Predefined-Time Tracking Control of Servo Hydraulic Cylinder Based on Reinforcement Learning
Abstract
1. Introduction
- A predefined-time control framework is established for electro-hydraulic servo systems, guaranteeing predefined-time convergence of position tracking errors. The system convergence time is independent of initial states and requires no complex parameter computation.
- An intelligent integration of the actor–critic reinforcement learning framework effectively handles system uncertainties, thereby relaxing conventional assumptions regarding known uncertainty bounds or bounded derivatives.
- A novel nonsingular predefined-time command filter is utilized, which not only circumvents complexity explosion issues arising from repeated differentiation in backstepping design but also maintains continuity and non-singularity throughout the subsequent controller development.
2. Problem Statement and Preliminaries
3. Reinforcement Learning-Based Predefined-Time Controller Design
3.1. Preliminaries
3.2. Actor–Critic Network Design
3.3. RL-Based Predefined-Time Controller Design
3.4. Main Result and Stability Analysis
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mattila, J.; Koivumaki, J.; Caldwell, D.G.; Semini, C. A survey on control of hydraulic robotic manipulators with projection to future trends. IEEE/ASME Trans. Mechatron. 2017, 22, 669–680. [Google Scholar] [CrossRef]
- Guo, Q.; Chen, Z. Neural adaptive control of single-rod electrohydraulic system with lumped uncertainty. Mech. Syst. Signal Process. 2021, 146, 106869. [Google Scholar] [CrossRef]
- Huang, Y.; Na, J.; Wu, X.; Gao, G. Approximation-free control for vehicle active suspensions with hydraulic actuator. IEEE Trans. Ind. Electron. 2018, 65, 7258–7267. [Google Scholar] [CrossRef]
- Liu, X.; Liu, W.; Zhou, C.; Huang, M. Probabilistic weighted support vector machine for robust modeling with application to hydraulic actuator. IEEE Trans. Ind. Inform. 2017, 13, 1723–1733. [Google Scholar] [CrossRef]
- Fallahi, M.; Zareinejad, M.; Baghestan, K.; Tivay, A.; Rezaei, S.M.; Abdullah, A. Precise position control of an electro-hydraulic servo system via robust linear approximation. ISA Trans. 2018, 80, 503–512. [Google Scholar] [CrossRef]
- Lu, K.; Feng, G.; Ding, B. Robust H-Infinity Tracking Control for a Valve-Controlled Hydraulic Motor System with Uncertain Parameters in the Complex Load Environment. Sensors 2023, 23, 9092. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Li, T.-H.S.; Yeh, Y.-C.; Chang, C.-C. Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronics 2009, 19, 156–166. [Google Scholar] [CrossRef]
- Yao, J.; Jiao, Z.; Yao, B. Robust control for static loading of electro-hydraulic load simulator with friction compensation. Chin. J. Aeronaut. 2012, 25, 954–962. [Google Scholar] [CrossRef]
- Zhou, J.; Hua, C.; Zhang, B.; Li, Y.; Zhang, Y. Performance Guaranteed Robust Tracking Control of Electro-Hydraulic Systems with Input Delays and Output Constraints. IEEE Trans. Ind. Electron. 2025, 72, 14469–14477. [Google Scholar] [CrossRef]
- Wang, S.; Na, J.; Ren, X. RISE-based asymptotic prescribed performance tracking control of nonlinear servo mechanisms. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 2359–2370. [Google Scholar] [CrossRef]
- Liu, L.; Yue, X.; Wen, H.; Dai, H. RISE-based adaptive tracking control for Euler-Lagrange mechanical systems with matched disturbances. ISA Trans. 2023, 135, 94–104. [Google Scholar] [CrossRef]
- Cao, H.; Li, Y.; Liu, C.; Zhao, S. ESO-based robust and high-precision tracking control for aerial manipulation. IEEE Trans. Autom. Sci. Eng. 2023, 21, 2139–2155. [Google Scholar] [CrossRef]
- Tang, G.; Xue, W.; Huang, X.; Song, K. On error-driven nonlinear ESO based control design with application to air-fuel ratio control of engines. Control Eng. Pract. 2024, 143, 105808. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, L.; Ji, W. Improved non-singular fast terminal sliding mode control with disturbance observer for PMSM drives. IEEE Trans. Transp. Electrif. 2021, 7, 2753–2762. [Google Scholar] [CrossRef]
- Wei, X.; Song, X.; Zhang, H.; Hu, X.; Li, X. Disturbance-observer-based tracking trajectory control of under-actuated surface vessel with input and output constraints. Appl. Math. Model. 2026, 153, 116598. [Google Scholar] [CrossRef]
- Ma, J.; Yao, Z.; Deng, W.; Yao, J. Fixed-time adaptive neural network compensation control for uncertain nonlinear systems. Neural Netw. 2025, 189, 107563. [Google Scholar] [CrossRef]
- Kharrat, M. Neural networks-based adaptive fault-tolerant control for stochastic nonlinear systems with unknown backlash-like hysteresis and actuator faults. J. Appl. Math. Comput. 2024, 70, 1995–2018. [Google Scholar] [CrossRef]
- Ma, B.; Liu, Z.; Zhao, W.; Yuan, J.; Long, H.; Wang, X.; Yuan, Z. Target tracking control of UAV through deep reinforcement learning. IEEE Trans. Intell. Transp. Syst. 2023, 24, 5983–6000. [Google Scholar] [CrossRef]
- Bai, W.; Chen, D.; Zhao, B.; D’Ariano, A. Reinforcement learning control for a class of discrete-time non-strict feedback multi-agent systems and application to multi-marine vehicles. IEEE Trans. Intell. Veh. 2024, 10, 3613–3625. [Google Scholar] [CrossRef]
- Wang, N.; Gao, Y.; Zhao, H.; Ahn, C.K. Reinforcement learning-based optimal tracking control of an unknown unmanned surface vehicle. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 3034–3045. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Wu, Y.; Li, C. Reinforcement learning strategy for spacecraft attitude hyperagile tracking control with uncertainties. Aerosp. Sci. Technol. 2021, 119, 107126. [Google Scholar] [CrossRef]
- Liang, X.; Yao, Z.; Ge, Y.; Yao, J. Disturbance observer based actor-critic learning control for uncertain nonlinear systems. Chin. J. Aeronaut. 2023, 36, 271–280. [Google Scholar] [CrossRef]
- Yao, Z.; Liang, X.; Jiang, G.-P.; Yao, J. Model-based reinforcement learning control of electrohydraulic position servo systems. IEEE/ASME Trans. Mechatron. 2022, 28, 1446–1455. [Google Scholar] [CrossRef]
- Chen, J.; Du, X.; Lyu, L.; Fei, Z.; Sun, X.-M. Accurate Finite-Time Motion Control of Hydraulic Actuators with Event-Triggered Input. IEEE Trans. Autom. Sci. Eng. 2024, 21, 5826–5836. [Google Scholar] [CrossRef]
- Liang, X.; Yao, Z.; Deng, W.; Yao, J. Adaptive neural network finite-time tracking control for uncertain hydraulic manipulators. IEEE/ASME Trans. Mechatron. 2024, 30, 645–656. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Guo, Q.; Liu, Z.; Chen, C.L.P. Disturbance Observer-Based Fixed-Time Event-Triggered Control for Networked Electro-Hydraulic Systems with Input Saturation. IEEE Trans. Ind. Electron. 2025, 72, 1784–1794. [Google Scholar] [CrossRef]
- Chen, R.-Z.; Li, Y.-X.; Ahn, C.K. Reinforcement-learning-based fixed-time attitude consensus control for multiple spacecraft systems with model uncertainties. Aerosp. Sci. Technol. 2023, 132, 108060. [Google Scholar] [CrossRef]
- Cao, S.; Sun, L.; Jiang, J.; Zuo, Z. Reinforcement learning-based fixed-time trajectory tracking control for uncertain robotic manipulators with input saturation. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 4584–4595. [Google Scholar] [CrossRef]
- Sánchez-Torres, J.D.; Gómez-Gutiérrez, D.; López, E.; Loukianov, A.G. A class of predefined-time stable dynamical systems. IMA J. Math. Control Inf. 2018, 35, i1–i29. [Google Scholar] [CrossRef]
- Xie, S.; Chen, Q. Predefined-Time Disturbance Estimation and Attitude Control for Rigid Spacecraft. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 2089–2093. [Google Scholar] [CrossRef]
- Que, N.; Sun, H.; Deng, W.; Yao, J.; Zhao, X.; Hu, J.; Luo, M. Command Filter-Based Adaptive Predefined-Time Tracking Control for Uncertain Systems with Disturbance Compensation. Int. J. Robust Nonlinear Control 2025, 35, 6604–6618. [Google Scholar] [CrossRef]










| Indices | Me | μ | σ |
|---|---|---|---|
| RLPDTC | 3.9461 × 10−5 | 2.5966 × 10−6 | 2.6262 × 10−5 |
| PDTC | 2.1107 × 10−4 | 2.6383 × 10−6 | 1.4840 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Han, T.; Nie, X.; Que, N.; Lu, J.; Yao, J.; Yu, X. Predefined-Time Tracking Control of Servo Hydraulic Cylinder Based on Reinforcement Learning. Actuators 2026, 15, 9. https://doi.org/10.3390/act15010009
Han T, Nie X, Que N, Lu J, Yao J, Yu X. Predefined-Time Tracking Control of Servo Hydraulic Cylinder Based on Reinforcement Learning. Actuators. 2026; 15(1):9. https://doi.org/10.3390/act15010009
Chicago/Turabian StyleHan, Tao, Xiaohua Nie, Ninan Que, Jie Lu, Jianyong Yao, and Xiaochuan Yu. 2026. "Predefined-Time Tracking Control of Servo Hydraulic Cylinder Based on Reinforcement Learning" Actuators 15, no. 1: 9. https://doi.org/10.3390/act15010009
APA StyleHan, T., Nie, X., Que, N., Lu, J., Yao, J., & Yu, X. (2026). Predefined-Time Tracking Control of Servo Hydraulic Cylinder Based on Reinforcement Learning. Actuators, 15(1), 9. https://doi.org/10.3390/act15010009
