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Abstract: The integration of soft actuating materials within origami-based mechanisms is a novel
method to amplify the actuated motion and tune the compliance of systems for low stiffness
applications. Origami structures provide natural flexibility given the extreme geometric difference
between thickness and length, and the energetically preferred bending deformation mode can
naturally be used as a form of actuation. However, origami fold patterns that are designed for specific
actuation motions and mechanical loading scenarios are needed to expand the library of fold-based
actuation strategies. In this study, a recently developed optimization framework for maximizing the
performance of compliant origami mechanisms is utilized to discover optimal actuating fold patterns.
Variant patterns are discovered through exploring different symmetries in the input and output
conditions of the optimization problem. Patterns designed for twist (rotational symmetry) yield
significantly better performance, in terms of both geometric advantage and energy requirements,
than patterns exhibiting vertical reflection symmetries. The mechanical energy requirements for
each design are analyzed and compared for both the small and large applied displacement regimes.
Utilizing the patterns discovered through optimization, the multistability of the actuating arms
is demonstrated empirically with a paper prototype, where the stable configurations are accessed
through local vertex pop-through instabilities. Lastly, the coupled mechanics of fold networks in
these actuators yield useful macroscopic motions and can achieve stable shape change through
accessing the local vertex instabilities. This survey of origami mechanisms, energy comparison,
and multistability characterization provides a new set of designs for future integration with soft
actuating materials.

Keywords: topology optimization; origami; nonlinear mechanics; multistability

1. Introduction

Soft actuating materials and mechanisms are key to the broad adoption of soft robotics, haptics,
and man–machine interface concepts. Recent research has demonstrated significant gains in the
actuation strain [1], cyclic frequency [2], and specific work [3], providing an array of soft actuating
materials for use in specific applications [4,5]. The potential of these materials is compounded through
the design of novel kinematic mechanisms and actuator placement schemes, which amplify the
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motion and transform a simple linear actuation into a complex 3D motion. Origami, the art of paper
folding, has provided a rich source of fold-based mechanisms that demonstrate the impact of coupling
actuating materials with structural reconfiguration for robotics systems [6]. For example, the spherical
waterbomb pattern was combined with a coiled shape memory alloy to produce a variable radius
soft robotic wheel [7,8]. Origami patterns have also been used to embed mechanologic properties in
humidity-responsive films, highlighting how shape change and mechanical compliance can provide
more than just locomotive properties [9]. Acoustic metamaterials [10], tunable anisotropy [11],
and actuators with mechanical bandgaps [12] are further examples of the capability origami concepts
can bring to soft robotics design and performance challenges.

By definition, origami mechanisms reduce 3D shape change into a series of folding operations.
Although the fold topology and sequencing of the origami structure can remain complex, the actuation
of an individual fold is relatively straightforward and has been exploited by several active material
integration strategies [6,13]. Shape memory polymers (SMP) have been demonstrated as an effective
single-use fold actuator for robotic deployment [14]. Folding motions have also been demonstrated
in reprogrammable SMP systems based on shifting of the polymer glass transition temperature
through local protonation/de-protonation of the polymer film [15]. Reversible actuating materials,
such as shape memory alloys [7,16] and liquid crystal elastomers [17,18], have also been utilized for
self-folding. Hydrogel-based self-folding materials have extended origami utility into the ultrasoft
regimes, as demonstrated by photo-crosslinkable hydrogel hinges with programmable swelling [19].
Self-folding has even been applied to the ultrasmall regime through the fabrication of graphene-based
folds for microscopic self-assembly and robotic applications [20].

The breadth of actuating materials and self-folding integration schemes motivates the
development of design tools to identify optimal fold topologies for specific functionalities. Several
design tools are available for geometry-based performance criteria, such as mapping to a target 3D
shape or conforming to a target surface [21–23]. Rigid origami design rules have been applied to
mechanism design [24], including the development of a kinematic origami classification guide [25].
Rigid approaches have also been extended to accommodate the finite thickness of panels [26], and
origami manufacturing design tools, such as PopUP CAD [27], help streamline the process from design
to fabricated prototype. However, for many applications, including soft robotics, the role of mechanics
and material compliance are important metrics for consideration when designing the fold topology.
Several mechanical representations have been developed, including truss [28–30] and frame [31] finite
element (FE) models, and shell element analysis for optimization of shape memory alloy wire networks
for self-folding [16,32]. Leveraging the efficiency of the truss model, we have developed a topology
optimization tool that predicts an optimal origami pattern through selectively tuning the fold stiffness
of a reference grid of fold lines, developed initially for a linear truss model [33] followed by our
recent work incorporating our nonlinear formulation [34]. With the mechanics embedded within the
design process, stiffness, applied loads, and energy distributions are all accessible design criteria for
optimization. While these initial studies focused on the formulation and algorithmic challenges of a
topology optimization framework, we utilize this capability here to identify origami mechanisms with
different boundary condition symmetry groups, characterize the actuator compliance, and rank their
energetic efficiency. Mechanical analysis is important for soft actuator design, as the loads required to
deform the structure will inform the choice of active material to operate the fold.

Origami mechanisms can also possess multiple stable configurations, due to the complex trade-off
of facet (stretching/bending) and folding energies. Waitukaitis et al. demonstrated the richness of the
multistability landscape in origami by exhaustively searching for stable points in a 4-fold, single vertex
pattern, which could possess up to six stable configurations depending on symmetry conditions [35].
Each vertex of the Miura-ori fold pattern exhibits a bistability, characterized by a local “pop-thru” defect
which can regulate the global properties of the tessellation [11]. In addition, the waterbomb [30,36]
and hypar [37,38] fold patterns also exhibit bistable behavior. Switching between bistable states could
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be leveraged for sensing and locomotion in soft robotic systems. For this purpose, the occurrence of
bistabilities in the optimized mechanism designs will also be investigated.

The design of compliant origami mechanisms for use in soft material systems is investigated in
this study. Building on previous work, we utilize a nonlinear truss FE model within a gradient-based
topology optimization tool to predict optimal fold patterns under a series of mechanical boundary
conditions. The boundary conditions are based on vertical reflection and rotational point symmetries of
the reference grid. The topologies are optimized in the small displacement regime and further studied
in the large displacement regime. Gradient methods are utilized in this work for systematic study
of problem setup symmetries. The mechanical energy of the actuating designs are compared in both
the small and large displacement regimes, which is a useful metric for active material selection and
overall energy budget considerations for a robotic system. Lastly, the stability of the designs predicted
in this study are empirically investigated using paper models. By targeting specific symmetries,
the modularity of origami topologies can be leveraged to create larger networks. Here, networks of the
discovered origami topologies are then assembled to demonstrate how coordinated activation of the
stable states can yield large reconfigurations.

2. Optimization Framework for Nonlinear Origami Mechanics

This work utilizes a recently developed topology optimization approach for discovering origami
fold patterns that result in optimal out of plane motion. Evaluation of the objective function leverages a
nonlinear truss-based finite element model for accurately and efficiently modeling the origami actuator
motions, which exhibit highly geometric nonlinear motions.

2.1. Optimization Overview

An overview of the topology optimization framework is presented in Figure 1. Details of this
framework have been described in our prior work including implementations incorporating both
linear [33,39] and nonlinear [34] origami mechanics models, and a concise overview of these methods
is provided here.

In this work, the design objective is to find optimal origami fold patterns for actuation. For actuator
design, fixed nodes, “input” nodes, and “output” nodes are prescribed on a ground structure (reference
grid), and an optimal fold pattern is defined as one that enables the greatest actuation as evaluated
from the perspective of the motion of select output nodes. The design variables are the fold stiffnesses
at each of the internal truss elements in the ground structure. In our nonlinear mechanics model
(overview provided in following subsection), the fold stiffnesses are modeled through a torsional
spring with stiffness G. Soft active fold lines are given small values of G, while inactive folds are
modeled as highly stiff having large values of G. The fold stiffness is represented as the continuous

and differentiable function as G(αk) = 10α1 + αk(α2 − α1) to enable gradient based algorithms and
enable graded stiffness designs. The minimum fold stiffness is therefore Gsoft = 10α1 , while the stiffest
fold line is Gstiff = 10α2 when the design variable αk is constrained to the range [0, 1]. The actuation
of the output nodes contribute to the objective function, J, through a constant vector c that operates
on the resulting displacements of these nodes calculated from the nonlinear mechanical analysis.
The entries in this vector c take on values of either 1 or –1 signifying the associated direction of
optimal actuation. In this work, optimal actuation is defined as motion in the positive Z direction and
ci = [0, 0, 1] at each output node. The complexity of the fold pattern is limited through a constraint on

the number of allowable fold lines, g = v0 − 1
N f

∑
N f
k=1 αk ≤ 0. The variable v0 represents the fraction

of desired inactive fold lines from the total available in the ground structures, N f . (v0 = 1 for sheet
with no fold lines and v0 = 0 when all fold lines are active). Collectively, this optimization problem is
mathematically described as follows:
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Find α = αk, k = 1, 2, · · · , N f that
Minimizes J = −cTu,

Subject to g = v0 −
1

N f

N f

∑
k=1

αk ≤ 0,

0 ≤ αk ≤ 1 ∀ k,
Ri (X) = 0, ui = Xi − X0

i i = 1, 2, · · · , 3Nn,

(1)

where u is the global displacement of all nodes in the truss structure and is defined locally for each
degree of freedom as ui = Xi − X0

i , and Xi and X0
i are the nodal coordinates the current and reference

(flat) configurations. Ri (X) is the residual vector at the actuated state of motion. Nn is the total number
of nodes in the truss structure.

Figure 1. Overview of optimization framework. Inset images in flowchart (from top to bottom) show
the initialization of the ground structure with uniform fold stiffness, unit truss element formulation
and boundary conditions described on the ground structure, actuated design where objective function
and constraints are evaluated, and design update on the fold topology through fold stiffness changes
as determined from the sensitivity analysis.

This optimization problem is solved using sequential quadratic programming (SQP) [40] as
implemented in MATLAB’s optimization toolbox [41]. In our recent work [34], it was shown that
performance of gradient-based optimization algorithms in nonlinear origami mechanics is significantly
hindered for large actuation due to the non-convexity of the design space. To avoid these strong
non-convexities, we limit our optimization problems here to small displacements. In gradient methods,
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the components of the design variable vector, α, can vary continuously in [0, 1] while the inequality
constraint, g ≤ 0, is enforced. At the end of each nonlinear simulation, these gradient-based methods
require derivatives of the objective function with respect to the design variables. This sensitivity
problem is stated as follows:

dJ
dαk

=
∂J

∂αk
+

∂J
∂Xl

∂Xl
∂um

dum

dαk
,

dJ
dαk

=
∂J

∂αk
+

∂J
∂Xl

dXl
dαk

.
(2)

For the displacement-based objective function presented here, ∂J/∂αk = 0 as J does not explicitly
depend on αk, and the partial derivative ∂J/∂Xl is found directly by differentiating the objective
function. Meanwhile, the term dXl/dαk cannot be obtained analytically for the FEM implementation
described below but is determined using the direct method in solving the following system
of equations:

Ri,l
dXl
dαk

= −∂Ri
∂αk

. (3)

2.2. Nonlinear Origami Truss Model

To evaluate the objective function of an actuated fold pattern at each iteration of the design
problem, a nonlinear mechanics simulation is performed using our in-house MATLAB origami
mechanics code. Details of this model are described in [30], and an overview of this model is provided
here for completeness. This model is the nonlinear extension of a truss-based model for linear origami
mechanics introduced by Shenk and Guest [28], and our nonlinear model is a modified form of the
positional finite element truss model proposed by Greco et al. [42] through inclusion of the torsional
spring around the truss elements to model the fold stiffness between adjacent facets.

The base truss element of the formulation is shown in an inset image of the optimization flowchart
presented in Figure 1, where the fold angle is defined by the relative positions of two adjacent triangular
truss networks. In the following, the energy and solution method associated with a single element is
introduced, and these methods are naturally extensible to an entire truss/origami framework through
proper assembly. The total energy, Π, of a single truss element is

Π = Ut − P, (4)

or the difference in the potential and external energy, Ut and P. The potential energy of the truss
element is

Ut = l0
∫ 1

0

E A
2

ε (X1, X2)
2 +

G(αk)

2
φ̃ (X1, X2, X3, X4)

2 dζ, (5)

where E and A are the Young’s modulus and cross sectional area of the truss, and G(αk) is the torsional
spring constant (per unit length), controlled by the design variable, αk, of our optimization framework
that corresponds to the fold stiffness of an origami structure. The deformation is quantified by the
axial strain, ε, and the rotation of the spring, φ̃. A linear constitutive model is assumed for both
the axial and torsional deformation. However, both ε and φ̃ are formulated in terms of the global
position and naturally capture the geometric nonlinearity of the motion: ε = (|X2 − X1| − l0) /l0
and φ̃(X1, X2, X3, X4) = φ(X1, X2, X3, X4)− φ0, where l0 and φ0 are the stress-free length and angle,
respectively. The fold angle φ(X1, X2, X3, X4) is a nonlinear function defined from the global positions
of the two triangular truss element networks adjacent to the truss element under consideration, and
this angle is formulated through the atan2(x, y) function with separate arguments to ensure function
and derivative continuity for angles ranging from (−π, π), i.e., full range of actuation with φ = 0
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corresponding to a flat open fold. A discontinuity in the atan2 function does exist at φ = π, and a
penalty function is introduced to avoid this singularity and to emulate local contact of the two triangle
facets. Finally, the external energy is defined as

P = FX1(X1 − X0
1) + FX2(X2 − X0

2)

+ FY1(Y1 −Y0
1 ) + FY2(Y2 −Y0

2 )

+ FZ1(Z1 − Z0
1) + FZ2(Z2 − Z0

2),

(6)

where the forces at the ends of the truss element are multiplied by the displacement of the global
nodes. The energy of a single element presented above is formulated from the perspective of the truss
between points X1 and X2 with facets being formed through triangles composed of additional truss
elements. When assembling the system of equations globally, elements lying on the boundary are
simply modeled as trusses with no folding energy (G = 0) and are not considered as design variables.

The principle of minimum potential energy, ∂Π/∂Xi = 0, is utilized to determine the equilibrium
state of the structure, and the resulting nonlinear system of equations are solved numerically via
Newton’s Method. Linearizing through a Taylor’s series expansion yields

Ri(Xtri) =
∂Π
∂Xi

= Ri(Xtri, Fi) = fi(Xtri)− Fi = 0,

Ri(Xtri) ≈ Ri(X0
tri) +∇Ri(X0

tri)∆Xtri = 0,
(7)

where ∇Ri(X0
tri) = Ri,l(X0

tri) = fi,l(X0
tri) − Fi,l , Fi,l = 0, fi,l is the tangent stiffness,

and Xtri = {X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3, X4, Y4, Z4}. The index i and l iterate through all
components in the set Xtri. This system of equations is solved in an iterative manner until equilibrium
is ensured (Ri = 0). Furthermore, increments of load and/or position allow for following complex
nonlinear loading behavior. In this work, displacement control (prescribed displacement increments)
is employed to handle multi-valued states for a given load.

3. Optimization Results

The nonlinear topology optimization framework described above is employed for origami actuator
design while exploring multiple symmetry groups. Enforcement of symmetry enables modularity for
networking the discovered topologies together, thus forming tessellations. Optimization is performed
for small displacement to limit nonconvexity in the design space. Following the optimization runs,
discovered topologies are analyzed in the large actuation/large displacement regime.

3.1. Problem Setup

The problem setup for the optimization runs is illustrated in Figure 2, where the common ground
structure contains 108 truss elements, of which 84 correspond to fold lines (design variables). The fixed
nodes (white triangles) in the ground structure are kept constant across all problems. Green circles and
arrows designate the output nodes that are associated with a target/optimal positive Z direction on
the same two nodes for each problem, and the Z component is set to 1 in the corresponding component
of the c vector in J. Two input nodes on the sides of the structure, marked with blue circles and
arrows, exist for all problems, where a simple out of plane displacement in the negative Z dimension
is prescribed, ua = (0, 0,−uz). The location of these nodes correspond to unique point symmetries
about the principal axis of the structure, i.e., Z-axis of the center node. Vertical reflection symmetries,
σv, and a 180◦ rotational symmetry, C2, are considered in the three variant problems depicted in
Figure 2. The first problem depicted in Figure 2a contains two vertical reflection symmetries, σx

v and σ
y
v ,

and a rotational symmetry, C2, while Figure 2b preserves only a single vertical reflection symmetry, σx
v .

The third problem contains only a rotational symmetry, C2 and results in a subsequent twist actuation.
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Figure 2. Optimization problem setup for ground structure with different symmetries: (a) two vertical
reflection symmetries, σx

v and σ
y
v , and a rotational symmetry, C2; (b) single vertical reflection symmetry,

σx
v , (c) rotational symmetry, C2. The vertical reflection symmetry, σx

v refers to symmetry about the X–Z
plane, the vertical reflection symmetry, σ

y
v , refers to symmetry about the Y–Z plane, and the rotational

symmetry, C2 refers to the 180◦ rotational operation about the Y–Z plane. White triangles refer to fixed
nodes in the structure, blue arrows/circles refer to actuated nodes, and green arrows/circles refer to
output nodes in objective function. Actuation and output directions are in the Z dimension.

For each combination of input/output nodes, the downward actuation uz is varied as uz ∈
[0.01 W/2, 0.05 W/2] in increments of 0.01 W, and the constraint on the number of fold lines is varied
as v0 ∈ [0.5, 0.9] in increments of 0.1. This results in 25 optimization runs for each problem (total of
75 optimization runs). For all problems, W = 0.2, E = 100 MPa, A = 0.025 m2, Gsoft = 102 N and
Gstiff = 106 N. This corresponds to a stiffness ratio of EA/Gstiff near unity, which we have shown
in prior work [34] corresponds to modes of deformation that favor facet stretching to facet bending.
This material property ratio has been shown to limit the existence of bifurcations while loading,
further limiting ill-conditioned minimization problems. The degree of stiffness naturally scales to
even softer materials given the consideration of only elastic deformation through both geometric
and material scaling, and the preference for facet stretching at large deformation is expected to
mimic origami designs incorporating elastomeric materials. While input actuation is prescribed as
a downward Z displacement, a single linear actuator connecting these nodes parallel to the Y could
emulate this motion in practice. All optimization runs continue until convergence, i.e., the relative
change of the objective function is less than 1× 10−14 (near numerical precision), and all runs converge
in less than 100 iterations.

3.2. Small Displacement Optimization Results

A summary of all optimization runs are presented in Figures 3–5, with the amount of actuation and
internal energy of the discovered pattern depicted for each run in (a and b). The resulting fold patterns
for each constraint v0 is shown in (c–g) for uz = 0.05W/2, as similar patterns were observed for lower
uz. Each figure also contains a scale bar depicting the correlation between line thickness/dash length
in each fold stiffness distribution pattern in (c–g) and the design variable, αk, in each truss element.

The optimization results for the problem with a C2 rotational and two vertical reflection
symmetries (problem setup in Figure 2a) is shown in Figure 3. A similar symmetric hexagonal
pattern reflecting all symmetry groups is found in each of the optimized topologies (see Figure 3c–g).
This common inner actuator component results in a similar performance as uz is increased as
demonstrated by the near horizontal alignment of the output actuation as the number of fold
lines increases. Figure 3a shows similar performance despite soft fold lines being added outside
of the inner hexagonal pattern. A significant energy decrease does occur as the number of allowable
fold lines is increased, v0 changing from 0.9 to 0.8. Recall the fold fraction constraint is defined as

g = v0− 1
N f

∑
N f
k=1 αk ≤ 0, and the fraction of fold lines for a given topology is 1− 1

N f
∑

N f
k=1 αk. There are

16 truss elements in the hexagonal pattern. Each fold stiffness/design variable cannot fully approach

α = 0 with v0 = 0.9 (1− 1
N f

∑
N f
k=1 αk = 0.1) as the fold line constraint equals g = 1− 16/84 = 0.81

when all 16 truss elements are softened completely. Therefore, the internal energy of the patterns
optimized with v0 = 0.9 are higher due to the higher fold stiffnesses. The optimized designs with
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more restrictive constraints on the number fold lines (higher v0 and smaller fold line fraction) are near
the boundary of the constraint function g, while the patterns resulting when v0 was set lower do not
reach the constraint boundary. The constraint boundary for each set of problem is designated with the
vertical dotted lines in Figure 3a,b. This has been observed in our prior optimization work with linear
origami truss models [33,39].
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Figure 3. Summary of optimization results for patterns with a C2 rotational and two vertical reflection
symmetries (see problem setup in top right of figure). (a) resulting objective function value of optimized
patterns for varying fold line complexity v0 and input actuation uz; (b) internal energy of optimized
patterns. Resulting fold patterns from optimization runs for largest input displacement considered are
depicted in (c–g), (c) v0 = 0.9, (d) v0 = 0.8, (e) v0 = 0.7, (f) v0 = 0.6, and (g) v0 = 0.5. Fold topologies
shown correspond to optimization runs highlighted by gray box in (a). Scale bar depicts correlation
of line thickness/dash length to design variable α, where α = 0 corresponds to a soft hinge (fold line,
Gsoft) and α = 1 to a stiff hinge (Gstiff).

When one of the vertical reflection symmetries and the rotational symmetry are removed due to
offset of the input actuation nodes for the problem depicted in Figure 2b, the resulting pattern respects
the single vertical reflection symmetry, σx

v , and results in asymmetry due to the input actuation offset.
The resulting patterns and summary of results for this case are presented in Figure 4. In contrast to
the prior example where the core pattern in the center of the design was preserved as more folds are
added to the design, the core topologies change as v0 decreases. This transition also results in a more
gradual decrease in the internal energy as fraction of fold lines increases (see Figure 4b). This also
corresponds to varying performance changes as the fold line complexity constraint is relaxed (note
kink in output actuation in Figure 4a).

For the last problem considered, a fold pattern with only the rotational symmetry, C2, results in
a twist motion. The corresponding fold patterns discovered are depicted in Figure 5. Similar to the
results with the single vertical reflection symmetries (Figure 4), the discovered patterns with rotational
symmetry have a changing inner actuator topology as the fraction of fold lines increases. For the
system with the largest number of active fold lines, the objective has a significant improvement in
the output actuation objective, but at the cost of increases in the internal energy (see rightmost data
points in Figure 5a,b). Additionally, a sharp decrease in the internal energy is observed when v0

decreases from 0.9 to 0.8 (fold line fraction of ∼0.1 and ∼0.2, respectively), as there are 14 fold lines in
the common fold lines and results in g = 1− 14/84 = 0.833 when these common fold lines are all fully
soft (α = 0).
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Figure 4. Summary of optimization results for patterns with single vertical reflection symmetry, σx
v ,

(see problem setup in top right of figure). (a) Resulting objective function value of optimized patterns
for varying fold line complexity v0 and input actuation uz. (b) Internal energy of optimized patterns.
Resulting fold patterns from optimization runs for largest input displacement considered are depicted
in (c–g), (c) v0 = 0.9, (d) v0 = 0.8, (e) v0 = 0.7, (f) v0 = 0.6, and (g) v0 = 0.5. Fold topologies shown
correspond to optimization runs highlighted by gray box in (a). Scale bar depicts correlation of line
thickness/dash length to design variable α, where α = 0 corresponds to a soft hinge (fold line, Gsoft)
and α = 1 to a stiff hinge (Gstiff).
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Figure 5. Summary of optimization results for patterns with rotational symmetry C2 (see problem
setup in top right of figure). (a) resulting objective function value of optimized patterns for varying
fold line complexity v0 and input actuation uz; (b) internal energy of optimized patterns. Resulting
fold patterns from optimization runs for largest input displacement considered are depicted in (c–g),
(c) v0 = 0.9, (d) v0 = 0.8, (e) v0 = 0.7, (f) v0 = 0.6, and (g) v0 = 0.5. Fold topologies shown correspond
to optimization runs highlighted by gray box in (a). Scale bar depicts correlation of line thickness/dash
length to design variable α, where α = 0 corresponds to a soft hinge (fold line, Gsoft) and α = 1 to a
stiff hinge (Gstiff).

To compare all optimized fold patterns, all data is projected into the energy/output actuation
performance space and compared in Figure 6. Optimal performance is considered the upper left
quadrant of Figure 6a, where the fold topologies produce larger actuation at lower energy cost.
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The patterns with only rotational symmetry (green patch) result in the optimal performance followed by
the patterns with a single vertical symmetry (red patch) and then the hexagonal pattern containing two
vertical reflection and rotational symmetries (blue patch). The actuated patterns from the optimization
runs with the most restrictive fold line complexity constraint (v0 = 0.9) are shown in Figure 6c, where
the largest upward actuation of the actuator arms is seen for the twist actuator pattern. When zoomed
into the projected performance space with lowest energies (see Figure 6b), there is a regime where
the symmetric hexagonal family of patterns outperforms the asymmetric patterns with only a single
vertical reflection symmetry.

Figure 6. Summary of optimized fold pattern performance from results in Figures 3–5. (a) performance
map of all optimized designs in actuation-energy space; (b) zoomed view of (a); (c) actuated designs
for v0 = 0.9. The optimized designs with only rotational symmetry (green patch) have the optimal
amount of actuation with lower energy cost.

This study illustrates that the symmetries in the mechanics of the problem setup are reflected in
the optimized result. This follows a mathematical proof by Guo et al. [43], where topology symmetries
matched mechanical and objective function symmetries with gradient based approaches for convex
problems. While only mechanical symmetries (actuated input conditions) were considered in the
presented examples, we have confirmed that the twist pattern obtained with a C2 rotational symmetry
in the input can also be obtained if the C2 symmetry is reflected in only the objective function. While
the gradient-based results here are not guaranteed to to find the optimal performing patterns given the
apparent non-convexity of the problem, the symmetries of the problem can be leveraged to meet the
actuation requirement of an actuating compliant mechanism. Consideration of both the kinematics and
energy of the designs from high-throughput optimization studies, as conducted here, allows for design
of compliant mechanisms with varying degrees of complexity, and information about the energetics
and motions during design selection can be simultaneously leveraged given the operational goal of
the actuator.

3.3. Large Displacement Analysis

To determine the performance of the optimized topologies at larger rotations and displacements,
all optimized fold patterns from the prior subsection are then analyzed considering actuation up to
uz = 0.5W/2, or ten times more than the small displacement optimization runs. The entire nonlinear
loading paths are then projected into the same energy/output actuation performance space as in
Figure 6. The resulting projections in Figure 7 similarly show that the twist actuator has optimal
performance but by an even greater margin. The superior performance is clearly seen in the depictions
of select patterns in Figure 7c. However, patterns preserving both vertical and rotational symmetries
show more efficient performance relative to the patterns with only a single vertical reflection symmetry
in contrast with the small displacement behavior exhibited in Figure 6. The material property selection
in this work results in fold patterns that are dominated by folding/facet bending energy in small
displacement regimes, while the stretching energy becomes the dominant deformation mechanism
at large deformation. All analysis in these optimization runs has been conducted with a single
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material property selection. However, expanding the parameter exploration space to different material
deformation modes will naturally expand these performance regimes and yield further tuning of
the material behavior. Based on our recent work [34], it is expected that materials with stiffer facets
would yield improved performance, and the optimal fold line topologies are likely to change. While
stretchable facets such as the ones considered may limit performance benefits of stiff faceted systems,
the compliance allows for improved tolerance given uncertainties in external loading conditions.

Figure 7. Results of large displacement analysis for fold patterns optimized via small displacement
analysis. (a) performance map of all optimized designs in actuation-energy space; (b) zoomed-in view
of (a); (c) actuated designs for v0 = 0.9. The rotational symmetry optimized designs (green patch) have
the optimal amount of actuation with lower energy cost. The patterns with all symmetries (blue patch)
have more optimal performance relative to the designs with only a single vertical reflection symmetry,
which is in contrast to small displacement actuation results in Figure 6.

4. Multistability of Unit Actuators

In our optimization analysis, the flat state corresponds to a single equilibrium state. It is a rich
design space reference point for thin sheets as there are numerous bifurcating fold paths that often
intersect at the flat state. However, by creating a non-flat equilibrium state after folding, either through
introducing plastic deformation in the material or tuning the reference angle of the torsion spring in an
assembled device, there are often local instabilities that can access additional stable states. One of the
simplest well-studied vertex inversion instabilities in origami is the snap-through bifurcation of the
waterbomb structure. The nonlinear mechanics and mechanisms for actuating this structure through
external gradient fields (humidity, thermal, magnetic, etc.) is provided in many works [9,30,36,44].
In light of this knowledge, we probe the fundamental actuating fold patterns discovered here for
additional stable states after folding.

The simplest actuating mechanisms discovered in Section 3.2 with the least number of fold lines
were formed into physical prototypes using 80 lb. cardstock, where scoring with a sharp blade along
the fold lines enables accurate representation of the folding behavior. The scoring effectively both
softens the material through material thinning and concentrates the plastic deformation during folding
to the fold line. After scoring, these patterns were manually folded to qualitatively match the actuated
shape observed in the nonlinear simulation. The resulting folded structures are depicted in Figure 8,
with the equilibrium state after folding shown in Figure 8a,d,g, respectively, for each fold pattern.
For all patterns, each side or arm of the structure has a local snap-through instability that can be
accessed through a small mechanical perturbation, resulting in multiple stable configurations. These
stable configurations are depicted in the additional sub-figures of Figure 8 and can be used to achieve
macroscopic shape change, which is demonstrated in the following section. These vertex inversion
instabilities can be accessed by concentrating active material at the fold line/vertex that undergoes
inversion to overcome the energy barrier and snap to the additional stable state.
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Figure 8. Multistable configurations of core actuating topologies from Section 3. (a) equilibrium
folded state corresponding to symmetric actuator with a rotational and two vertical reflection
symmetries; (b,c) stable pop-through instabilities exist for each arm in the pattern; (d) equilibrium
folded state corresponding to asymmetric actuator with single vertical reflection symmetry and
asymmetric actuation of each arm; (e,f) stable pop-through instabilities exist for each arm in the
pattern; (g) equilibrium folded state corresponding to an actuator with only rotational symmetry
resulting in twist motion; (h,i) stable pop-through instabilities exist for each arm in the pattern.

5. Networks of Unit Actuators

One of the appealing aspects of origami is the inherent modularity of certain patterns given
the natural symmetries and tessellations that occur. As for the ground structures considered in our
optimization runs, this modularity is preserved and enables the study of networks of these discovered
patterns. The networked behavior of select origami patterns are explored through demonstration in
cardstock using fabrication methods described in the prior section.

Figure 9 describes the shape change and multistable configurations possible for a continuous
looped network of the fold pattern containing both reflection and rotation symmetries. Figure 9a shows
four units linked together, where the folding orientation (mountain-valley assignment) alternates
between up and down (marked blue and green in schematic) to form a cyclic network. The equilibrium
configuration exhibits a dumbbell like shape. When networked together, the local instabilities
demonstrated in Figure 8b,c can be triggered to transform the configuration. When the nodes marked
I are inverted (instability demonstrated in Figure 8c), the dumbbell expands to an oval with less
curvature variation. Meanwhile, nodes marked I I can be triggered to the instability shown in Figure 8b
to create a rectangular shape. This demonstration shows that these fold patterns provide utility beyond
simple actuation, as it can be networked to drive macroscopic shape change through triggering local
snap-through instabilities. In addition to shape change, the networked system can also be actuated at
nodes I to create a different mode of macroscopic motion for the closed loop network, as demonstrated
in Figure 9d. The mode of deformation does not lead to an additional equilibrium state but provides a
motion that could be controlled through a simple linear actuator placed with nodes marked I joined
at the center, i.e., driven by a single degree of freedom. This expansion is also observed for larger
networks as demonstrated by the six units in a connected loop with alternating mountain/valley
orientation in Figure 9e.

Networks composed of the twist design (pattern optimized with rotational symmetry) offer
additional modes of actuation. This pattern, given its rotational symmetry, allows more variant
combinations as both the mountain valley orientation and the fold pattern orientation to be arranged
can be arranged uniquely. Simple linear actuation of two different orientations are demonstrated
in Figure 10a,b. The linear network in Figure 10a creates a linear actuating motion with an offset
displacement perpendicular to the networked dimension. Meanwhile, when the fold pattern is also
alternated, a twisting motion is achieved (see Figure 10b). When a cycle of this fold pattern is formed
as shown in Figure 10c, the network can move from an in-plane loop to a compact configuration
where the arms of the pattern align in the perpendicular direction. The networks depicted in Figures 9



Actuators 2018, 8, 3 13 of 16

and 10 represent a subset of the actuator connectivities and stable configuration combinations possible.
The diverse modularity of these origami actuators presents an opportunity to tune the network for
robotics needs, such as specific 3D motions and the energetics of the specific equilibrium states.

Figure 9. Shape change and actuation of networks composed of symmetric actuator result from
Figure 3c. (a) loop network of four actuators with alternating orientations; (b) expanded oval shape from
(a) accessed through symmetric pop-through instability (see Figure 8c) of nodes labeled I; (c) expanded
rectangular shape accessed through asymmetric pop-through instability (see Figure 8b) of nodes
labeled II; (d) actuating mechanism for 4-unit network shown in (a); (e) actuating mechanism for 6-unit
network. The networks in (d,e) are accessed through actuation of the center elements.

Figure 10. Linear actuator networks and loops composed of twist actuator with rotational symmetry.
(a) linear actuating network where fold patterns are aligned but orientation of folds are alternating. This
results in an offset linear motion when the network is stretched/compressed; (b) linear actuator with
alternating orientation of fold pattern. The rotated fold patterned results in a twisting motion when
linearly stretched/compressed; (c) actuation of loop network of twist actuators. This looped network is
composed of alternating pairs with the same fold pattern and alternating orientation. With actuation of
every other unit, the shape is contracted and reoriented (bottom) into the direction perpendicular to
the equilibrium expanded state (top).
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6. Conclusions

Through topology optimization, fold patterns of compliant origami mechanisms for amplification
of a simple input motion were discovered. It was observed that symmetries in the problem setup
were reflected in the optimized result, which enables targeted design for soft actuator applications.
In this study, multiple vertical reflection and rotational symmetries in the problem were explored.
Performance maps in both the small and large actuation regimes were created to illustrate the energetic
and performance trade-off of each design. Patterns exhibiting a twist motion through enforcement
of rotational symmetry exhibited superior performance in both the small and large displacement
(actuation) regime. The material properties explored here considered systems showing preference
toward facet stretching over facet bending in the large displacement regime. However, the framework
enables substantial tuning of material properties for a given material system. Tuning the material
to promote facet bending is likely to increase the actuator performance. The number of accessible
instabilities may increase when allowing facet bending, which leads to a challenging optimization
problem with many bifurcating load paths. While increasing the design space complexity through
addition of bifurcation paths could lead to improved performance, additional parameters need to be
introduced as design variables for controlling the instabilities in manufactured systems to ensure that
optimal paths are consistently followed.

After exploring optimal fold patterns through topology optimization, select designs were
fabricated and experimentally studied for existence of multistable configurations. All patterns studied
here exhibited multistable configurations that could be accessed via local snap-through instabilities of
select folds/vertices. Origami unit cells have demonstrated the ability to perform complex motions and
actions in actuating systems including grippers, stent deployment, and linear snake-like motion, just to
name a few, and the multistable nature increases their utility. The unit cells discovered here add to this
database of actuating fold patterns, and initial demonstrations show the ability to achieve macroscopic
shape change. Beyond utilizing the multistable states for large and quick reconfigurations, these
multistabilities can be leveraged as a mechanism for storing information locally within the material
for mechano-logic applications [9]. Combined with environmentally responsive materials, e.g., light,
heat, humidity, etc., these actuating networks could respond to changes in the surroundings and/or
communicate this information throughout a complex structure for adaptive automated response.

Soft robotics applications will continue to increase in number and utility as the material sets and
actuation design tools for them broaden. The origami mechanisms and targeted symmetry design
methodology presented in this study provides an initial assessment of origami actuator classes and
provides a framework for the discovery of future soft, actuating mechanisms.
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