionalization: An Update on Literature Reviews" Microorganisms 10, no. 10: 1948. https://doi.org/10.3390/microorganisms10101948
APA StyleSbehat, M., Mauriello, G., & Altamimi, M. (2022). Microencapsulation of Probiotics for Food Functionalization: An Update on Literature Reviews. Microorganisms, 10(10), 1948. https://doi.org/10.3390/microorganisms10101948