# Design of Soft Origami Mechanisms with Targeted Symmetries

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Optimization Framework for Nonlinear Origami Mechanics

#### 2.1. Optimization Overview

#### 2.2. Nonlinear Origami Truss Model

## 3. Optimization Results

#### 3.1. Problem Setup

#### 3.2. Small Displacement Optimization Results

#### 3.3. Large Displacement Analysis

## 4. Multistability of Unit Actuators

## 5. Networks of Unit Actuators

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Miriyev, A.; Stack, K.; Lipson, H. Soft material for soft actuators. Nat. Commun.
**2017**, 8, 596. [Google Scholar] [CrossRef] - Li, T.; Li, G.; Liang, Y.; Cheng, T.; Dai, J.; Yang, X.; Liu, B.; Zeng, Z.; Huang, Z.; Luo, Y.; et al. Fast-moving soft electronic fish. Sci. Adv.
**2017**, 3, e1602045. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Guin, T.; Settle, M.J.; Kowalski, B.A.; Auguste, A.D.; Beblo, R.V.; Reich, G.W.; White, T.J. Layered liquid crystal elastomer actuators. Nat. Commun.
**2018**, 9, 2531. [Google Scholar] [CrossRef] [PubMed] - Polygerinos, P.; Correll, N.; Morin, S.A.; Mosadegh, B.; Onal, C.D.; Petersen, K.; Cianchetti, M.; Tolley, M.T.; Shepherd, R.F. Soft robotics: Review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater.
**2017**, 19, 1700016. [Google Scholar] [CrossRef] - Culbertson, H.; Schorr, S.B.; Okamura, A.M. Haptics: The Present and Future of Artificial Touch Sensation. Ann. Rev. Control Robot. Auton. Syst.
**2018**, 1, 385–409. [Google Scholar] [CrossRef] - Rogers, J.; Huang, Y.; Schmidt, O.G.; Gracias, D.H. Origami mems and nems. Mrs Bull.
**2016**, 41, 123–129. [Google Scholar] [CrossRef] - Lee, D.Y.; Kim, J.S.; Kim, S.R.; Koh, J.S.; Cho, K.J. The deformable wheel robot using magic-ball origami structure. In Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, OR, USA, 4–7 August 2013; p. V06BT07A040. [Google Scholar]
- Lee, D.Y.; Kim, S.R.; Kim, J.S.; Park, J.J.; Cho, K.J. Origami wheel transformer: A variable-diameter wheel drive robot using an origami structure. Soft Robot.
**2017**, 4, 163–180. [Google Scholar] [CrossRef] - Treml, B.; Gillman, A.; Buskohl, P.; Vaia, R. Origami mechanologic. Proc. Natl. Acad. Sci. USA
**2018**, 115, 6916–6921. [Google Scholar] [CrossRef] - Babaee, S.; Overvelde, J.T.; Chen, E.R.; Tournat, V.; Bertoldi, K. Reconfigurable origami-inspired acoustic waveguides. Sci. Adv.
**2016**, 2, e1601019. [Google Scholar] [CrossRef] [Green Version] - Silverberg, J.L.; Evans, A.A.; McLeod, L.; Hayward, R.C.; Hull, T.; Santangelo, C.D.; Cohen, I. Using origami design principles to fold reprogrammable mechanical metamaterials. Science
**2014**, 345, 647–650. [Google Scholar] [CrossRef] - Filipov, E.T.; Tachi, T.; Paulino, G.H. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc. Natl. Acad. Sci. USA
**2015**, 112, 12321–12326. [Google Scholar] [CrossRef] [PubMed] - Peraza-Hernandez, E.A.; Hartl, D.J.; Malak, R.J., Jr.; Lagoudas, D.C. Origami-inspired active structures: A synthesis and review. Smart Mater. Struct.
**2014**, 23, 094001. [Google Scholar] [CrossRef] - Tolley, M.T.; Felton, S.M.; Miyashita, S.; Aukes, D.; Rus, D.; Wood, R.J. Self-folding origami: shape memory composites activated by uniform heating. Smart Mater. Struct.
**2014**, 23, 094006. [Google Scholar] [CrossRef] - Kohlmeyer, R.R.; Buskohl, P.R.; Deneault, J.R.; Durstock, M.F.; Vaia, R.A.; Chen, J. Shape-reprogrammable polymers: Encoding, erasing, and re-encoding. Adv. Mater.
**2014**, 26, 8114–8119. [Google Scholar] [CrossRef] [PubMed] - Peraza-Hernandez, E.; Hartl, D.; Galvan, E.; Malak, R. Design and optimization of a shape memory alloy-based self-folding sheet. J. Mech. Des.
**2013**, 135, 111007. [Google Scholar] [CrossRef] - Plucinsky, P.; Kowalski, B.A.; White, T.J.; Bhattacharya, K. Patterning nonisometric origami in nematic elastomer sheets. Soft Matter
**2018**, 14, 3127–3134. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Fuchi, K.; Ware, T.H.; Buskohl, P.R.; Reich, G.W.; Vaia, R.A.; White, T.J.; Joo, J.J. Topology optimization for the design of folding liquid crystal elastomer actuators. Soft Matter
**2015**, 11, 7288–7295. [Google Scholar] [CrossRef] - Na, J.H.; Evans, A.A.; Bae, J.; Chiappelli, M.C.; Santangelo, C.D.; Lang, R.J.; Hull, T.C.; Hayward, R.C. Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Adv. Mater.
**2015**, 27, 79–85. [Google Scholar] [CrossRef] - Miskin, M.Z.; Dorsey, K.J.; Bircan, B.; Han, Y.; Muller, D.A.; McEuen, P.L.; Cohen, I. Graphene-based bimorphs for micron-sized, autonomous origami machines. Proc. Natl. Acad. Sci. USA
**2018**, 115, 466–470. [Google Scholar] [CrossRef] - Demaine, E.D.; Tachi, T. Origamizer: A practical algorithm for folding any polyhedron. In Proceedings of the the 33rd International Symposium on Computational Geometry, Brisbane, Australia, 4–7 July 2017; Volume 77. [Google Scholar]
- Tachi, T. Simulation of rigid origami. Origami
**2009**, 4, 175–187. [Google Scholar] - Lang, R.J. Treemaker 4.0: A Program for Origami Design. Available online: http://www.langorigami.com/wp-content/uploads/2015/09/TreeMkr40.pdf (accessed on 16 November 2018).
- Evans, T.A.; Lang, R.J.; Magleby, S.P.; Howell, L.L. Rigidly foldable origami gadgets and tessellations. R. Soc. Open Sci.
**2015**, 2, 150067. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bowen, L.A.; Grames, C.L.; Magleby, S.P.; Howell, L.L.; Lang, R.J. A classification of action origami as systems of spherical mechanisms. J. Mech. Des.
**2013**, 135, 111008. [Google Scholar] [CrossRef] - Chen, Y.; Peng, R.; You, Z. Origami of thick panels. Science
**2015**, 349, 396–400. [Google Scholar] [CrossRef] [PubMed] - Aukes, D.M.; Goldberg, B.; Cutkosky, M.R.; Wood, R.J. An analytic framework for developing inherently-manufacturable pop-up laminate devices. Smart Mater. Struct.
**2014**, 23, 094013. [Google Scholar] [CrossRef] - Schenk, M.; Guest, S.D. Origami folding: A structural engineering approach. In Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education; CRC Press: Boca Raton, FL, USA, 2011; pp. 291–304. [Google Scholar]
- Filipov, E.; Liu, K.; Tachi, T.; Schenk, M.; Paulino, G. Bar and hinge models for scalable analysis of origami. Int. J. Solids Struct.
**2017**, 124, 26–45. [Google Scholar] [CrossRef] [Green Version] - Gillman, A.; Fuchi, K.; Buskohl, P. Truss-based nonlinear mechanical analysis for origami structures exhibiting bifurcation and limit point instabilities. Int. J. Solids Struct.
**2018**, 147, 80–93. [Google Scholar] [CrossRef] - Fuchi, K.; Buskohl, P.R.; Joo, J.J.; Reich, G.W.; Vaia, R.A. Numerical analysis of origami structures through modified frame elements. In Origami
^{6}; Miura, K., Kawasaki, T., Tachi, T., Uehara, R., Lang, R.J., Wang-Iverson, P., Eds.; American Mathematical Society: Providence, RI, USA, 2015; pp. 385–395. [Google Scholar] - Hernandez, E.A.P.; Hartl, D.J.; Malak, R.J.; Akleman, E.; Gonen, O.; Kung, H.W. Design tools for patterned self-folding reconfigurable structures based on programmable active laminates. J. Mech. Robot.
**2016**, 8, 031015. [Google Scholar] [CrossRef] - Fuchi, K.; Buskohl, P.R.; Bazzan, G.; Durstock, M.F.; Reich, G.W.; Vaia, R.A.; Joo, J.J. Origami actuator design and networking through crease topology optimization. J. Mech. Des.
**2015**, 137, 091401. [Google Scholar] [CrossRef] - Gillman, A.; Fuchi, K.; Buskohl, P. Discovering sequenced origami folding through nonlinear mechanics and topology optimization. J. Mech. Des.
**2018**. [Google Scholar] [CrossRef] - Waitukaitis, S.; Menaut, R.; Chen, B.G.; van Hecke, M. Origami multistability: From single vertices to metasheets. Phys. Rev. Lett.
**2015**, 114, 055503. [Google Scholar] [CrossRef] - Hanna, B.H.; Lund, J.M.; Lang, R.J.; Magleby, S.P.; Howell, L.L. Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater. Struct.
**2014**, 23, 094009. [Google Scholar] [CrossRef] - Demaine, E.D.; Demaine, M.L.; Hart, V.; Price, G.N.; Tachi, T. (Non) existence of pleated folds: How paper folds between creases. In Graphs and Combinatorics; Springer: Berlin, Germany, 2011; Volume 27, pp. 377–397. [Google Scholar]
- Dudte, L.H.; Vouga, E.; Tachi, T.; Mahadevan, L. Programming curvature using origami tessellations. Nat. Mater.
**2016**, 15, 583. [Google Scholar] [CrossRef] [PubMed] - Fuchi, K.; Buskohl, P.R.; Bazzan, G.; Durstock, M.F.; Reich, G.W.; Vaia, R.A.; Joo, J.J. Design Optimization Challenges of Origami-Based Mechanisms With Sequenced Folding. J. Mech. Robot.
**2016**, 8, 051011. [Google Scholar] [CrossRef] - Gill, P.; Murray, W.; Wright, M. Numerical Linear Algebra and Optimization; Addison Wesley: Boston, MA, USA, 1991. [Google Scholar]
- MATLAB. Version 9.1.0 (R2016b), The MathWorks Inc.: Natick, MA, USA, 2016.
- Greco, M.; Gesualdo, F.; Venturini, W.; Coda, H. Nonlinear positional formulation for space truss analysis. Finite Elem. Anal. Des.
**2006**, 42, 1079–1086. [Google Scholar] [CrossRef] - Guo, X.; Ni, C.; Cheng, G.; Du, Z. Some symmetry results for optimal solutions in structural optimization. Struct. Multidiscip. Optim.
**2012**, 46, 631–645. [Google Scholar] [CrossRef] - Bowen, L.; Springsteen, K.; Feldstein, H.; Frecker, M.; Simpson, T.W.; von Lockette, P. Development and validation of a dynamic model of magneto-active elastomer actuation of the origami waterbomb base. J. Mech. Robot.
**2015**, 7, 011010. [Google Scholar] [CrossRef]

**Figure 1.**Overview of optimization framework. Inset images in flowchart (from top to bottom) show the initialization of the ground structure with uniform fold stiffness, unit truss element formulation and boundary conditions described on the ground structure, actuated design where objective function and constraints are evaluated, and design update on the fold topology through fold stiffness changes as determined from the sensitivity analysis.

**Figure 2.**Optimization problem setup for ground structure with different symmetries: (

**a**) two vertical reflection symmetries, ${\sigma}_{v}^{x}$ and ${\sigma}_{v}^{y}$, and a rotational symmetry, ${C}_{2}$; (

**b**) single vertical reflection symmetry, ${\sigma}_{v}^{x}$, (

**c**) rotational symmetry, ${C}_{2}$. The vertical reflection symmetry, ${\sigma}_{v}^{x}$ refers to symmetry about the X–Z plane, the vertical reflection symmetry, ${\sigma}_{v}^{y}$, refers to symmetry about the Y–Z plane, and the rotational symmetry, ${C}_{2}$ refers to the ${180}^{\circ}$ rotational operation about the Y–Z plane. White triangles refer to fixed nodes in the structure, blue arrows/circles refer to actuated nodes, and green arrows/circles refer to output nodes in objective function. Actuation and output directions are in the Z dimension.

**Figure 3.**Summary of optimization results for patterns with a ${C}_{2}$ rotational and two vertical reflection symmetries (see problem setup in top right of figure). (

**a**) resulting objective function value of optimized patterns for varying fold line complexity ${v}_{0}$ and input actuation ${u}_{z}$; (

**b**) internal energy of optimized patterns. Resulting fold patterns from optimization runs for largest input displacement considered are depicted in (

**c**–

**g**), (

**c**) ${v}_{0}=0.9$, (

**d**) ${v}_{0}=0.8$, (

**e**) ${v}_{0}=0.7$, (

**f**) ${v}_{0}=0.6$, and (

**g**) ${v}_{0}=0.5$. Fold topologies shown correspond to optimization runs highlighted by gray box in (

**a**). Scale bar depicts correlation of line thickness/dash length to design variable $\alpha $, where $\alpha =0$ corresponds to a soft hinge (fold line, ${G}_{\mathrm{soft}}$) and $\alpha =1$ to a stiff hinge (${G}_{\mathrm{stiff}}$).

**Figure 4.**Summary of optimization results for patterns with single vertical reflection symmetry, ${\sigma}_{v}^{x}$, (see problem setup in top right of figure). (

**a**) Resulting objective function value of optimized patterns for varying fold line complexity ${v}_{0}$ and input actuation ${u}_{z}$. (

**b**) Internal energy of optimized patterns. Resulting fold patterns from optimization runs for largest input displacement considered are depicted in (

**c**–

**g**), (

**c**) ${v}_{0}=0.9$, (

**d**) ${v}_{0}=0.8$, (

**e**) ${v}_{0}=0.7$, (

**f**) ${v}_{0}=0.6$, and (

**g**) ${v}_{0}=0.5$. Fold topologies shown correspond to optimization runs highlighted by gray box in (

**a**). Scale bar depicts correlation of line thickness/dash length to design variable $\alpha $, where $\alpha =0$ corresponds to a soft hinge (fold line, ${G}_{\mathrm{soft}}$) and $\alpha =1$ to a stiff hinge (${G}_{\mathrm{stiff}}$).

**Figure 5.**Summary of optimization results for patterns with rotational symmetry ${C}_{2}$ (see problem setup in top right of figure). (

**a**) resulting objective function value of optimized patterns for varying fold line complexity ${v}_{0}$ and input actuation ${u}_{z}$; (

**b**) internal energy of optimized patterns. Resulting fold patterns from optimization runs for largest input displacement considered are depicted in (

**c**–

**g**), (

**c**) ${v}_{0}=0.9$, (

**d**) ${v}_{0}=0.8$, (

**e**) ${v}_{0}=0.7$, (

**f**) ${v}_{0}=0.6$, and (

**g**) ${v}_{0}=0.5$. Fold topologies shown correspond to optimization runs highlighted by gray box in (

**a**). Scale bar depicts correlation of line thickness/dash length to design variable $\alpha $, where $\alpha =0$ corresponds to a soft hinge (fold line, ${G}_{\mathrm{soft}}$) and $\alpha =1$ to a stiff hinge (${G}_{\mathrm{stiff}}$).

**Figure 6.**Summary of optimized fold pattern performance from results in Figure 3, Figure 4 and Figure 5. (

**a**) performance map of all optimized designs in actuation-energy space; (

**b**) zoomed view of (

**a**); (

**c**) actuated designs for ${v}_{0}=0.9$. The optimized designs with only rotational symmetry (green patch) have the optimal amount of actuation with lower energy cost.

**Figure 7.**Results of large displacement analysis for fold patterns optimized via small displacement analysis. (

**a**) performance map of all optimized designs in actuation-energy space; (

**b**) zoomed-in view of (

**a**); (

**c**) actuated designs for ${v}_{0}=0.9$. The rotational symmetry optimized designs (green patch) have the optimal amount of actuation with lower energy cost. The patterns with all symmetries (blue patch) have more optimal performance relative to the designs with only a single vertical reflection symmetry, which is in contrast to small displacement actuation results in Figure 6.

**Figure 8.**Multistable configurations of core actuating topologies from Section 3. (

**a**) equilibrium folded state corresponding to symmetric actuator with a rotational and two vertical reflection symmetries; (

**b**,

**c**) stable pop-through instabilities exist for each arm in the pattern; (

**d**) equilibrium folded state corresponding to asymmetric actuator with single vertical reflection symmetry and asymmetric actuation of each arm; (

**e**,

**f**) stable pop-through instabilities exist for each arm in the pattern; (

**g**) equilibrium folded state corresponding to an actuator with only rotational symmetry resulting in twist motion; (

**h**,

**i**) stable pop-through instabilities exist for each arm in the pattern.

**Figure 9.**Shape change and actuation of networks composed of symmetric actuator result from Figure 3c. (

**a**) loop network of four actuators with alternating orientations; (

**b**) expanded oval shape from (

**a**) accessed through symmetric pop-through instability (see Figure 8c) of nodes labeled I; (

**c**) expanded rectangular shape accessed through asymmetric pop-through instability (see Figure 8b) of nodes labeled II; (

**d**) actuating mechanism for 4-unit network shown in (

**a**); (

**e**) actuating mechanism for 6-unit network. The networks in (

**d**,

**e**) are accessed through actuation of the center elements.

**Figure 10.**Linear actuator networks and loops composed of twist actuator with rotational symmetry. (

**a**) linear actuating network where fold patterns are aligned but orientation of folds are alternating. This results in an offset linear motion when the network is stretched/compressed; (

**b**) linear actuator with alternating orientation of fold pattern. The rotated fold patterned results in a twisting motion when linearly stretched/compressed; (

**c**) actuation of loop network of twist actuators. This looped network is composed of alternating pairs with the same fold pattern and alternating orientation. With actuation of every other unit, the shape is contracted and reoriented (bottom) into the direction perpendicular to the equilibrium expanded state (top).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gillman, A.; Wilson, G.; Fuchi, K.; Hartl, D.; Pankonien, A.; Buskohl, P.
Design of Soft Origami Mechanisms with Targeted Symmetries. *Actuators* **2019**, *8*, 3.
https://doi.org/10.3390/act8010003

**AMA Style**

Gillman A, Wilson G, Fuchi K, Hartl D, Pankonien A, Buskohl P.
Design of Soft Origami Mechanisms with Targeted Symmetries. *Actuators*. 2019; 8(1):3.
https://doi.org/10.3390/act8010003

**Chicago/Turabian Style**

Gillman, Andrew, Gregory Wilson, Kazuko Fuchi, Darren Hartl, Alexander Pankonien, and Philip Buskohl.
2019. "Design of Soft Origami Mechanisms with Targeted Symmetries" *Actuators* 8, no. 1: 3.
https://doi.org/10.3390/act8010003