A Finite-Time Tracking Control Scheme Using an Adaptive Sliding-Mode Observer of an Automotive Electric Power Steering Angle Subjected to Lumped Disturbance
Abstract
1. Introduction
2. Description and Mathematical Modelling
3. Controller Algorithm
3.1. Adaptive Sliding-Mode Disturbance Observer (ASMDO)
3.2. Synthesis of Adaptive Finite-Time Backstepping Control (ABSC) Design
4. Results and Discussion
4.1. Simulation Results
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
| System state variables | |
| q | Known factor |
| mi | Unknown factors |
| di | Lumped disturbance |
| Estimation of • | |
| Estimation error of • | |
| Vi | Lyapunov function |
| W | NN weight vector |
| ρ1i, ρ2i, ρ3i | Control parameters |
| Observer gains | |
| Adaptation rates | |
| zi | Tracking errors |
| βi | Virtual control law |
| u | Control input |
References
- Paden, B.; Cap, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [Google Scholar] [CrossRef]
- Guan, X.; Zhang, Y.-N.; Duan, C.-G.; Yong, W.-L.; Lu, P.-P. Study on decomposition and calculation method of EPS assist characteristic curve. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 235, 2166–2175. [Google Scholar]
- Lin, Z.Y.; Chang, W.J.; Aslam, M.S.; Su, C.L.; Lin, Y.H. Difference State Feedback Fuzzy Control of Nonlinear Discrete-Time Ship Steering System in Descriptor Form. Int. J. Fuzzy Syst. 2025, 27, 1257–1278. [Google Scholar]
- Lee, J.H.; Moon, H.T.; Yoo, J.Y. Current sensorless drive method for electric power steering. Int. J. Autom. Technol. 2012, 13, 1141–1147. [Google Scholar] [CrossRef]
- Phan, V.D.; Phan, V.Q.; Dang, T.S.; Trinh, N.H.; Nguyen, P.N.; Luong, N.M.; Nguyen, B.U.; Phan, Q.C.; Bui, H.P.; Nguyen, P.C.A.; et al. Design of Adaptive Fuzzy-PID for Adaptive Cruise Control of Electric Vehicle Using DC Motor: Theory and Experiment. In Proceedings of the 1st International Conference on Sustainability and Emerging Technologies for Smart Manufacturing; Springer: Singapore, 2025; pp. 1–11. [Google Scholar]
- Lee, D.; Kim, K.-S.; Kim, S. Controller Design of an Electric Power Steering System. IEEE Trans. Control. Syst. Technol. 2018, 26, 748–755. [Google Scholar] [CrossRef]
- Kim, S.; Choi, M.; Sung, J. Experimental Verifications of Electric Power Steering Controller Based on Discrete-Time Sliding Mode Control with Disturbance Observer. Int. J. Automot. Technol. 2023, 24, 883–888. [Google Scholar] [CrossRef]
- Liao, Y.G.; Du, H.I. Modelling and analysis of electric power steering system and its effect on vehicle dynamic behaviour. Int. J. Veh. Auton. Syst. 2003, 1, 153–166. [Google Scholar] [CrossRef]
- Chang, W.J.; Lin, Y.H.; Lee, Y.C.; Ku, C.C. Investigating Formation and Containment Problem for Nonlinear Multi-Agent Systems via Interval Type-2 Fuzzy Sliding Mode Tracking Approach. IEEE Trans. Fuzzy Syst. 2024, 32, 4163–4177. [Google Scholar]
- Nguyen, T.H.; Do, T.C.; Phan, V.D.; Ahn, K.K. Working Performance Improvement of a Novel Independent Metering Valve System by Using a Neural Network-Fractional Order-Proportional-Integral-Derivative Controller. Mathematics 2023, 11, 4819. [Google Scholar]
- Phan, V.D.; Phan, Q.C.; Ahn, K.K. Observer-Based Adaptive Fuzzy Tracking Control for a Valve-Controlled Electro-Hydraulic System in Presence of Input Dead Zone and Internal Leakage Fault. Int. J. Fuzzy Syst. 2025. [Google Scholar] [CrossRef]
- Yang, X.; Li, J.; Ge, S.; Liang, X.; Han, T. Command Filter-Based Adaptive Neural Control for Nonstrict-Feedback Nonlinear Systems with Prescribed Performance. Fractal Fract. 2020, 8, 339. [Google Scholar] [CrossRef]
- Liu, D.; Liu, J.; Sun, C.; Dai, B. Convex Optimization-Based Adaptive Neural Network Control for Unmanned Surface Vehicles Considering Moving Obstacles. J. Mar. Sci. Eng. 2025, 13, 587. [Google Scholar] [CrossRef]
- Hartono, R.; Cha, H.R.; Shin, K.J. Design of Electric Power Steering System Identification and Control for Autonomous Vehicles Based on Artificial Neural Network. IEEE Access 2024, 12, 108460–108471. [Google Scholar] [CrossRef]
- Amirkhani, A.; Shirzadeh, M.; Heydari, J. Automotive Electric Power Steering Control with Robust Observer Based Neuroadaptive Type-2 Radial Basis Function Methodology. IEEE Open J. Veh. Technol. 2024, 5, 592–605. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Iqbal, J. Improving stability and adaptability of automotive electric steering systems based on a novel optimal integrated algorithm. Eng. Comput. 2024, 41, 991–1034. [Google Scholar] [CrossRef]
- Li, Y.; Wu, G.; Wu, L.; Chen, S. Electric power steering nonlinear problem based on proportional–integral–derivative parameter self-tuning of back propagation neural network. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 4725–4736. [Google Scholar] [CrossRef]
- Dao, H.V.; Na, S.; Nguyen, D.G.; Ahn, K.K. High accuracy contouring control of an excavator for surface flattening tasks based on extended state observer and task coordinate frame approach. Autom. Constr. 2021, 130, 103845. [Google Scholar] [CrossRef]
- Phan, V.D.; Sy, P.H.; Ahn, K.K. Disturbance Attenuation-Based Global Integral Sliding Mode Control of an Electro-Hydraulic System with Prescribed Performance. IEEE Access 2024, 12, 105108–105118. [Google Scholar] [CrossRef]
- Nguyen, V.G.; Guo, X.; Zhang, C.; Tran, X.K. Parameter Estimation, Robust Controller Design and Performance Analysis for an Electric Power Steering System. Algorithms 2019, 12, 57. [Google Scholar] [CrossRef]
- Khasawneh, L.; Das, M. A Robust Electric Power-Steering-Angle Controller for Autonomous Vehicles with Disturbance Rejection. Electronics 2022, 11, 1337. [Google Scholar] [CrossRef]
- Nguyen, T.A. Fuzzy sliding mode control based on an adaptive sliding surface and extended state observer for automotive electric power steering. Adv. Mech. Eng. 2025, 17, 16878132251315517. [Google Scholar] [CrossRef]
- Emirler, M.T.; Uygan, İ.M.C.; Güvenç, B.A.; Güvenç, L. Robust PID Steering Control in Parameter Space for Highly Automated Driving. Int. J. Veh. Technol. 2014, 2014, 259465. [Google Scholar] [CrossRef]
- Lu, S.; Lian, M.; Liu, M.; Cho, C.; Piao, C. Adaptive fuzzy sliding mode control for electric power steering system. J. Mech. Sci. Technol. 2017, 31, 2643–2650. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Li, L.; Shi, J.; Xie, B. Adaptive Control of DC Motor Servo System with Application to Vehicle Active Steering. IEEE/ASME Trans. Mechatron. 2019, 24, 1054–1063. [Google Scholar]
- Kang, C.M.; Kim, W.; Chung, C.C. Observer-based backstepping control method using reduced lateral dynamics for autonomous lane-keeping system. ISA Trans. 2018, 83, 214–226. [Google Scholar]
- Murilo, A.; Rodrigues, R.; Teixeira, E.L.S.; Santos, M.M.D. Design of a Parameterized Model Predictive Control for Electric Power Assisted Steering. Control Eng. Pract. 2019, 90, 331–341. [Google Scholar]
- Hanifah, R.A.; Toha, S.F.; Ahmad, S.; Hassan, M.K. Swarm-Intelligence Tuned Current Reduction for Power-Assisted Steering Control in Electric Vehicles. IEEE Trans. Ind. Electron. 2018, 65, 7202–7210. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; Jin, L.; Song, C. Independent wheel torque control of 4WD electric vehicle for differential drive assisted steering. Mechatronics 2011, 21, 63–76. [Google Scholar] [CrossRef]
- Tao, Y. A New Control Framework of Electric Power Steering System Based on Admittance Control. IEEE Trans. Control Syst. Technol. 2015, 23, 762–769. [Google Scholar]
- Alex, A.; Saleem, A. A Lyapunov-Based Dual Controller Approach with PSO Tuning for Steer-by-Wire Systems with Artificial Steering Feel. IEEE Access 2024, 12, 188976–188992. [Google Scholar] [CrossRef]
- Liem, D.T.; Truong, D.Q.; Ahn, K.K. A torque estimator using online tuning grey fuzzy PID for applications to torque-sensorless control of DC motors. Mechatronics 2015, 26, 45–63. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Nguyen, T.A. Fuzzy Backstepping Control to Enhance Electric Power Steering System Performance. IEEE Access 2024, 12, 88681–88695. [Google Scholar] [CrossRef]
- Hameed, A.H.; Al-Samarraie, S.A.; Humaidi, A.J.; Saeed, N. Backstepping-Based Quasi-Sliding Mode Control and Observation for Electric Vehicle Systems: A Solution to Unmatched Load and Road Perturbations. World Electr. Veh. J. 2024, 15, 419. [Google Scholar]
- Jeong, Y.W.; Kim, J.S.; Kang, C.M.; Chung, C.C. Backstepping control design for the second-order electric power steering system using augmented observer. In Proceedings of the 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Kanazawa, Japan, 19–22 September 2017. [Google Scholar]
- Nguyen, T.A. Sliding mode control based on active disturbance rejection control for improving performance of an electric power steering system. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2025. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, L. Performance-guaranteed adaptive switching tracking control for steer-by-wire system with disturbance observer. Nonlinear Dyn. 2025, 113, 35107–35123. [Google Scholar]
- Phan, V.D.; Truong, H.V.A.; Le, V.C.; Ho, S.P.; Ahn, K.K. Adaptive neural observer-based output feedback anti-actuator fault control of a nonlinear electro-hydraulic system with full state constraints. Sci. Rep. 2025, 15, 3044. [Google Scholar]
- Ba, D.X.; Dinh, T.Q.; Bae, J.; Ahn, K.K. An Effective Disturbance-Observer-Based Nonlinear Controller for a Pump-Controlled Hydraulic System. IEEE/ASME Trans. Mechatron. 2020, 25, 32–43. [Google Scholar]
- Yu, J.; Shi, P.; Zhao, L. Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica 2018, 92, 173–180. [Google Scholar] [CrossRef]










| C1 | C2 | C3 | Proposed | ||
|---|---|---|---|---|---|
| Case 1 | eRMS | 1.7342 | 0.5785 | 0.3201 | 0.0956 |
| emax | 3.1146 | 0.9853 | 0.4659 | 0.1415 | |
| Case 2 | eRMS | 3.0129 | 2.4942 | 0.8656 | 0.1011 |
| emax | 9.2841 | 8.1470 | 6.3301 | 3.4153 | |
| Experiment | eRMS | 2.5322 | 2.8165 | 2.1269 | 1.0354 |
| emax | 7.1206 | 5.6041 | 4.4750 | 2.5618 |
| Components | Parameters | Specification |
|---|---|---|
| DC motor | Type | DCX-26L |
| Rated power | 22 [W] | |
| Dimensions (D × L) | Ø26 × 57 [mm] | |
| Nominal torque | 46.1 [Nm] | |
| Speed constant | 445 r/min/V | |
| Commutation | Precious metal brushes | |
| Encoder | Type | ENX 16 EASY |
| Supply voltage | +4.5 to +5 [V] | |
| Number of channels | 3 (ChA, ChB, ChI) | |
| Counts per turn (N) | 1024 | |
| Dimensions (D × L) | Ø15.8 × 8.5 [mm] | |
| Number of pins | 10 | |
| Arduino | Model | AVR ATmega 2560 (8 bit) |
| Input supply | 7 to 12 [V] | |
| Number of DI/DO pins | 54 | |
| Number of AI pins | 16 | |
| Number of PWM pins | 12 | |
| Battery | Model | TROY TTX5L |
| Voltage | 12 [V] | |
| Capacity | 3.5 [Ah] | |
| Dimensions (L × W × H) | 114 × 70 × 86 [mm] | |
| DC motor driver | Type | SmartDrive40 MDS40B |
| Maximum current | 40 [A] | |
| Input voltage | 10 to 45 [V] | |
| Dimensions (L × W) | 124 × 107 [mm] | |
| Input modes | Analog, PWM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yu, J.U.; Le, V.C.; Mai, T.A.; Duong, D.T.; Ho, S.P.; Dang, T.S.; Dinh, V.N.; Phan, V.D. A Finite-Time Tracking Control Scheme Using an Adaptive Sliding-Mode Observer of an Automotive Electric Power Steering Angle Subjected to Lumped Disturbance. Actuators 2026, 15, 92. https://doi.org/10.3390/act15020092
Yu JU, Le VC, Mai TA, Duong DT, Ho SP, Dang TS, Dinh VN, Phan VD. A Finite-Time Tracking Control Scheme Using an Adaptive Sliding-Mode Observer of an Automotive Electric Power Steering Angle Subjected to Lumped Disturbance. Actuators. 2026; 15(2):92. https://doi.org/10.3390/act15020092
Chicago/Turabian StyleYu, Jae Ung, Van Chuong Le, The Anh Mai, Dinh Tu Duong, Sy Phuong Ho, Thai Son Dang, Van Nam Dinh, and Van Du Phan. 2026. "A Finite-Time Tracking Control Scheme Using an Adaptive Sliding-Mode Observer of an Automotive Electric Power Steering Angle Subjected to Lumped Disturbance" Actuators 15, no. 2: 92. https://doi.org/10.3390/act15020092
APA StyleYu, J. U., Le, V. C., Mai, T. A., Duong, D. T., Ho, S. P., Dang, T. S., Dinh, V. N., & Phan, V. D. (2026). A Finite-Time Tracking Control Scheme Using an Adaptive Sliding-Mode Observer of an Automotive Electric Power Steering Angle Subjected to Lumped Disturbance. Actuators, 15(2), 92. https://doi.org/10.3390/act15020092

