Event-Triggered Neural Network Multivariate Control for Wastewater Treatment Process
Abstract
1. Introduction
2. Activated Sludge Process
3. Event-Triggered Neural Network Control
3.1. Parameter Learning Mechanism
3.2. Event-Triggered Mechanism
3.3. Control Process of WWTP
3.4. Stability Analysis
4. Simulation Results and Discussion
4.1. Constant Set-Points of DO and NO3− Concentration
4.2. Changed Set-Points of DO and NO3− Concentrations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jacobs, D.; McDaniel, T.; Varsani, A.; Halden, R.; Lee, H. Wastewater monitoring raises privacy and ethical considerations. IEEE Trans. Technol. Soc. 2021, 2, 116–121. [Google Scholar] [CrossRef]
- Oikonomou, K.; Parvania, M.; Khatami, R. Optimal demand response scheduling for water distribution systems. IEEE Trans. Ind. Inform. 2018, 14, 5112–5122. [Google Scholar] [CrossRef]
- Yang, R.Y.; Wang, D.; Qiao, J.F. Policy gradient adaptive critic design with dynamic prioritized experience replay for wastewater treatment process control. IEEE Trans. Ind. Inform. 2022, 18, 3150–3158. [Google Scholar] [CrossRef]
- Xiang, H.; Lei, B.; Yuan, X.; Lv, Q.; Zhang, Q. Design and simulation of new type reactor in the wastewater treatment system based on discharge plasma. IEEE Trans. Plasama Sci. 2019, 47, 952–957. [Google Scholar] [CrossRef]
- Heo, S.; Nam, K.; Loy-Benitez, J.; Yoo, C. Data-driven hybrid model for forecasting wastewater influent loads based on multimodal and ensemble deep learning. IEEE Trans. Ind. Inform. 2021, 17, 6925–6934. [Google Scholar] [CrossRef]
- Nawaz, Z.; Arora, A.; Ali, W.; Saxena, N.; Khan, M.; Yun, C.; Lee, M. Intelligent human–machine interface: An agile operation and decision support for an ANAMMOX SBR system at a pilot-scale wastewater treatment plant. IEEE Trans. Ind. Inform. 2022, 18, 6224–6232. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, X.; Chai, T. Multiobjective operation optimization of wastewater treatment process based on reinforcement self-learning and knowledge guidance. IEEE Trans. Cybern. 2023, 53, 6869–6909. [Google Scholar] [CrossRef]
- Wang, D.; Ha, M.M.; Qiao, J.F. Data-Driven iterative adaptive critic control toward an urban wastewater treatment plant. IEEE Trans. Ind. Electron. 2021, 68, 7362–7369. [Google Scholar] [CrossRef]
- Chang, P.; Zhang, S.; Wang, W. Soft sensor of the key effluent index in the municipal wastewater treatment process based on transformer. IEEE Trans. Ind. Inform. 2024, 20, 4021–4028. [Google Scholar] [CrossRef]
- Camcioglu, S.; Ozyurt, B.; Dogan, I.C.; Hapoglu, H. Application of response surface methodology as a new PID tuning method in an electrocoagulation process control case. Water Sci. Technol. 2017, 76, 3410–3427. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Q.; Liu, S.H.; Li, J.H.; Han, W.J. Wastewater treatment PH value control based on fuzzy self-tuning PID cascade control. Tech. Autom. Appl. 2019, 2, 22–27. [Google Scholar] [CrossRef]
- Chen, Q.; Fan, J.; Chen, W.; Zhang, A.; Pan, G. A dimensionality-reducible operational optimal control for wastewater treatment process. IEEE Trans. Neur. Net. Learn. Syst. 2023, 34, 5418–5426. [Google Scholar] [CrossRef]
- Wang, D.; Liu, T.; Li, L.; Yang, W.; Jin, Y.; Zhao, H.; He, Y.; Zhang, R. Performance analysis of UAV-RIS assisted short-packet secure communications. IEEE Internet Things J. 2025. [Google Scholar] [CrossRef]
- Li, J.W.; Wang, D.; Zhao, H.; Jin, Y.; He, Y.; Zhou, F. Enhancing secrecy energy efficiency in UAC-RIS assisted mobile IoV networks through DRL. IEEE Trans. Wirel. Commun. 2025. [Google Scholar] [CrossRef]
- He, Y.X.; Huang, F.H.; Wang, D.; Chen, B.; Li, T.; Zhang, R. Performance Analysis and optimization design of AAV-Assisted vehicle platooning in NOMA-Enhanced internet of vehicles. IEEE Trans. Intell. Transp. Syst. 2025, 26, 8810–8819. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, Y.; Liu, C.; Qiao, J.F. Data-Driven robust adaptive control with deep learning for wastewater treatment process. IEEE Trans. Ind. Inform. 2024, 20, 149–157. [Google Scholar] [CrossRef]
- Stebel, K.; Pospiech, J.; Nocon, W.; Czeczot, J.; Skupin, P. Boundary-based predictive controller and its application to control of dissolved oxygen concentration in activated sludge bioreactor. IEEE Trans. Ind. Electron. 2022, 69, 10541–10551. [Google Scholar] [CrossRef]
- Wei, W.; Chen, N.; Zhang, Z.; Liu, Z.; Zuo, M.; Liu, K.; Xia, Y. A scalable-bandwidth extended state observer-based adaptive sliding-mode control for the dissolved oxygen in a wastewater treatment process. IEEE Trans. Cybern. 2022, 52, 13448–13457. [Google Scholar] [CrossRef]
- He, Y.X.; Huang, F.H.; Wang, D.; Zhang, R. Outage probanbility analysis of MISO-NOMA downlink communications in UAV-Assisted Agri-IoT with SWIPT and TAS enhancement. IEEE Trans. Netw. Sci. Eng. 2025, 12, 2151–2164. [Google Scholar] [CrossRef]
- He, Y.X.; Huang, F.H.; Wang, D.; Chen, B.; Zhang, R. Emergency communications in post-disaster scenarios: IoT-enhanced airship and buffer support. IEEE Internet Things 2025, 12, 11457–11468. [Google Scholar] [CrossRef]
- He, Y.; Huang, F.; Wang, D.; Zhou, X.; Zhang, R. Uplink outage probability analysis of AAV and intelligent connected vehicle cooperative communication using full-duplex MIMO. IEEE Commun. Lett. 2025, 29, 2068–2072. [Google Scholar] [CrossRef]
- Yang, Q.; Cao, W.; Meng, W.; Si, J. Reinforcement-learning-based tracking control of waste water treatment process under realistic system conditions and control performance requirements. IEEE Trans. Syst. Man Cybern. 2022, 52, 5284–5294. [Google Scholar] [CrossRef]
- Du, P.; Zhong, W.; Peng, X.; Li, L.; Li, Z. Self-healing control for wastewater treatment process based on variable-gain state observer. IEEE Trans. Ind. Inform. 2023, 19, 10412–10424. [Google Scholar] [CrossRef]
- Han, H.G.; Liu, H.X.; Qiao, J.F. Knowledge-data-driven flexible switching control for wastewater treatment process. IEEE Trans. Contr. Syst. Technol. 2022, 30, 1116–1129. [Google Scholar] [CrossRef]
- Han, H.G.; Liu, H.X.; Li, J.; Qiao, J.F. Cooperative fuzzy-neural control for wastewater treatment process. IEEE Trans. Ind. Inform. 2021, 17, 5971–5981. [Google Scholar] [CrossRef]
- Bai, W.; Zhou, Q.; Li, T.; Li, H. Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation. IEEE Trans. Cybern. 2020, 50, 3433–3443. [Google Scholar] [CrossRef]
- Fei, J.; Chen, Y.; Liu, L.; Fang, Y. Fuzzy multiple hidden layer recurrent neural control of nonlinear system using terminal sliding-mode controller. IEEE Trans. Cybern. 2022, 52, 9519–9534. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Sun, H. Switching-like event-triggered control for networked control systems under malicious denial of service attacks. IEEE Trans. Automat. Contr. 2020, 65, 3943–3949. [Google Scholar] [CrossRef]
- Liu, X.X.; Su, X.J.; Shi, P.; Shen, C.; Peng, Y. Event-triggered sliding mode control of nonlinear dynamic systems. Automatica 2020, 112, 108738. [Google Scholar] [CrossRef]
- Zhang, N.; Sun, Q.; Yang, L.; Li, Y. Event-triggered distributed hybrid control scheme for the integrated energy system. IEEE Trans. Ind. Inform. 2022, 18, 835–846. [Google Scholar] [CrossRef]












| Initialization: |
|---|
| for |
| Calculate the outputs of ERWNN and Calculate the DO concentration and NO3− concentration Update , , , and as () If the event E1 occurs If the event E2 occurs Otherwise , End End |
| Condition | Controller | DO | NO3− | Events | ||||
|---|---|---|---|---|---|---|---|---|
| IAE | ISE | Devmax | IAE | ISE | Devmax | |||
| Dry | ERWNN | 5.97 × 10−4 | 1.62 × 10−6 | 0.0069 | 0.0016 | 3.01 × 10−5 | 0.0413 | 19,555 |
| RWNN | 0.0016 | 3.08 × 10−5 | 0.0526 | 0.0034 | 7.20 × 10−4 | 0.0514 | 26,880 | |
| NNOMC | 0.0390 | 5.31 × 10−4 | 0.0725 | 0.0490 | 7.18 × 10−4 | 0.1630 | 26,880 | |
| RARFNNC | 0.0073 | 1.61 × 10−4 | 0.0104 | 0.0126 | 2.83 × 10−4 | 0.1050 | 26,880 | |
| DRFNNC | 0.0079 | 1.82 × 10−4 | 0.0154 | 0.0085 | 3.25 × 10−4 | 0.0176 | 26,880 | |
| Rainy | ERWNN | 0.0031 | 4.64 × 10−5 | 0.042 | 0.0093 | 9.86 × 10−4 | 0.3847 | 22,354 |
| RWNN | 0.0048 | 2.08 × 10−4 | 0.1434 | 0.0110 | 0.0014 | 0.4244 | 26,880 | |
| RFNN | 0.0184 | 2.01 × 10−4 | 0.2749 | 0.3950 | 5.33 × 10−2 | 1.9522 | 26,880 | |
| RBFNN | 0.0198 | 2.43 × 10−3 | 0.3742 | 0.4613 | 6.36 × 10−2 | 1.9978 | 26,880 | |
| Rainstorm | ERWNN | 0.0040 | 1.21 × 10−4 | 0.0867 | 0.0068 | 4.78 × 10−4 | 0.1835 | 23,811 |
| RWNN | 0.0074 | 3.73 × 10−4 | 0.1310 | 0.0108 | 0.0015 | 0.3975 | 26,880 | |
| RFNN | 0.0081 | 6.31 × 10−4 | 0.1637 | 0.3715 | 5.18 × 10−2 | 1.1077 | 26,880 | |
| RBFNN | 0.0096 | 7.41 × 10−4 | 0.2913 | 0.4303 | 3.96 × 10−2 | 1.1977 | 26,880 | |
| Condition | Controller | DO | NO3− | Events | ||||
|---|---|---|---|---|---|---|---|---|
| IAE | ISE | Devmax | IAE | ISE | Devmax | |||
| Dry | ERWNN | 0.0045 | 1.78 × 10−4 | 0.0693 | 0.0040 | 8.17 × 10−5 | 0.0583 | 21,532 |
| RWNN | 0.0063 | 2.48 × 10−4 | 0.1156 | 0.0075 | 2.21 × 10−4 | 0.0612 | 26,880 | |
| PID | 0.0127 | 2.38 × 10−3 | 0.1038 | 0.0271 | 4.90 × 10−3 | 0.2184 | 26,880 | |
| Rainy | ERWNN | 0.0025 | 3.01 × 10−5 | 0.0275 | 0.0078 | 3.34 × 10−4 | 0.1335 | 23,399 |
| RWNN | 0.0065 | 1.81 × 10−4 | 0.0644 | 0.0083 | 6.57 × 10−4 | 0.3335 | 26,880 | |
| RFNN | 0.0084 | 5.64 × 10−4 | 0.1778 | 0.3585 | 4.69 × 10−2 | 1.6809 | 26,880 | |
| RBFNN | 0.0751 | 1.71 × 10−2 | 0.1714 | 0.0347 | 1.84 × 10−2 | 0.9457 | 26,880 | |
| Rainstorm | ERWNN | 0.004 | 1.35 × 10−4 | 0.0764 | 0.0110 | 0.0028 | 0.3696 | 24,313 |
| RWNN | 0.0052 | 1.98 × 10−4 | 0.0959 | 0.0110 | 0.0029 | 0.5759 | 26,880 | |
| RFNN | 0.0081 | 5.66 × 10−4 | 0.0921 | 0.4189 | 4.24 × 10−2 | 1.2759 | 26,880 | |
| RBFNN | 0.0141 | 8.31 × 10−3 | 0.1204 | 0.4516 | 8.32 × 10−2 | 1.9388 | 26,880 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; He, Y.; Guo, J.; Wang, D. Event-Triggered Neural Network Multivariate Control for Wastewater Treatment Process. Actuators 2025, 14, 570. https://doi.org/10.3390/act14120570
Su Y, He Y, Guo J, Wang D. Event-Triggered Neural Network Multivariate Control for Wastewater Treatment Process. Actuators. 2025; 14(12):570. https://doi.org/10.3390/act14120570
Chicago/Turabian StyleSu, Yin, Yixin He, Jipeng Guo, and Dawei Wang. 2025. "Event-Triggered Neural Network Multivariate Control for Wastewater Treatment Process" Actuators 14, no. 12: 570. https://doi.org/10.3390/act14120570
APA StyleSu, Y., He, Y., Guo, J., & Wang, D. (2025). Event-Triggered Neural Network Multivariate Control for Wastewater Treatment Process. Actuators, 14(12), 570. https://doi.org/10.3390/act14120570

