The Small Frontier: Trends Toward Miniaturization and the Future of Planetary Surface Rovers
Abstract
1. Introduction
2. Historical Planetary Surface Exploration Robots
2.1. Planetary Surface Robot Taxonomy
2.2. Planetary Rover Sizing
3. The Miniaturization of Planetary Rovers
3.1. Prop-M: The Original Nano-Rover
3.2. Iris: A More Modern Nano-Rover
3.3. SORA-Q: A Pico-Rover
3.4. COLMENA: A Femto-Rover
3.5. Small-Scale Actuation and Locomotion
Name | Wheel Count | Suspension/Mobility | Distance Traveled (m) |
---|---|---|---|
Lunokhod 1 | 8 | Torsion Bar | 11,000 [11] |
Prop-M (1) | na | Rotating Skis | Not Deployed |
Prop-M (2) | na | Rotating Skis | Unknown [11] |
Lunokhod 2 | 8 | Torsion Bar | 37,000 [11] |
Sojourner | 6 | Rocker-Bogie | 106 [11] |
PLUTO | na | Internal Hammer [18] | Not Deployed |
MER A | 6 | Rocker-Bogie | 7730 [11] |
MER B | 6 | Rocker-Bogie | 45,161 [44] |
MINERVA | na | Rotating Torquer | No Surface Operation [19] |
MSL | 6 | Rocker-Bogie | 35,270 † [45] |
Yutu 1 | 6 | Rocker-Bogie | 100 [20] |
MINERVA II-1A | na | Rotating Torquer [21] | Unclear, non zero |
MINERVA II-1B | na | Rotating Torquer [21] | Unclear, non zero |
Yutu 2 | 6 | Rocker-Bogie ‡ | 1613 [46] |
Pragyan 1 | 6 | Rocker-Bogie | Not Deployed [47] |
Mars 2020 | 6 | Rocker-Bogie [12] | 35,480 † [48] |
Ingenuity | na | Coaxial Helicopter | 16,971 [49] |
Zhurong | 6 | Rocker-Bogie * [50] | 1900 [51] |
Pragyan 2 | 6 | Rocker-Bogie [23] | 103 [52] |
Rashid | 4 | Articulated Suspension [43] | Not Deployed |
Sora-Q (1) | 2 | Eccentric Wheels [42] | Not Deployed |
COLMENA | 2 | Fixed Wheels ‡ | Not Deployed |
Iris | 4 | Fixed Wheels [38] | Not Deployed |
LEV 1 | 1 | Hopping Pad/Wheel [53] | Unclear, non zero |
LEV2 (Sora-Q 2) | 2 | Eccentric Wheels [42] | Unclear, non zero |
Jinchan | 4 | Fixed Wheels ‡ [31] | Unclear, non zero |
YAOKI | 2 | Fixed Coaxial Wheels ‡ [32] | Not Deployed |
Tenacious | 4 | Fixed Wheel ‡ [54] | Not Deployed |
4. Future Developmental Pipeline
4.1. CubeSats and CanSats
4.2. From CanSats to CanBots
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARLISS | A Rocket Launch for International Student Satellites |
CLPS | Commercial Lunar Payload Services |
COTS | Commercial Off-The-Shelf |
EDL | Entry, Descent, and Landing |
EOL | End Of Life |
FIDO | Field-Integrated Design and Operations |
JAXA | Japan Aerospace Exploration Agency |
LEO | Low Earth Orbit |
LEV | Lunar Excursion Vehicles |
MER | Mars Exploration Rover |
MSL | Mars Science Laboratory |
NASA | National Aeronautics and Space Administration |
SLIM | Smart Lander for Investigating Moon |
TRL | Technology Readiness Level |
USA | United States of America |
USSR | Union of Soviet Socialist Republics |
USS | University Space Systems Symposium |
References
- The Planetary Society. Apollo Costs. 2024. Available online: https://www.planetary.org/space-policy/cost-of-apollo (accessed on 5 July 2024).
- National Aeronautics and Space Administration. The Artemis Plan. 2020. Available online: https://www.nasa.gov/wp-content/uploads/2020/12/artemis_plan-20200921.pdf?emrc=f43185 (accessed on 26 January 2024).
- O’Shea, C.A. Artemis Manned Landers. 2023. Available online: https://www.nasa.gov/news-release/nasa-selects-blue-origin-as-second-artemis-lunar-lander-provider/ (accessed on 7 February 2024).
- Jeffery Rubio. CLIPS. 2023. Available online: https://www.nasa.gov/reference/commercial-lunar-payload-services/ (accessed on 7 February 2024).
- Sparrow, G.; John, J.; McNab, C. The Illustrated Encyclopedia of Space and Space Exploration; OCLC: 900634681; Metro Books: London, UK, 2014. [Google Scholar]
- Williams, D.R. Luna 2. 2022. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1959-014A (accessed on 7 February 2024).
- Williams, D.R. Ranger 7. 2022. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1964-041A (accessed on 7 February 2024).
- Williams, D.R. Lunar Orbiter 1. 2022. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1966-073A (accessed on 7 February 2024).
- Williams, D.R. Surveyor 6. 2022. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1967-112A (accessed on 29 November 2023).
- Williams, D.R. Luna 17/Lunokhod 1. 2022. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1970-095A (accessed on 7 February 2024).
- Ellery, A. Planetary Rovers: Robotic Exploration of the Solar System; Springer Praxis Books Astronautical Engineering; Praxis: Berlin, Germany, 2016. [Google Scholar]
- Baker, D. NASA Mars Rovers: 1997–2013 (Sojourner, Spirit, Opportunity and Curiousity): An Insight into the Technology, History, and Development of NASA’s Mars Exploration Roving Vehicles; Owners’ Workshop Manual; Haynes Publishing: Somerset, UK, 2013; OCLC: ocn826659106. [Google Scholar]
- Soyer, S. Small space can: CanSat. In Proceedings of the 5th International Conference on Recent Advances in Space Technologies—RAST2011, Istanbul, Turkey, 9–11 June 2011; pp. 789–793. [Google Scholar] [CrossRef]
- NASA. After Three Years on Mars, NASA’s Ingenuity Helicopter Mission Ends. 2024. Available online: https://mars.nasa.gov/news/9540/after-three-years-on-mars-nasas-ingenuity-helicopter-mission-ends/ (accessed on 9 February 2024).
- NASA. NASA’s Dragonfly Will Fly Around Titan Looking for Origins, Signs of Life. 2019. Available online: https://www.nasa.gov/news-release/nasas-dragonfly-will-fly-around-titan-looking-for-origins-signs-of-life/ (accessed on 9 February 2024).
- NASA/JPL. PIA01122: Sojourner Rover Near “The Dice”. 1997. Available online: https://photojournal.jpl.nasa.gov/catalog/PIA01122 (accessed on 9 February 2024).
- NASA/JPL-Caltech. Mars Perseverance Sol 46: WATSON Camera. 2021. Available online: https://mars.nasa.gov/mars2020/multimedia/raw-images/index.cfm?urlpath=SI1_0046_0671022109_238ECM_N0031416SRLC07021_000085J&mission=mars2020 (accessed on 9 February 2024).
- Richter, L.; Gromov, V.V.; Kochan, H.; Kosacki, K.; Tokano, T. The Planetary Underground Tool (PLUTO) Experiment on the Beagle 2 Mars Lander. In Proceedings of the Sixth International Conference on Mars, Caltech, CA, USA, 20–25 July 2003; p. 3180. [Google Scholar]
- Yoshimitsu, T.; Kubota, T.; Nakatani, I. MINERVA Rover which Became a Small Artificial Solar Satellite. In Proceedings of the 20th Annual AIAA/USU Conference on Small Satellites, Digital Commons, Logan, UT, USA, 14–17 August 2006; p. SSC06-IV-4. [Google Scholar]
- Stephen Clark. China’s Yutu Rover Dies on the Moon. 2016. Available online: https://spaceflightnow.com/2016/08/04/chinas-yutu-rover-dies-on-the-moon/ (accessed on 13 November 2023).
- Yoshimitsu, T.; Kubota, T. Asteroid Surface Exploration by Minerva-II Small Rovers. In Proceedings of the 18th Annual Meeting of the Asia Oceania Geosciences Society, Virtual, 1–6 August 2022; pp. 180–182. [Google Scholar] [CrossRef]
- Williams, D.R. Chang’e 4. 2023. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2018-103A (accessed on 7 February 2024).
- Williams, D.R. Chandrayaan 3. 2022. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2023-098A (accessed on 11 January 2024).
- NASA. Mars Perseverance Press Kit. 2021. Available online: https://www.jpl.nasa.gov/news/press_kits/mars_2020/download/mars_2020_landing_press_kit.pdf (accessed on 2 October 2023).
- Withrow, S.; Johnson, W.; Young, L.A.; Koning, W.; Kuang, W.; Malpica, C.; Balaram, J.; Tzanetos, T. Mars science helicopter: Conceptual design of the next generation of mars rotorcraft. In Proceedings of the AIAA ASCEND Conference, Virtual, 16–18 November 2020; p. 4029. [Google Scholar]
- Ding, L.; Zhou, R.; Yu, T.; Gao, H.; Yang, H.; Li, J.; Yuan, Y.; Liu, C.; Wang, J.; Zhao, Y.Y.S.; et al. Surface characteristics of the Zhurong Mars rover traverse at Utopia Planitia. Nat. Geosci. 2022, 15, 171–176. [Google Scholar] [CrossRef]
- Williams, D.R. Hakuto-R M1.; 2022. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2022-168A (accessed on 7 February 2024).
- Tingley, B. Mexico’s 1st Moon Mission Will Send 5 Tiny Robots Aloft on Peregrine Lunar Lander Jan. 8. 2024. Available online: https://www.space.com/peregrine-lunar-lander-mexico-colmena-micro-robots (accessed on 9 February 2024).
- Koo, K.W.; Kim, H.D. Trends in Development of Micro Rovers for Planetary Exploration. J. Space Technol. Appl. 2023, 3, 213–228. [Google Scholar] [CrossRef]
- Williams, D.R. Smart Lander for Investigating Moon. 2022. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2023-137D (accessed on 7 February 2024).
- David, L. Get an Up-Close Look at China’s Chang’e 6 Farside Moon Rover. Available online: https://www.space.com/china-change-6-moon-far-side-minirover (accessed on 4 July 2025).
- Dymon Co. Lunar Rover “YAOKI”. Available online: https://dymon.co.jp/en/yaoki/ (accessed on 1 July 2025).
- Williams, D.R. Resilience. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=RESILIENC (accessed on 1 July 2025).
- Ulivi, P.; Harland, D.M. Robotic Exploration of the Solar System: Part 1: The Golden Age 1957–1982; Springer: New York, NY, USA, 2007. [Google Scholar]
- Ajwad, S.A.; Iqbal, J. Recent Advances and Applications of Tethered Robotic Systems. Sci. Int. 2014, 26, 2045–2051. [Google Scholar]
- Gao, Y. Contemporary Planetary Robotics: An Approach toward Autonomous Systems; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Truszkowski, W.; Rouff, C.; Akhavannik, M.; Tunstel, E. Robot Memetics: A Space Exploration Perspective; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Astrobotic. ASTROBOTIC CUBEROVER: Payload User’s Guide. 2024. Available online: https://www.astrobotic.com/wp-content/uploads/2024/01/Astrobotic_CubeRover-PUG_V2-2.pdf (accessed on 7 February 2024).
- Johnson, A. CMU’s Iris Rover: A Heartbeat in Space, A Legacy on Earth. 2024. Available online: https://www.cmu.edu/news/stories/archives/2024/january/cmus-iris-rover-a-heartbeat-in-space-a-legacy-on-earth (accessed on 8 February 2024).
- Amos, J. Stricken Japanese Moon Mission Landed on Its Nose. 2024. Available online: https://www.bbc.com/news/science-environment-68091389 (accessed on 9 February 2024).
- Chappell, B. Japan Succeeds in Soft Landing on the Moon, but Its Lander Has a Power Problem. 2024. Available online: https://www.npr.org/2024/01/18/1225328376/japan-moon-landing-robot-transformers-jaxa (accessed on 9 February 2024).
- Nagahashi, K. Toy Manufacturer’s ’Transformer’ Lunar Robot Sets Course for the Moon. 2023. Available online: https://japan-forward.com/toy-manufacturers-transformer-lunar-robot-sets-course-for-the-moon/ (accessed on 9 February 2024).
- Yakubu, M.; Zweiri, Y.; Abuassi, L.; Azzam, R.; Abubakar, A.; Busoud, A.; Seneviratne, L. A Novel Mobility Concept for Terrestrial Wheel-Legged Lunar Rover. IEEE Access 2025, 13, 15618–15638. [Google Scholar] [CrossRef]
- Verma, V.; Maimone, M.W.; Gaines, D.M.; Francis, R.; Estlin, T.A.; Kuhn, S.R.; Rabideau, G.R.; Chien, S.A.; McHenry, M.M.; Graser, E.J.; et al. Autonomous robotics is driving Perseverance rover’s progress on Mars. Sci. Robot. 2023, 8, eadi3099. [Google Scholar] [CrossRef] [PubMed]
- National Aeronautics and Space Administration. Where Is Curiosity? Available online: https://science.nasa.gov/mission/msl-curiosity/location-map/ (accessed on 3 July 2025).
- Global Times. Yutu-2 Becomes World’s Longest-Working Lunar Rover. Available online: https://www.globaltimes.cn/page/202409/1319962.shtml (accessed on 3 July 2025).
- Williams, D.R. Chandrayaan 2. 2022. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2019-042A (accessed on 7 February 2024).
- National Aeronautics and Space Administration. Where is Perseverance? Available online: https://science.nasa.gov/mission/mars-2020-perseverance/location-map/ (accessed on 3 July 2025).
- National Aeronautics and Space Administration. Ingenuity Mars Helicopter. Available online: https://science.nasa.gov/mission/mars-2020-perseverance/ingenuity-mars-helicopter/ (accessed on 3 July 2025).
- Chen, Z.; Zou, M.; Pan, D.; Chen, L.; Liu, Y.; Yuan, B.; Zhang, Q. Study on climbing strategy and analysis of Mars rover. J. Field Robot. 2023, 40, 1172–1186. [Google Scholar] [CrossRef]
- Xinhua. China’s Zhurong Travels over 1.9 km on Mars. Available online: https://www.chinadailyhk.com/hk/article/269931 (accessed on 3 July 2025).
- Vadawale, S.V.; Mithun, N.P.S.; Shanmugam, M.; Basu Sarbadhikari, A.; Sinha, R.K.; Bhatt, M.; Vijayan, S.; Srivastava, N.; Shukla, A.D.; Murty, S.V.S.; et al. Chandrayaan-3 APXS elemental abundance measurements at lunar high latitude. Nature 2024, 633, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, M.; Yoshikawa, K.; Maeda, T.; Usami, N.; Yoshimitsu, T. Design of Wheel Grouser Geometry with Reduced Sinkage for LEV-1 Lunar Rover. IEEE Robot. Autom. Lett. 2025, 10, 5633–5640. [Google Scholar] [CrossRef]
- ispace, Inc. ispace-EUROPE Announces Completion of First European Designed, Manufactured, and Assembled Lunar Micro Rover. Available online: https://ispace-inc.com/news-en/?p=5593 (accessed on 4 July 2025).
- National Aeronautics and Space Administration. Mars InSight Launch Press Kit. 2018. Available online: https://www.jpl.nasa.gov/news/press_kits/insight/launch/download/mars_insight_launch_presskit.pdf (accessed on 7 February 2024).
- Cappelletti, C.; Battistini, S.; Malphrus, B.K. CubeSat Handbook: From Mission Design to Operations; Academic Press: Cambridge, MA, USA, 2021; OCLC: on1296073107. [Google Scholar]
- Khali, M.; Miyazaki, Y. CanSat Pico Size Artificial Satellite, 4th ed.; University Space Engineering Consortium: Tokyo, Japan, 2017. [Google Scholar]
- Sako, N.; Tsuda, Y.; Ota, S.; Eishima, T.; Yamamoto, T.; Ikeda, I.; Ii, H.; Yamamoto, H.; Tanaka, H.; Tanaka, A.; et al. Cansat Suborbital Launch Experiment-University Educational Space Program Using Can Sized Pico-Satellite. Acta Astronaut. 2001, 48, 767–776. [Google Scholar] [CrossRef]
- Kulu, E. Database of Nanosatellites. 2024. Available online: https://www.nanosats.eu/ (accessed on 30 June 2025).
- Chun, C.; Tanveer, M.H.; Chakravarty, S. The CanSat Compendium: A Review of Scientific CanSats. Machines 2023, 11, 675. [Google Scholar] [CrossRef]
- European Space Agency. CANSAT: 2022–2023 Guidelines. 2022. Available online: https://www.esa.int/Education/CanSat (accessed on 1 May 2023).
- American Astronautical Society. CanSat Competition Guide 2023. 2022. Available online: https://www.cansatcompetition.com/docs/CanSat_Mission_Guide_2023i.pdf (accessed on 1 April 2023).
- Spencer, D.A.; Betts, B.; Bellardo, J.M.; Diaz, A.; Plante, B.; Mansell, J.R. The LightSail 2 solar sailing technology demonstration. Adv. Space Res. 2021, 67, 2878–2889. [Google Scholar] [CrossRef]
- Hashimoto, T.; Yamada, T.; Otsuki, M.; Yoshimitsu, T.; Tomiki, A.; Torii, W.; Toyota, H.; Kikuchi, J.; Morishita, N.; Kobayashi, Y.; et al. Nano Semihard Moon Lander: OMOTENASHI. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 20–30. [Google Scholar] [CrossRef]
- Antunes, S. DIY Satellite Platforms; O’Reilly: Springfield, MO, USA, 2012. [Google Scholar]
- Aydemir, M.E.; Celebi, M.; Ay, S.; Vivas, E.V.; Calle Bustinza, F.; Phan, D. Design and implementation of a rover-back CANSAT. In Proceedings of the 5th International Conference on Recent Advances in Space Technologies—RAST 2011, Istanbul, Turkey, 9–11 June 2011; pp. 800–803. [Google Scholar] [CrossRef]
- Celebi, M.; Ay, S.; Ibrahim, M.K.; Aydemir, M.E.; Bensaada, M.; Fernando, L.; Akiyama, H.; Yamaura, S. Design and navigation control of an advanced level CANSAT. In Proceedings of the 5th International Conference on Recent Advances in Space Technologies—RAST 2011, Istanbul, Turkey, 9–11 June 2011; pp. 752–757. [Google Scholar] [CrossRef]
- Joseph Nunez-Quispe, J. Design and Simulation of a Rover CanSat Non-pneumatic Wheel: Preliminary Study for a Certain Test Obstacle Path. In Proceedings of the 2021 12th International Conference on Mechanical and Aerospace Engineering (ICMAE), Athens, Greece, 16–19 July 2021; pp. 484–488. [Google Scholar] [CrossRef]
- Kizilkaya, M.O.; Oguz, A.E.; Soyer, S. CanSat descent control system design and implementation. In Proceedings of the 2017 8th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 19–22 June 2017; pp. 241–245. [Google Scholar] [CrossRef]
- Aliyev, I.; Misirli, C.A.; Ozturk, S.; Mahmurat, E.; Erkek, A.; Kok, S.; Kocyigit, D.; Uzun, S.; Vural, R.A. Design of solar powered subscale glider for CanSat competition. In Proceedings of the 2017 8th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 19–22 June 2017; pp. 453–457. [Google Scholar] [CrossRef]
- Pradhan, E.; Dadheech, A.; Agarwal, H.; Singh, T.; Singari, R.M. Design Concept of a Model Can-sized Sub-orbital Satellite. J. Eng. Res. 2021, 79, 88. [Google Scholar] [CrossRef]
- Umit, M.E.; Cabanas, W.; Tetlow, M.; Akiyama, H.; Yamaura, S.; Olaleye, S. Development of a fly-back CANSAT in 3 weeks. In Proceedings of the Proceedings of 5th International Conference on Recent Advances in Space Technologies—RAST 2011, Istanbul, Turkey, 9–11 June 2011; pp. 804–807. [Google Scholar] [CrossRef]
- Ramadhan, R.P.; Ramadhan, A.R.; Putri, S.A.; Latukolan, M.I.C.; Edwar; Kusmadi. Prototype of CanSat with Auto-gyro Payload for Small Satellite Education. In Proceedings of the 2019 IEEE 13th International Conference on Telecommunication Systems, Services, and Applications (TSSA), Bali, Indonesia, 3–4 October 2019; pp. 243–248. [Google Scholar] [CrossRef]
- Meyer, B.; Donohue, B.; Creamer, A.; Puyana, M.; Ewere, F. Lunar Lava Tube Exploration with CubeRover: Wandering Observer of Lunar Features (WOLF) Rover. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 0016. [Google Scholar] [CrossRef]
- Oikawa, T.; De La Fuente, C.C.; Arbuckle, T.; Quinn, K.; Davis, A.; Rolley, R.; Whitaker, T.; Almujaheda, A.; Rampollaa, C.; Spotoa, J.; et al. Plan and Progression of the Technology Readiness Level of the CubeRover®. In Proceedings of the IAC-23, Baku, Azerbaijan, 2–6 October 2023; p. 75811. [Google Scholar]
- Schenker, P.S.; Baumgartner, E.T.; Backes, P.G.; Aghazarian, H.; Dorsky, L.I.; Norris, J.S. FIDO: A Field Integrated Design & Operations Rover for Mars Surface Exploration. In Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Autonomous for Space, Quebec, QC, Canada, 18–21 June 2001; p. 01. [Google Scholar]
- Heverly, M.; Matthews, J.; Lin, J.; Fuller, D.; Maimone, M.; Biesiadecki, J.; Leichty, J. Traverse Performance Characterization for the Mars Science Laboratory Rover. J. Field Robot. 2013, 30, 835–846. [Google Scholar] [CrossRef]
Name | Ellery (Rovers) [11] | Soyer (Satellites) [13] |
---|---|---|
Large * | Na | >1000 kg † |
Macro/Medium | >100 kg | 500 kg–1000 kg |
Mini | 50 kg–100 kg | 100 kg–500 kg |
Micro | 10 kg–50 kg | 10 kg–100 kg |
Nano | 5 kg–10 kg | 1 kg–10 kg |
Pico | Na | 100 g–1 kg |
Fempto | Na | <100 g |
Name | Year | Mass (kg) | Outcome | Deployed from |
---|---|---|---|---|
Lunokhod 1 | 1970 | 756 [11] | Success | Luna 17 |
Prop-M (1) | 1971 | 4.5 | Failure | Mars 2 |
Prop-M (2) | 1971 | 4.5 [11] | Unknown | Mars 3 |
Lunokhod 2 | 1973 | 840 [11] | Success | Luna 21 |
Sojourner | 1997 | 10.5 [11] | Success | Pathfinder |
PLUTO | 2003 | 0.86 [18] | Failure | Beagle 2 |
MER A | 2004 | 174 [11] | Success | Na |
MER B | 2004 | 174 [11] | Success | Na |
MINERVA | 2005 | 0.591 [19] | Failure | Hayabusa 1 |
MSL | 2012 | 899 [12] | Success | Na |
Yutu 1 | 2013 | 140 [20] | Success | Chang’e 3 |
MINERVA II-1A | 2018 | 1.1 [21] | Success | Hayabusa 2 |
MINERVA II-1B | 2018 | 1.1 [21] | Failure | Hayabusa 2 |
Yutu 2 | 2019 | 140 [22] | Success | Chang’e 4 |
Pragyan 1 | 2019 | 27 [23] | Failure | Chandrayaan-2 |
Mars 2020 | 2021 | 1025 [24] | Success | Na |
Ingenuity | 2021 | 1.8 [25] | Success | Mars 2020 |
Zhurong | 2021 | 240 [26] | Success | Tianwen-1 |
Pragyan 2 | 2023 | 27 [23] | Success | Chandrayaan-3 |
Rashid | 2023 | 10 [27] | Failure | Hakuto-R Mission 1 |
Sora-Q (1) | 2023 | 0.25 [27] | Failure | Hakuto-R Mission 1 |
COLMENA | 2024 | 0.06 [28] | Failure | Peregrine Mission One |
Iris | 2024 | 2 [29] | Failure | Peregrine Mission One |
LEV 1 | 2024 | 2.1 [30] | Success | SLIM |
LEV2 (Sora-Q 2) | 2024 | 0.25 [30] | Success | SLIM |
Jinchan | 2024 | 5 [31] | Success | Chang’e 6 |
YAOKI | 2025 | 0.5 [32] | Failure | IM-2 (Athena) |
Tenacious | 2025 | 5 [33] | Failure | Resilience (Hakuto Mission 2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chun, C.; Chowdoury, F.; Tanveer, M.H.; Chakravarty, S.; Guerra-Zubiaga, D.A. The Small Frontier: Trends Toward Miniaturization and the Future of Planetary Surface Rovers. Actuators 2025, 14, 356. https://doi.org/10.3390/act14070356
Chun C, Chowdoury F, Tanveer MH, Chakravarty S, Guerra-Zubiaga DA. The Small Frontier: Trends Toward Miniaturization and the Future of Planetary Surface Rovers. Actuators. 2025; 14(7):356. https://doi.org/10.3390/act14070356
Chicago/Turabian StyleChun, Carrington, Faysal Chowdoury, Muhammad Hassan Tanveer, Sumit Chakravarty, and David A. Guerra-Zubiaga. 2025. "The Small Frontier: Trends Toward Miniaturization and the Future of Planetary Surface Rovers" Actuators 14, no. 7: 356. https://doi.org/10.3390/act14070356
APA StyleChun, C., Chowdoury, F., Tanveer, M. H., Chakravarty, S., & Guerra-Zubiaga, D. A. (2025). The Small Frontier: Trends Toward Miniaturization and the Future of Planetary Surface Rovers. Actuators, 14(7), 356. https://doi.org/10.3390/act14070356