Survival of Campylobacter jejuni 11168H in Acanthamoebae castellanii Provides Mechanistic Insight into Host Pathogen Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Cultures
2.2. C. jejuni Mutant Transformation
2.3. C. jejuni Invasion and Survival Assay
2.4. Live-Cell Imaging
2.5. RNA-Seq and Real-Time RT-qPCR
2.6. Statistical Analysis
3. Results
3.1. Undigested C. jejuni Are Released Back into the Environment
3.2. C. jejuni Maintains a Niche within Amoebic Cyst
3.3. Intra-Amoebal C. jejuni Transcriptome
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Igwaran, A.; Okoh, A.I. Human campylobacteriosis: A public health concern of global importance. Heliyon 2019, 5, e02814. [Google Scholar] [CrossRef] [PubMed]
- Elmi, A.; Nasher, F.; Dorrell, N.; Wren, B.; Gundogdu, O. Revisiting Campylobacter jejuni Virulence and Fitness Factors: Role in Sensing, Adapting, and Competing. Front. Cell. Infect. Microbiol. 2021, 10, 607704. [Google Scholar] [CrossRef] [PubMed]
- Joshua, G.W.P.; Guthrie-Irons, C.; Karlyshev, A.V.; Wren, B.W. Biofilm formation in Campylobacter jejuni. Microbiology 2006, 152, 387–396. [Google Scholar] [CrossRef]
- Reuter, M.; Mallett, A.; Pearson, B.M.; van Vliet, A.H.M. Biofilm Formation by Campylobacter jejuni Is Increased under Aerobic Conditions. Appl. Environ. Microbiol. 2010, 76, 2122–2128. [Google Scholar] [CrossRef] [PubMed]
- Frirdich, E.; Biboy, J.; Pryjma, M.; Lee, J.; Huynh, S.; Parker, C.T.; Girardin, S.E.; Vollmer, W.; Gaynor, E.C. The Campylobacter jejuni helical to coccoid transition involves changes to peptidoglycan and the ability to elicit an immune response. Mol. Microbiol. 2019, 112, 280–301. [Google Scholar] [CrossRef]
- Ikeda, N.; Karlyshev, A.V. Putative mechanisms and biological role of coccoid form formation in Campylobacter jejuni. Eur. J. Microbiol. Immunol. 2012, 2, 41–49. [Google Scholar] [CrossRef]
- Lv, R.; Wang, K.; Feng, J.; Heeney, D.D.; Liu, D.; Lu, X. Detection and Quantification of Viable but Non-culturable Campylobacter jejuni. Front. Microbiol. 2020, 10, 2920. [Google Scholar] [CrossRef]
- Axelsson-Olsson, D.; Waldenström, J.; Broman, T.; Olsen, B.; Holmberg, M. Protozoan Acanthamoeba polyphaga as a Potential Reservoir for Campylobacter jejuni. Appl. Environ. Microbiol. 2005, 71, 987–992. [Google Scholar] [CrossRef]
- Snelling, W.J.; Stern, N.J.; Lowery, C.J.; Moore, J.E.; Gibbons, E.; Baker, C.; Dooley, J. Colonization of broilers by Campylobacter jejuni internalized within Acanthamoeba castellanii. Arch. Microbiol. 2008, 189, 175–179. [Google Scholar] [CrossRef]
- Olofsson, J.; Axelsson-Olsson, D.; Brudin, L.; Olsen, B.; Ellström, P. Campylobacter jejuni Actively Invades the Amoeba Acanthamoeba polyphaga and Survives within Non Digestive Vacuoles. PLoS ONE 2013, 8, e78873. [Google Scholar] [CrossRef] [Green Version]
- Vieira, A.; Seddon, A.M.; Karlyshev, A.V. Campylobacter–Acanthamoeba interactions. Microbiology 2015, 161, 933–947. [Google Scholar] [CrossRef] [PubMed]
- Nasher, F.; Wren, B.W. Transient internalization of Campylobacter jejuni in Amoebae enhances subsequent invasion of human cells. Microbiology 2022, 168, 1143. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.; Khan, N.A. War of the microbial worlds: Who is the beneficiary in Acanthamoeba-bacterial interactions? Exp. Parasitol 2012, 130, 311–313. [Google Scholar] [CrossRef] [PubMed]
- Rayamajhee, B.; Subedi, D.; Peguda, H.; Willcox, M.; Henriquez, F.; Carnt, N. A Systematic Review of Intracellular Microorganisms within Acanthamoeba to Understand Potential Impact for Infection. Pathogens 2021, 10, 225. [Google Scholar] [CrossRef]
- Snelling, W.J.; Moore, J.E.; McKenna, J.P.; Lecky, D.M.; Dooley, J.S. Bacterial–protozoa interactions; an update on the role these phenomena play towards human illness. Microbes. Infect. 2006, 8, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Guimaraes, A.J.; Gomes, K.X.; Cortines, J.R.; Peralta, J.M.; Peralta, R.H. Acanthamoeba spp. as a universal host for pathogenic microorganisms: One bridge from environment to host virulence. Microbiol. Res. 2016, 193, 30–38. [Google Scholar] [CrossRef]
- Schuppler, M. How the interaction of Listeria monocytogenes and Acanthamoeba spp. affects growth and distribution of the food borne pathogen. Appl. Microbiol. Biotechnol. 2014, 98, 2907–2916. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Acanthamoeba. 8 February 2019.
- Siddiqui, R.; Khan, N.A. Biology and pathogenesis of Acanthamoeba. Parasites Vectors 2012, 5, 6. [Google Scholar] [CrossRef]
- Sandström, G.; Saeed, A.; Abd, H. Acanthamoeba-bacteria: A model to study host interaction with human pathogens. Curr. Drug Targets 2011, 12, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A. Acanthamoeba as a Model for the Investigation of the Molecular Mechanisms of Campylobacter Jejuni Pathogenesis and Survival in the Environment. Ph.D. Thesis, Kingston University, Kingston, UK, September 2017. [Google Scholar]
- Maal-Bared, R.; Dixon, B.; Axelsson-Olsson, D. Fate of internalized Campylobacter jejuni and Mycobacterium avium from encysted and excysted Acanthamoeba polyphaga. Exp. Parasitol. 2019, 199, 104–110. [Google Scholar] [CrossRef]
- Burnham, P.M.; Hendrixson, D.R. Campylobacter jejuni: Collective components promoting a successful enteric lifestyle. Nat. Rev. Genet. 2018, 16, 551–565. [Google Scholar] [CrossRef] [PubMed]
- Bronowski, C.; James, C.E.; Winstanley, C. Role of environmental survival in transmission of Campylobacter jejuni. FEMS Microbiol. Lett. 2014, 356, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Karlyshev, A.V.; Linton, D.; Gregson, N.A.; Wren, B.W. A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni. Microbiology 2002, 148, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Taylor, D.E. Natural transformation in Campylobacter species. J. Bacteriol. 1990, 172, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Jervis, A.J.; Butler, J.A.; Wren, B.W.; Linton, D. Chromosomal integration vectors allowing flexible expression of foreign genes in Campylobacter jejuni. BMC Microbiol. 2015, 15, 230. [Google Scholar] [CrossRef]
- Vieira, A.; Ramesh, A.; Seddon, A.M.; Karlyshev, A.V. CmeABC Multidrug Efflux Pump Contributes to Antibiotic Resistance and Promotes Campylobacter jejuni Survival and Multiplication in Acanthamoeba polyphaga. Appl. Environ. Microbiol. 2017, 83, 1600–1617. [Google Scholar] [CrossRef]
- Joshi, N.; Fass, J. Sickle: A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ Files, Version 1.33. 2011.
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
- Doyscher, D.; Fieseler, L.; Dons, L.; Loessner, M.J. Markus Schuppler Acanthamoeba feature a unique backpacking strategy to trap and feed on L isteria monocytogenes and other motile bacteria. Environ. Microbiol. 2013, 15, 433–446. [Google Scholar] [CrossRef]
- Samie, M.A.; Xu, H. Lysosomal exocytosis and lipid storage disorders. J. Lipid Res. 2014, 55, 995–1009. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chin, L.-S. The molecular machinery of synaptic vesicle exocytosis. Experientia 2003, 60, 942–960. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.O.; Galán, J.E. Campylobacter jejuni Survives within Epithelial Cells by Avoiding Delivery to Lysosomes. PLoS Pathog. 2008, 4, e14. [Google Scholar] [CrossRef]
- Lam, W.W.L.; Woo, E.J.; Kotaka, M.; Tam, W.K.; Leung, Y.C.; Ling, T.K.W.; Au, S.W.N. Molecular interaction of flagellar export chaperone FliS and cochaperone HP1076 in Helicobacter pylori. FASEB J. 2010, 24, 4020–4032. [Google Scholar] [CrossRef]
- Rajagopala, S.V.; Titz, B.; Goll, J.; Parrish, J.R.; Wohlbold, K.; McKevitt, M.T.; Palzkill, T.; Mori, H.; Finley, R.L.F.J.; Uetz, P. The protein network of bacterial motility. Mol. Syst. Biol. 2007, 3, 128. [Google Scholar] [CrossRef]
- Pickford, J.L.; Wainwright, L.; Wu, G.; Poole, R.K. Expression and purification of Cgb and Ctb, the NO-inducible goblins of the foodborne bacterial pathogen C. jejuni. Methods Enzym. 2008, 436, 289–302. [Google Scholar]
- Bocian-Ostrzycka, K.M.; Grzeszczuk, M.J.; Dziewit, L.; Jagusztyn-Krynicka, E.K. Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systems. Front. Microbiol. 2015, 6, 570. [Google Scholar] [CrossRef]
- Grabowska, A.D.; Wywiał, E.; Dunin-Horkawicz, S.; Łasica, A.M.; Wösten, M.M.S.M.; Nagy-Staroń, A.; Godlewska, R.; Bocian-Ostrzycka, K.; Pienkowska, K.; Łaniewski, P.; et al. Functional and Bioinformatics Analysis of Two Campylobacter jejuni Homologs of the Thiol-Disulfide Oxidoreductase, DsbA. PLoS ONE 2014, 9, e106247. [Google Scholar] [CrossRef]
- Denoncin, K.; Collet, J.-F. Disulfide Bond Formation in the Bacterial Periplasm: Major Achievements and Challenges Ahead. Antioxid. Redox Signal. 2013, 19, 63–71. [Google Scholar] [CrossRef]
- Alam, A.; Bröms, J.E.; Kumar, R.; Sjöstedt, A. The Role of ClpB in Bacterial Stress Responses and Virulence. Front. Mol. Biosci. 2021, 8, 668910. [Google Scholar] [CrossRef]
- Stintzi, A. Gene Expression Profile of Campylobacter jejuni in Response to Growth Temperature Variation. J. Bacteriol. 2003, 185, 2009–2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leon-Kempis Mdel, R.; Guccione, E.; Mulholland, F.; Williamson, M.P.; Kelly, D.J. The Campylobacter jejuni PEB1a adhesin is an aspartate/glutamate-binding protein of an ABC transporter essential for microaerobic growth on dicarboxylic amino acids. Mol. Microbiol. 2006, 60, 1262–1275. [Google Scholar] [CrossRef] [PubMed]
- Locht, C.; Berlin, P.; Menozzi, F.D.; Renauld, G. The filamentous haemagglutinin, a multifaceted adhesion produced by virulent Bordetella spp. Mol. Microbiol. 1993, 9, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Neal-McKinney, J.M.; Konkel, M.E. The Campylobacter jejuni CiaC virulence protein is secreted from the flagellum and delivered to the cytosol of host cells. Front. Cell. Infect. Microbiol. 2012, 2, 31. [Google Scholar] [CrossRef]
- Buelow, D.R.; Christensen, J.E.; Neal-McKinney, J.M.; Konkel, M.E. Campylobacter jejuni survival within human epithelial cells is enhanced by the secreted protein CiaI. Mol. Microbiol. 2011, 80, 1296–1312. [Google Scholar] [CrossRef]
- Karlyshev, A.V.; Linton, D.; Gregson, N.A.; Lastovica, A.J.; Wren, B.W. Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol. Microbiol. 2000, 35, 529–541. [Google Scholar] [CrossRef]
- Atack, J.M.; Kelly, D.J. Contribution of the stereospecific methionine sulphoxide reductases MsrA and MsrB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni. Microbiology 2008, 154, 2219–2230. [Google Scholar] [CrossRef]
- Jones, L.J.; Carballido-López, R.; Errington, J. Control of Cell Shape in Bacteria: Helical, Actin-like Filaments in Bacillus subtilis. Cell 2001, 104, 913–922. [Google Scholar] [CrossRef]
- Bouyer, S.; Imbert, C.; Rodier, M.-H.; Héchard, Y. Long-term survival of Legionella pneumophila associated with Acanthamoeba castellanii vesicles. Environ. Microbiol. 2007, 9, 1341–1344. [Google Scholar] [CrossRef]
- Van der Henst, C.; Scrignari, T.; Maclachlan, C.; Blokesch, M. An intracellular replication niche for Vibrio cholerae in the amoeba Acanthamoeba castellanii. ISME J. 2016, 10, 897–910. [Google Scholar] [CrossRef]
- Axelsson-Olsson, D.; Olofsson, J.; Svensson, L.; Griekspoor, P.; Waldenström, J.; Ellström, P.; Olsen, B. Amoebae and algae can prolong the survival of Campylobacter species in co-culture. Exp. Parasitol. 2010, 126, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Visvesvara, G.S.; Moura, H.; Schuster, F.L. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol. Med. Microbiol. 2007, 50, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Nisar, M.A.; Ross, K.E.; Brown, M.H.; Bentham, R.; Whiley, H. Legionella pneumophila and Protozoan Hosts: Implications for the Control of Hospital and Potable Water Systems. Pathogens 2020, 9, 286. [Google Scholar] [CrossRef]
- Taveirne, M.E.; Theriot, C.M.; Livny, J.; DiRita, V.J. The Complete Campylobacter jejuni Transcriptome during Colonization of a Natural Host Determined by RNAseq. PLoS ONE 2013, 8, e73586. [Google Scholar] [CrossRef]
- Hermans, D.; Van Deun, K.; Martel, A.; Van Immerseel, F.; Messens, W.; Heyndrickx, M.; Haesebrouck, F.; Pasmans, F. Colonization factors of Campylobacter jejuni in the chicken gut. Veter Res. 2011, 42, 82. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Torres, A.; Stevanin, T.; Jones-Carson, J.; Castor, M.; Read, R.C.; Fang, F.C. Analysis of Nitric Oxide-Dependent Antimicrobial Actions in Macrophages and Mice. Methods Enzymol. 2008, 437, 521–538. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.C. Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies. Nat. Rev. Genet. 2004, 2, 820–832. [Google Scholar] [CrossRef]
- Singh Amoolya, H.; Wolf, D.M.; Wang, P.; Arkin, A.P. Modularity of stress response evolution. Proc. Natl. Acad. Sci. USA 2008, 105, 7500–7505. [Google Scholar] [CrossRef]
- Looft, T.; Cai, G.; Choudhury, B.; Lai, L.X.; Lippolis, J.; Reinhardt, T.; Sylte, M.J.; Casey, T.A. Avian Intestinal Mucus Modulates Campylobacter jejuni Gene Expression in a Host-Specific Manner. Front. Microbiol. 2018, 9, 3215. [Google Scholar] [CrossRef]
- Santra, M.W.; Daniel, F.; Ken, A.D. Bacterial proteostasis balances energy and chaperone utilization efficiently. Proc. Natl. Acad. Sci. USA 2017, 114, E2654–E2661. [Google Scholar] [CrossRef]
- Schramm, F.D.; Schroeder, K.; Jonas, K. Protein aggregation in bacteria. FEMS Microbiol. Rev. 2020, 44, 54–72. [Google Scholar] [CrossRef] [PubMed]
- Nagy, P. Kinetics and Mechanisms of Thiol—Disulfide Exchange Covering Direct Substitution and Thiol Oxidation-Mediated Pathways. Antioxid. Redox Signal. 2013, 18, 1623–1641. [Google Scholar] [CrossRef] [PubMed]
- Maskos, K.; Huber-Wunderlich, M.; Glockshuber, R. DsbA and DsbC-catalyzed oxidative folding of proteins with complex disulfide bridge patterns in vitro and in vivo. J. Mol. Biol. 2003, 325, 495–513. [Google Scholar] [CrossRef]
- Banaś, A.M.; Bocian-Ostrzycka, K.M.; Dunin-Horkawicz, S.; Ludwiczak, J.; Wilk, P.; Orlikowska, M.; Wyszyńska, A.; Dąbrowska, M.; Plichta, M.; Spodzieja, M.; et al. Interplay between DsbA1, DsbA2 and C8J_1298 Periplasmic Oxidoreductases of Campylobacter jejuni and Their Impact on Bacterial Physiology and Pathogenesis. Int. J. Mol. Sci. 2021, 22, 13451. [Google Scholar] [CrossRef] [PubMed]
- Nachamkin, I.; Yang, X.H.; Stern, N.J. Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: Analysis with flagellar mutants. Appl. Environ. Microbiol. 1993, 59, 1269–1273. [Google Scholar] [CrossRef] [PubMed]
- Guerry, P. Campylobacter flagella: Not just for motility. Trends Microbiol. 2007, 15, 456–461. [Google Scholar] [CrossRef]
- Wassenaar, T.; Bleumink-Pluym, N.M.; Van Der Zeijst, B. Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO J. 1991, 10, 2055–2061. [Google Scholar] [CrossRef]
- Barrero-Tobon, A.M.; Hendrixson, D.R. Identification and analysis of flagellar coexpressed determinants Feds of Campylobacter jejuni involved in colonization. Mol. Microbiol. 2012, 84, 352–369. [Google Scholar] [CrossRef]
- Konkel, M.E.; Klena, J.D.; Rivera-Amill, V.; Monteville, M.R.; Biswas, D.; Raphael, B.; Mickelson, J. Secretion of Virulence Proteins from Campylobacter jejuni Is Dependent on a Functional Flagellar Export Apparatus. J. Bacteriol. 2004, 186, 3296–3303. [Google Scholar] [CrossRef]
- Cróinín, T.O.; Backert, S. Host epithelial cell invasion by Campylobacter jejuni: Trigger or zipper mechanism? Front. Cell. Infect. Microbiol. 2012, 2, 25. [Google Scholar] [CrossRef]
- Best, A.; Kwaik, A.Y. Nutrition and Bipartite Metabolism of Intracellular Pathogens. Trends Microbiol. 2019, 27, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Limenitakis, J.P.J.; Fuhrer, T.; Geuking, M.; Lawson, M.A.; Wyss, M.; Brugiroux, S.; Keller, I.; Macpherson, J.A.; Rupp, S.; et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nat. Commun. 2015, 6, 8292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christina, S.V.; Brøndsted, L.; Li, Y.-P.; Bang, D.D.; Ingmer, H. Energy Taxis Drives Campylobacter jejuni toward the Most Favorable Conditions for Growth. Appl. Environ. Microbiol. 2009, 75, 5308–5314. [Google Scholar]
Upregulated | ||||
---|---|---|---|---|
Gene ID | Gene Name | Description of Product | Log2 Fold Change | Adjusted p-Value |
Cj1586 | cgb | Single domain hemoglobin | 4.663339 | 1.88 × 10−26 |
Cj0974 | Uncharacterized protein | 4.417067 | 6.57× 10−5 | |
Cj1340c | Maf1 | Motility accessory protein | 4.349186 | 6.28 × 10−34 |
Cj0380c | Uncharacterized protein | 4.241269 | 1.77 × 10−4 | |
Cj0972 | Uncharacterized protein | 4.14400 | 1.08 × 10−5 | |
Cj0758 | grpE | Response to hyperosmotic and heat shock | 3.963416 | 1.38 × 10−20 |
Cj0971 | Uncharacterized protein | 3.459789 | 2.23 × 10−4 | |
Cj0241c | herA | Bacteriohemerythrin | 3.326818 | 1.75 × 10−2 |
Cj0877c | Uncharacterized protein | 3.258874 | 3.88 × 10−3 | |
Cj0200c | Periplasmic protein | 3.249386 | 6.69 × 10−12 | |
Cj1650 | fliS | Flagellar export chaperone [37] | 3.201313 | 3.33 × 10−19 |
Cj0836 | ogt | Methyltransferase | 2.961825 | 2.21 × 10−13 |
Cj1242 | ciaC | Campylobacter Invasion antigen C | 2.946553 | 5.82 × 10−38 |
Cj0201c | imB | Integral membrane protein | 2.902751 | 6.00 × 10−3 |
Cj0921c | peb1A | Amino acid transporter | 2.902712 | 2.54 × 10−24 |
Cj0865 | dsbB | Protein-disulfide oxidoreductase | 2.727325 | 9.52 × 10−11 |
Cj0030 | Uncharacterized protein | 2.711549 | 7.47 × 10−25 | |
Cj1465 | flgN | Flagellar hook protein [38] | 2.704280 | 5.90 × 10−12 |
Cj0251c | Highly acidic protein | 2.676403 | 1.56 × 10−5 | |
Cj0829c | Uncharacterized protein (Putative CoA binding domain containing protein) | 2.664411 | 1.76 × 10−5 | |
Cj1503c | putA | Putative proline dehydrogenase/delta−1-pyrroline-5-carboxylate dehydrogenase | 2.646897 | 9.64 × 10−54 |
Cj1537c | acsA | Acetyl-coenzyme A synthetase | 2.643273 | 9.49 × 10−16 |
Cj0243c | Uncharacterized protein | 2.508166 | 5.98 × 10−6 | |
Cj1450 | ciaI | Putative ATP/GTP-binding protein | 2.461822 | 3.79 × 10−17 |
Cj0919c | Aspartate/glutamate/glutamine transport system permease protein | 2.401703 | 7.08 × 10−10 | |
Cj0459c | Uncharacterized protein | 2.291369 | 5.87 × 10−13 | |
Cj1075 | fliW | Flagellar assembly factor | 2.260313 | 3.55 × 10−8 |
Cj0018c | dba | Disulfide bond formation protein | 2.260119 | 1.52 × 10−6 |
Cj1668c | Periplasmic protein | 2.168892 | 2.44 × 10−10 | |
Cj0967 | Periplasmic protein | 2.103994 | 1.08 × 10−4 | |
Cj1682c | gltA | Citrate synthase | 2.097224 | 1.27 × 10−20 |
Cj0920c | hisM | Putative ABC-type amino-acid transporter permease protein | 2.09015 | 9.49 × 10−16 |
Cj0864 | Putative periplasmic protein-thioredoxin-like protein | 2.063197 | 1.12 × 10−3 | |
Cj0728 | Putative periplasmic protein | 2.052897 | 3.32 × 10−4 | |
Cj0917c | cstA | Carbon starvation protein A | 2.017821 | 6.06 × 10−21 |
Cj0979c | Putative secreted nuclease | 1.958595 | 5.65 × 10−8 | |
Cj0156c | Ribosomal RNA small subunit methyltransferase E | 1.919746 | 1.64 × 10−5 | |
Cj0528c | flgB | Flagellar basal body rod protein | 1.882962 | 1.65 × 10−23 |
Cj1107 | clpS | ATP-dependent Clp protease adapter protein | 1.869786 | 1.03 × 10−6 |
Cj0429c | Uncharacterized protein | 1.863965 | 2.77 × 10−12 | |
Cj1464 | flgM | Flagellar biosynthesis protein | 1.844621 | 7.16 × 10−11 |
Cj0580c | hemN | Heme chaperone | 1.842605 | 8.88 × 10−3 |
Cj0922c | PEB1C | Aspartate/glutamate/glutamine transport system ATP-binding protein | 1.836333 | 8.68 × 10−21 |
Cj0949c | peptidyl-arginine deiminase; involved in Arginine and proline metabolism | 1.829841 | 6.17 × 10−7 | |
Cj1495c | Uncharacterized protein | 1.805563 | 5.34 × 10−24 | |
Cj0959c | Membrane protein insertion efficiency factor | 1.783311 | 6.27 × 10−3 | |
Cj0872 | dsbA | Thiol:disulfide interchange protein | 1.769298 | 2.13 × 10−4 |
Cj0898 | Histidine triad (HIT) family protein | 1.748533 | 1.21 × 10−7 | |
Cj1563c | Putative transcriptional regulator | 1.743043 | 1.47 × 10−3 | |
Cj1462 | flgI | Flagellar P-ring protein | 1.741476 | 2.47 × 10−11 |
Cj1681c | cysQ | CysQ protein-amino acid metabolism | 1.732868 | 7.20 × 10−4 |
Cj0573 | GatB/YqeY family protein | 1.705464 | 5.93 × 10−5 | |
Cj0175c | cfbpA | Iron-uptake ABC transporter substrate-binding protein | 1.694355 | 2.13 × 10−3 |
Cj0420 | Periplasmic protein | 1.688196 | 4.43 × 10−8 | |
Cj0509c | clpB | Stress-induced multi-chaperone system | 1.674056 | 1.11 × 10−10 |
Cj1463 | flgI | Flagellar biosynthesis protein | 1.658851 | 2.68 × 10−6 |
Cj0540 | Exporting protein | 1.647181 | 1.42 × 10−7 | |
Cj1025c | Uncharacterized protein | 1.631584 | 2.18 × 10−7 | |
Cj1380 | dsbC | Periplasm bi-functional thiol oxidoreductase | 1.631086 | 8.26 × 10−16 |
Cj1383c | Uncharacterized protein | 1.628912 | 1.77 × 10−4 | |
Cj1382c | fldA | Flavodoxin I | 1.599526 | 8.35 × 10−13 |
Cj0428 | Uncharacterized protein | 1.589477 | 1.56 × 10−22 | |
Cj0076c | lctP | L-lactate transporter permease | 1.57782 | 1.97 × 10−9 |
Cj0398 | gatC | Glutamyl-tRNA (Gln) aminotransferase subunit C | 1.564965 | 1.01 × 10−4 |
Cj0465c | ctb | Group 3 truncated hemoglobin | 1.547660 | 1.76 × 10−5 |
Cj1338c | flaB | Flagellin B | 1.543761 | 3.16 × 10−11 |
Cj1199 | Putative iron/ascorbate-dependent oxidoreductase | 1.535012 | 1.60 × 10−10 | |
Cj1189c | cetB | Bipartate energy taxis response protein | 1.529662 | 1.76 × 10−5 |
Cj1094c | yajC | Preprotein translocase accessory complex subunit | 1.523906 | 3.14 × 10−5 |
Cj0547 | flaG | Flagellar protein | 1.52304 | 4.91 × 10−4 |
Cj1670c | cgpA | N-acetylgalactosamine (GalNAc)-containing glycoprotein | 1.518031 | 2.82 × 10−3 |
Cj1106 | Thioredoxin-Single domain hemoglobin | 1.500635 | 4.56 × 10−9 | |
Downregulated | ||||
Cj0620 | Uncharacterized protein | −4.25725 | 2.28 × 10−3 | |
Cj0637c | mrsA | Catalyzes the reversible oxidation-reduction of methionine sulfoxide to methionine | −3.94117 | 4.67 × 10−5 |
Cj1276c | Integral membrane protein | −3.78944 | 8.12 × 10−3 | |
Cj1282 | mrdB | Rod shape-determining protein | −3.76646 | 8.31 × 10−3 |
Cj1493c | Integral membrane protein | −3.41854 | 5.51 × 10−3 | |
Cj0648 | Membrane protein | −3.30497 | 7.05 × 10−3 | |
Cj1080c | hemD | Uroporphyrinogen-III synthase | −3.29741 | 6.57 × 10−3 |
Cj1132c | Uncharacterized protein | −2.68281 | 6.86 × 10−6 | |
Cj1448c | kpsM | Capsule polysaccharide export system inner membrane | −2.53961 | 1.35 × 10−6 |
Cj1423c | hddC | D-glycero-alpha-D-manno-heptose 1-phosphate guanylyl transferase | −2.17572 | 7.22 × 10−4 |
Cj0267c | Integral membrane protein | −2.08538 | 2.86 × 10−6 | |
Cj0773c | Methionine transport system permease protein | −2.0194 | 9.28 × 10−11 | |
Cj0644 | TatD-related deoxyribonuclease | −1.9908 | 9.34 × 10−5 | |
Cj1567c | nuoM | NADH dehydrogenase I chain M | −1.9148 | 5.20 × 10−5 |
Cj0944c | Periplasmic protein | −1.78725 | 2.43 × 10−3 | |
Cj0935c | Putative sodium:amino-acid symporter family protein | −1.77122 | 2.23 × 10−4 | |
Cj1264c | hydD | Putative hydrogenase maturation protease | −1.74266 | 1.73 × 10−6 |
Cj0357c | plsY | Acyl phosphate: glycerol−3-phosphate acyltransferase | −1.69479 | 3.97 × 10−3 |
Cj0411 | ATP/GTP binding protein | −1.67294 | 1.76 × 10−5 | |
Cj0717 | ArsC family protein | −1.64102 | 5.36 × 10−5 | |
Cj1388 | Endoribonuclease L-PSP | −1.60661 | 2.64 × 10−3 | |
Cj1205c | radA | DNA repair and recombination | −1.51410 | 9.99 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasher, F.; Lehri, B.; Horney, M.F.; Stabler, R.A.; Wren, B.W. Survival of Campylobacter jejuni 11168H in Acanthamoebae castellanii Provides Mechanistic Insight into Host Pathogen Interactions. Microorganisms 2022, 10, 1894. https://doi.org/10.3390/microorganisms10101894
Nasher F, Lehri B, Horney MF, Stabler RA, Wren BW. Survival of Campylobacter jejuni 11168H in Acanthamoebae castellanii Provides Mechanistic Insight into Host Pathogen Interactions. Microorganisms. 2022; 10(10):1894. https://doi.org/10.3390/microorganisms10101894
Chicago/Turabian StyleNasher, Fauzy, Burhan Lehri, Megan F. Horney, Richard A. Stabler, and Brendan W. Wren. 2022. "Survival of Campylobacter jejuni 11168H in Acanthamoebae castellanii Provides Mechanistic Insight into Host Pathogen Interactions" Microorganisms 10, no. 10: 1894. https://doi.org/10.3390/microorganisms10101894
APA StyleNasher, F., Lehri, B., Horney, M. F., Stabler, R. A., & Wren, B. W. (2022). Survival of Campylobacter jejuni 11168H in Acanthamoebae castellanii Provides Mechanistic Insight into Host Pathogen Interactions. Microorganisms, 10(10), 1894. https://doi.org/10.3390/microorganisms10101894