Next Article in Journal
Polymer Microgripper with Autofocusing and Visual Tracking Operations to Grip Particle Moving in Liquid
Previous Article in Journal
Evaluating the Reduction of Stress Intensity Factor in Center-Cracked Plates Using Piezoelectric Actuators
Article Menu

Export Article

Open AccessArticle
Actuators 2018, 7(2), 26; https://doi.org/10.3390/act7020026

Modelling and Operator-Based Nonlinear Control for a Miniature Pneumatic Bending Rubber Actuator Considering Bellows

1
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
2
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
*
Author to whom correspondence should be addressed.
Received: 12 April 2018 / Revised: 29 May 2018 / Accepted: 31 May 2018 / Published: 2 June 2018
Full-Text   |   PDF [1223 KB, uploaded 2 June 2018]   |  

Abstract

Recently, many kinds of soft actuators composed of flexible materials, such as silicon rubber, have been studied in the mechatronics field with increasing attention on the artificial muscle in welfare, medical care and biotechnology. Particularly, pneumatic-driven soft actuator moves flexibly and works safely because of not electrical but pneumatic input, so that the actuator could perform effectively in the medical operations. A miniature pneumatic bending rubber actuator is a tiny pneumatic-driven soft actuator which has some chambers connected to only one tube providing compressed air and the chamber has bellows. This actuator can bend circularly in two directions and grab delicate objects such as fish eggs, by inputting pressure into its chambers. The actuator, however, has nonlinear property derived from elastomer in input-output relation. The actuator, therefore, sacrifices some degree of control performance instead of obtaining the passive flexibility to delicate objects. To solve the above problem, previous studies have shown, by the experiments, that the effectiveness of designing the nonlinear feedback control system using robust right coprime factorization based on the operator theory for control of the output angle of the actuator. However, the mathematical model used for designing the system caused modelling error because the bellows were not considered in deriving the model. The mathematical model should fit experimental value as well as possible for system design and there has been no example modelling of the micro hand having bellows. In this research, a new model of the micro hand considering its bellows with elastomer property is proposed. Moreover, a control system using the robust right coprime factorization based on the operator theory is designed for the new model. Finally, the effectiveness is shown in the experiment. View Full-Text
Keywords: soft actuator; modelling; bellows; operator theory; nonlinear control; right coprime factorization soft actuator; modelling; bellows; operator theory; nonlinear control; right coprime factorization
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Sudani, M.; Deng, M.; Wakimoto, S. Modelling and Operator-Based Nonlinear Control for a Miniature Pneumatic Bending Rubber Actuator Considering Bellows. Actuators 2018, 7, 26.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Actuators EISSN 2076-0825 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top