Enhancement of Biodegradable Poly(Ethylene Oxide) Ionic–Polymer Metallic Composite Actuators with Nanocrystalline Cellulose Fillers
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Elastic Modulus Evaluation
3.2. Electromechanical Actuation Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bar-Cohen, Y.; Cardoso, V.; Ribeiro, C.; Lanceros-Méndez, S. Electroactive polymers as actuators. In Advanced Piezoelectric Materials, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 319–352. [Google Scholar]
- Cheng, Z.; Zhang, Q. Field-activated electroactive polymers. MRS Bull. 2008, 33, 183–187. [Google Scholar] [CrossRef]
- Shahinpoor, M. Ionic polymer-conductor composites as biomimetic sensors, robotic actuators and artificial muscles—A review. Electrochim. Acta 2003, 48, 2343–2353. [Google Scholar] [CrossRef]
- Madden, J.D.; Vandesteeg, N.A.; Anquetil, P.A.; Madden, P.G.; Takshi, A.; Pytel, R.Z.; Lafontaine, S.R.; Wieringa, P.A.; Hunter, I.W. Artificial muscle technology: Physical principles and naval prospects. Ocean. Eng. IEEE J. 2004, 29, 706–728. [Google Scholar] [CrossRef]
- Bahramzadeh, Y.; Shahinpoor, M. A review of ionic polymeric soft actuators and sensors. Soft Robot. 2014, 1, 38–52. [Google Scholar] [CrossRef]
- Safe Handling and Use of Perfluorosulfonic Acid Products; DuPont: Wilmington, DE, USA, 2009.
- Fergus, J.W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 2010, 195, 4554–4569. [Google Scholar] [CrossRef]
- Huang, Y.P.; Woo, E.M. Effects of entrapment on spherulite morphology and growth kinetics in poly(ethylene oxide)/epoxy networks. Polymer 2001, 42, 6493–6502. [Google Scholar] [CrossRef]
- Reed, A.M.; Gilding, D.K. Biodegradable polymers for use in surgery—Poly(ethylene oxide)/poly(ethylene terephthalate) (PEO/PET) copolymers: 2. In vitro degradation. Polymer 1981, 22, 499–504. [Google Scholar] [CrossRef]
- Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 2010, 75, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.C.; Xu, C.; Wu, X.; Wang, X.; Xing, L.; Scott, K. A poly(ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J. Power Sources 2011, 196, 8377–8382. [Google Scholar] [CrossRef]
- Benedetti, J.E.; Goncalves, A.D.; Formiga, A.L.B.; De Paoli, M.A.; Li, X.; Durrant, J.R.; Norueira, A.F. A polymer gel electrolyge composed of a poly(ethylene oxide) copolymer and the influence of its composition on the dynamics and performance of dye-sensitized solar cells. J. Power Sources 2010, 195, 1246–1255. [Google Scholar] [CrossRef]
- Lee, S.I.; Schomer, M.; Peng, H.; Page, K.A.; Wilms, D.; Frey, H.; Soles, C.L.; Yoon, D.Y. Correlations between ion conductivity and polymer dynamics in hyperbranched poly(ethylene oxide) electrolytes for lithium-ion batteries. Chem. Mater. 2011, 23, 2685–2688. [Google Scholar] [CrossRef]
- Shahinpoor, M.; Kim, K.J. Solid-state soft actuator exhibiting large electromechanical effect. Appl. Phys. Lett. 2002, 80, 3445–3447. [Google Scholar] [CrossRef]
- Mahadeva, S.K.; Kim, J.; Kang, K.S.; Kim, H.S.; Park, J.M. Effect of poly(ethylene oxide)-poly(ethylene glycol) addition on actuation behavior of cellulose electroactive paper. J. Appl. Polym. Sci. 2009b, 114, 847–852. [Google Scholar] [CrossRef]
- Plesse, C.; Khaldi, A.; Wang, Q.; Cattan, E.; Teyssié, D.; Chevrot, C.; Vidal, F. Polyethylene oxide-polytetrahydrofurane-PEDOT conducting interpenetrating polymer networks for high speed actuators. Smart Mater. Struct. 2011, 20, 124002. [Google Scholar] [CrossRef]
- Bruce, P.; Vincent, C. Structure of an amorphous polymer electrolyte, poly(ethylene oxide) 3: LiCF3SO3. Chem. Commun. 1997, 2, 157–158. [Google Scholar]
- Hayamizu, K.; Akiba, E.; Bando, T.; Aihara, Y.; Price, W.S. NMR studies on poly(ethylene oxide)-based polymer electrolytes with different cross-linking doped with LiN (SO2CF3) 2. Restricted diffusion of the polymer and lithium ion and time-dependent diffusion of the anion. Macromolecules 2003, 36, 2785–2792. [Google Scholar] [CrossRef]
- O’SULLIVAN, A.C. Cellulose: The structure slowly unravels. Cellulose 1997, 4, 173–207. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 3941–3994. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, S.; Kai, W.; Isogai, A.; Iwata, T. Elastic modulus of single cellulos microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 2009, 10, 2571–2576. [Google Scholar] [CrossRef] [PubMed]
- Elazzouzi-Hafraoui, S.; Nishiyama, Y.; Putaux, J.L.; Heux, L.; Dubreuil, F.; Rochas, C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 2008, 9, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Hubbe, M.A.; Rojas, O.J.; Lucia, L.A.; Sain, M. Cellulosic nanocomposites: A review. Bioresources 2008, 55, 929–980. [Google Scholar]
- Habibi, Y.; Chanzy, H.; Vignon, M.R. TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 2006, 13, 679–687. [Google Scholar] [CrossRef]
- Samir, M.A.S.A.; Alloin, F.; Dufresne, A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 2005, 6, 612–626. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 2002, 124, 9074–9082. [Google Scholar] [CrossRef] [PubMed]
- Hammouda, B.; Ho, D.L.; Kline, S. Insight into clustering in poly(ethylene oxide). Marcomolecules 2004, 37, 6932–6937. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Huo, H.; Jiang, S. Effects of lithium perchlorate on poly(ethylene oxide) spherulite morphology and spherulite growth kinetics. J. Appl. Polym. Sci. 2012, 123, 1935–1943. [Google Scholar] [CrossRef]
- Ragavan, V. Materials Science and Engineering—A first Course; Prentice Hall of India: New Delhi, India, 2006. [Google Scholar]
- Bass, P.S.; Zhang, L.; Cheng, Z.Y. Time-dependence of the electromechanical bending actuation observed in ionic-electroactive polymers. J. Adv. Dielectr. 2017, 7, 1720002. [Google Scholar] [CrossRef]
wt.% LP | vol.% NCC | |||||
---|---|---|---|---|---|---|
PEO | 0.0 | -- | 491 | -- | -- | -- |
1.0 | -- | 311 | 0.31 | 1.49 | 1.31 | |
2.5 | -- | 248 | 0.51 | 3.23 | 2.83 | |
5.0 | -- | 92.9 | 0.97 | 4.36 | 3.83 | |
7.5 | -- | 20.1 | -- | -- | -- | |
Sulfuric Acid | 5.0 | 1.0 | 135 | 0.91 | 5.54 | 4.87 |
Hydrolysis | 5.0 | 1.5 | 112 | 1.47 | 12.1 | 10.6 |
NCC | 5.0 | 2.5 | 154 | 1.06 | 8.64 | 7.59 |
5.0 | 5.0 | 231 | 0.42 | 2.08 | 1.82 | |
5.0 | 7.5 | 316 | 0.11 | 0.198 | 0.174 | |
Hydrochloric | 5.0 | 1.0 | 176 | 0.18 | 0.296 | 0.260 |
Acid Hydrolysis | 5.0 | 2.5 | 339 | 0.41 | 2.90 | 2.55 |
NCC | 5.0 | 5.0 | 454 | 0.21 | 1.01 | 0.886 |
5.0 | 7.5 | 501 | 0.09 | 0.198 | 0.174 | |
Bulk NCC–H2SO4 | -- | -- | 7760 | -- | -- |
PEO–NCC Composites | Figure 4a–c Fittings | Figure 4d–g Analysis | |||||
---|---|---|---|---|---|---|---|
x.x/y.y wt.% Salt/vol.% NCC | B (s) | ||||||
PEO with LP | 1.0/0.0 | 16 | 100 | 0.25 | 3.4 | 0.99 | −0.16 |
No NCC | 2.5/0.0 | 17 | 160 | 0.40 | 5.1 | 1.4 | −0.23 |
5.0/0.0 | 22 | 320 | 0.81 | 7.8 | 1.7 | −0.28 | |
Sulfuric Acid | 5.0/1.0 | 46 | 330 | 0.83 | 3.9 | 0.39 | −0.065 |
Hydrolysis | 5.0/1.5 | 36 | 480 | 1.2 | 7.2 | 0.94 | −0.16 |
NCC | 5.0/7.5 | 40 | 40 | 0.1 | 0.54 | 0.063 | −0.010 |
Hydrochloric | 5.0/1.0 | 60.9 | 224 | 0.56 | 2.0 | 0.15 | −0.025 |
Acid Hydrolysis | 5.0/2.5 | 76.3 | 93.1 | 0.23 | 0.66 | 0.041 | -- |
NCC | 5.0/7.5 | 20.6 | 2.53 | 6.3 × 10−5 | -- | -- | -- |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bass, P.S.; Zhang, L.; Tu, M.; Cheng, Z. Enhancement of Biodegradable Poly(Ethylene Oxide) Ionic–Polymer Metallic Composite Actuators with Nanocrystalline Cellulose Fillers. Actuators 2018, 7, 72. https://doi.org/10.3390/act7040072
Bass PS, Zhang L, Tu M, Cheng Z. Enhancement of Biodegradable Poly(Ethylene Oxide) Ionic–Polymer Metallic Composite Actuators with Nanocrystalline Cellulose Fillers. Actuators. 2018; 7(4):72. https://doi.org/10.3390/act7040072
Chicago/Turabian StyleBass, Patrick S., Lin Zhang, Maobing Tu, and ZhongYang Cheng. 2018. "Enhancement of Biodegradable Poly(Ethylene Oxide) Ionic–Polymer Metallic Composite Actuators with Nanocrystalline Cellulose Fillers" Actuators 7, no. 4: 72. https://doi.org/10.3390/act7040072
APA StyleBass, P. S., Zhang, L., Tu, M., & Cheng, Z. (2018). Enhancement of Biodegradable Poly(Ethylene Oxide) Ionic–Polymer Metallic Composite Actuators with Nanocrystalline Cellulose Fillers. Actuators, 7(4), 72. https://doi.org/10.3390/act7040072