Preparing and Mounting Polymer Nanofibers onto Microscale Test Platforms
Abstract
:1. Introduction
2. Experimental
2.1. Ultra-High Molecular Weight Polyethylene (UHMWPE) Nanofiber Specimen Preparation
2.2. Positioning the Nanofibers on the Test Platforms
2.2.1. Mechanical Test Platform
2.2.2. Thermal Test Platform
3. Results and Discussion
3.1. Calibration of Mechanical Test Platform Using Silica Fibers
3.2. Gripping the UHMWPE Nanofibers in Mechanical Testing
3.3. Thermal Contact Resistance
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Specimen Collector Fabrication
Appendix B. Microheater Construction
References
- Naraghi, M.; Chasiotis, I.; Kahn, H.; Wen, Y.; Dzenis, Y. Novel method for mechanical characterization of polymeric nanofibers. Rev. Sci. Instrum. 2007, 78, 85108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Hu, L.; McGaughey, A.J.H.; Shen, S. Crystalline polyethylene nanofibers with the theoretical limit of Young’s modulus. Adv. Mater. 2014, 26, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.; Li, P.; Chatterjee, B.; Zheng, T.; Wu, X.; Liu, Z.; Luo, T.; Choi, S.; Hippalgaonkar, K.; de Boer, M.P.; et al. Crystalline polymer nanofibers with ultra-high strength and thermal conductivity. Nat. Commun. 2018, 9, 1664. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 2010, 5, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Wingert, M.C.; Strzalka, J.; Wang, H.H.; Sun, T.; Wang, J.; Chen, R.; Jiang, Z. Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers. Nanoscale 2014, 6, 8283–8291. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Bougher, T.L.; Weathers, A.; Cai, Y.; Bi, K.; Pettes, M.T.; McMenamin, S.A.; Lv, W.; Resler, D.P.; Gattuso, T.R.; et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol. 2014, 9, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Wendorff, J.H.; Greiner, A. Progress in the Field of Electrospinning for Tissue Engineering Applications. Adv. Mater. 2009, 21, 3343–3351. [Google Scholar] [CrossRef] [PubMed]
- Chronakis, I.S. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review. J. Mater. Process. Technol. 2005, 167, 283–293. [Google Scholar] [CrossRef]
- Huang, Z.M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Fang, J.; Niu, H.; Lin, T.; Wang, X. Applications of electrospun nanofibers. Sci. Bull. 2008, 53, 2265–2286. [Google Scholar] [CrossRef]
- Calderón, M.Á.R.; Zhao, W. Applications of Polymer Nanofibers in Bio-Materials, Biotechnology and Biomedicine: A Review. In TMS 2014: 143rd Annual Meeting & Exhibition; Springer International Publishing: Cham, Switzerland, 2014; pp. 401–414. [Google Scholar]
- Fu, Y.Q.; Luo, J.K.; Flewitt, A.J.; Milne, W.I. Smart microgrippers for bioMEMS applications. MEMS Biomed. Appl. 2012, 291–336. [Google Scholar] [CrossRef]
- Bøggild, P. Nanogrippers. In Encyclopedia of Nanotechnology; Bhushan, B., Ed.; Springer: New York, NY, USA, 2015. [Google Scholar]
- Agnus, J.; Nectoux, P.; Chaillet, N. Overview of microgrippers and design of a micro-manipulation station based on a MMOC microgripper. In Proceedings of the 2005 IEEE International Symposium on Computational Intelligence in Robotics and Automation, Espoo, Finland, 27–30 June 2005. [Google Scholar]
- Soltani, M.; Lin, J.; Forties, R.A.; Inman, J.T.; Saraf, S.N.; Fulbright, R.M.; Lipson, M.; Wang, M.D. Nanophotonic trapping for precise manipulation of biomolecular arrays. Nat. Nanotechnol. 2014, 9, 448–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, A.S.; Amon, C.; Sitti, M. Three-dimensional nanoscale manipulation and manufacturing using proximal probes: Controlled pulling of polymer micro/nanofibers. In Proceedings of the IEEE International Conference on Mechatronics (ICM’04), Istanbul, Turkey, 5 June 2004; pp. 224–230. [Google Scholar]
- Wingert, M.C.; Jiang, Z.; Chen, R.; Cai, S. Strong size-dependent stress relaxation in electrospun polymer nanofibers. J. Appl. Phys. 2017, 121, 015103. [Google Scholar] [CrossRef] [Green Version]
- Egerton, R.F.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron 2004, 35, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Doshi, J.; Reneker, D.H. Electrospinning process and applications of electrospun fibers. J. Electrostat. 1995, 35, 151–160. [Google Scholar] [CrossRef]
- Reneker, D.H.; Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7, 216–223. [Google Scholar] [CrossRef]
- Shi, X.M.; Bin, Y.Z.; Hou, D.S.; Men, Y.F.; Matsuo, M. Gelation/crystallization mechanisms of UHMWPE solutions and structures of ultradrawn gel films. Polym. J. 2014, 46, 21–35. [Google Scholar] [CrossRef]
- Features of ANSYS Fluent. Available online: http://www.ansys.com/products/fluids/ansys-fluent/ansys-fluent-features (accessed on 14 January 2018).
- Narayanaswamy, A.; Gu, N. Heat Transfer from Freely Suspended Bimaterial Microcantilevers. J. Heat Transf. 2011, 133, 042401. [Google Scholar] [CrossRef]
- DSM Dyneema Fact Sheet. Available online: http://www.pelicanrope.com/pdfs/Dyneema-Comprehensive-factsheet-UHMWPE.pdf (accessed on 14 January 2018).
- Fujikura, Y.; Suzuki, T.; Matsumoto, M. Emissivity of chlorinated polyethylene. J. Appl. Polym. Sci. 1982, 27, 1293–1300. [Google Scholar] [CrossRef]
- Shroff, S.S.; de Boer, M.P. Constant Velocity High Force Microactuator for Stick-Slip Testing of Micromachined Interfaces. J. Microelectromech. Syst. 2015, 24, 1868–1877. [Google Scholar] [CrossRef]
- Sniegowski, J.J.; de Boer, M.P. IC-Compatible Polysilicon Surface Micromachining. Annu. Rev. Mater. Sci. 2000, 30, 299–333. [Google Scholar] [CrossRef]
- Weibel, G.L.; Ober, C.K. An overview of supercritical CO2 applications in microelectronics processing. Microelectron. Eng. 2003, 65, 145–152. [Google Scholar] [CrossRef]
- Sawyer, L.C.; Grubb, D.T.; Meyers, G.F. Polymer Microscopy; Springer: New York, NY, USA, 2008; ISBN 978-0-387-72627-4. [Google Scholar]
- Revol, J.F.; Manley, R.S.J. Lattice imaging in polyethylene single crystals. J. Mater. Sci. Lett. 1986, 5, 249–251. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, Q.; Mayo, A.; Ni, Z.; Yi, H.; Chen, Y.; Mu, R.; Bellan, L.M.; Li, D. Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale 2015, 7, 16899–16908. [Google Scholar] [CrossRef] [PubMed]
- Naraghi, M.; Ozkan, T.; Chasiotis, I.; Hazra, S.S.; de Boer, M.P. MEMS platform for on-chip nanomechanical experiments with strong and highly ductile nanofibers. J. Micromech. Microeng. 2010, 20, 125022. [Google Scholar] [CrossRef]
- Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936. [Google Scholar] [CrossRef]
- Tong, L.; Gattass, R.R.; Ashcom, J.B.; He, S.; Lou, J.; Shen, M.; Maxwell, I.; Mazur, E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 2003, 426, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.C.C.M.; Tong, L.; Yip, S.; Van Vliet, K.J. Size Effects on the Stiffness of Silica Nanowires. Small 2006, 2, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gao, R.; Poncharal, P.; De Heer, W.; Dai, Z.; Pan, Z. Mechanical and electrostatic properties of carbon nanotubes and nanowires. Mater. Sci. Eng. C 2001, 16, 3–10. [Google Scholar] [CrossRef]
- Dikin, D.A.; Chen, X.; Ding, W.; Wagner, G.; Ruoff, R.S. Resonance vibration of amorphous SiO2 nanowires driven by mechanical or electrical field excitation. J. Appl. Phys. 2003, 93, 226–230. [Google Scholar] [CrossRef]
- Luo, J.; Wang, J.; Bitzek, E.; Huang, J.Y.; Zheng, H.; Tong, L.; Yang, Q.; Li, J.; Mao, S.X. Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers. Nano Lett. 2016, 16, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, G.; Payne, D.N. The Ultimate Strength of Glass Silica Nanowires. Nano Lett. 2009, 9, 831–835. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.L.; Matthewson, M.J.; Kurkjian, C.R. Humidity Dependence of the Fatigue of High-Strength Fused Silica Optical Fibers. J. Am. Ceram. Soc. 2000, 83, 3100–3109. [Google Scholar] [CrossRef] [Green Version]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Brewis, D.M.; Briggs, D. Adhesion to polyethylene and polypropylene. Polymer 1981, 22, 7–16. [Google Scholar] [CrossRef]
- Chawla, K.K. Ceramic Matrix Composites. In Composite Materials; Springer: New York, NY, USA, 1998; pp. 212–251. [Google Scholar]
- Yu, C.; Saha, S.; Zhou, J.; Shi, L.; Cassell, A.M.; Cruden, B.A.; Ngo, Q.; Li, J. Thermal Contact Resistance and Thermal Conductivity of a Carbon Nanofiber. J. Heat Transf. 2006, 128, 234–239. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, L.; Xu, S.; Lu, M.; Wang, X. Temperature Dependence of Electrical and Thermal Conduction in Single Silver Nanowire. Sci. Rep. 2015, 5, 10718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidel, H.; Csepregi, L.; Heuberger, A.; Baumgärtel, H. Anisotropic Etching of Crystalline Silicon in Alkaline Solutions. J. Electrochem. Soc. 1990, 137, 3612–3626. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, R.; Shen, S.; P. de Boer, M. Preparing and Mounting Polymer Nanofibers onto Microscale Test Platforms. Actuators 2018, 7, 71. https://doi.org/10.3390/act7040071
Shrestha R, Shen S, P. de Boer M. Preparing and Mounting Polymer Nanofibers onto Microscale Test Platforms. Actuators. 2018; 7(4):71. https://doi.org/10.3390/act7040071
Chicago/Turabian StyleShrestha, Ramesh, Sheng Shen, and Maarten P. de Boer. 2018. "Preparing and Mounting Polymer Nanofibers onto Microscale Test Platforms" Actuators 7, no. 4: 71. https://doi.org/10.3390/act7040071
APA StyleShrestha, R., Shen, S., & P. de Boer, M. (2018). Preparing and Mounting Polymer Nanofibers onto Microscale Test Platforms. Actuators, 7(4), 71. https://doi.org/10.3390/act7040071